2,740 research outputs found

    Antenna pattern shaping, sensing, and steering study Final report

    Get PDF
    Design of steerable satellite antenna with beam pattern sensing syste

    Design and fabrication of a basic mass analyzer and vacuum system

    Get PDF
    A two-inch hyperbolic rod quadrupole mass analyzer with a mass range of 400 to 200 amu and a sensitivity exceeding 100 packs per billion has been developed and tested. This analyzer is the basic hardware portion of a microprocessor-controlled quadrupole mass spectrometer for a Gas Analysis and Detection System (GADS). The development and testing of the hyperbolic-rod quadrupole mass spectrometer and associated hardware are described in detail

    Stochastic Cooling Overview

    Full text link
    The status of stochastic cooling and developments over the years are reviewed with reference to much of the original work. Both theoretical and technological subjects are considered.Comment: 10 pages. Includes an extensive bibliograph

    Broadband Fizeau Interferometers for Astrophysics

    Full text link
    Measurements of the 2.7 K cosmic microwave background (CMB) radiation now provide the most stringent constraints on cosmological models. The power spectra of the temperature anisotropies and the EE-mode polarization of the CMB are explained well by the inflationary paradigm. The next generation of CMB experiments aim at providing the most direct evidence for inflation through the detection of BB-modes in the CMB polarization, presumed to have been caused by gravitational waves generated during the inflationary epoch around 103410^{-34}s. The BB-mode polarization signals are very small (\leq108^{-8}K) compared with the temperature anisotropies (104\sim 10^{-4}K). Systematic effects in CMB telescopes can cause leakage from temperature anisotropy into polarization. Bolometric interferometry (BI) is a novel approach to measuring this small signal with lower leakage. If BI can be made to work over wide bandwidth (2030%\sim20-30\%) it can provide similar sensitivity to imagers. Subdividing the frequency passband of a Fizeau interferometer would mitigate the problem of `fringe smearing.' Furthermore, the approach should allow simultaneous measurements in image space and visibility space. For subdividing the frequency passsband (`sub-band splitting' henceforth), we write an expression for the output from every baseline at every detector in the focal plane as a sum of visibilities in different frequency sub-bands. For operating the interferometer simultaneously as an imager, we write the output as two integrals over the sky and the focal plane, with all the phase differences accounted for.}{The sub-band splitting method described here is general and can be applied to broad-band Fizeau interferometers across the electromagnetic spectrum. Applications to CMB measurements and to long-baseline optical interferometry are promising.Comment: 8 pages, 5 figures, submitted to Astronomy and Astrophysic

    The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies

    Full text link
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.Comment: Submitted to PASA. 11 figures, 2 table

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Spectral Signature Modification By Application Of Infrared Frequency-selective Surfaces

    Get PDF
    It is desirable to modify the spectral signature of a surface, particularly in the infrared (IR) region of the electromagnetic spectrum. To alter the surface signature in the IR, two methods are investigated: thin film application and antenna array application. The former approach is a common and straightforward incorporation of optically-thin film coatings on the surface designated for signature modification. The latter technique requires the complex design of a periodic array of passive microantenna elements to cover the surface in order to modify its signature. This technology is known as frequency selective surface (FSS) technology and is established in the millimeter-wave spectral regime, but is a challenging technology to scale for IR application. Incorporation of thin films and FSS antenna elements on a surface permits the signature of a surface to be changed in a deterministic manner. In the seminal application of this work, both technologies are integrated to comprise a circuit-analog absorbing IR FSS. The design and modeling of surface treatments are accomplished using commercially-available electromagnetic simulation software. Fabrication of microstructured antenna arrays is accomplished via microlithographic technology, particularly using an industrial direct-write electron-beam lithography system. Comprehensive measurement methods are utilized to study the patterned surfaces, including infrared spectral radiometry and Fourier-transform infrared spectrometry. These systems allow for direct and complementary spectral signature measurements--the radiometer measures the absorption or emission of the surface, and the spectrometer measures its transmission and reflection. For the circuit-analog absorbing square-loop IR FSS, the spectral modulation in emission is measured to be greater than 85% at resonance. Other desirable modifications of surface signature are also explored; these include the ability to filter radiation based on its polarization orientation and the ability to dynamically tune the surface signature. An array of spiral FSS elements allows for circular polarization conditioning. Three techniques for tuning the IR FSS signature via voltage application are explored, including the incorporation of a pn junction substrate, a piezoelectric substrate and a liquid crystal superstrate. These studies will ignite future explorations of IR FSS technology, enabling various unique applications
    corecore