23 research outputs found

    Joint Precoder and Artificial Noise Design for MIMO Wiretap Channels with Finite-Alphabet Inputs Based on the Cut-Off Rate

    Get PDF
    We consider precoder and artificial noise (AN) design for multi-antenna wiretap channels under the finite-alphabet input assumption. We assume that the transmitter has access to the channel coefficients of the legitimate receiver and knows the statistics of the eavesdropper's channel. Accordingly, we propose a secrecy rate maximization algorithm using a gradient descent-based optimization of the precoder matrix and an exhaustive search over the power levels allocated to the AN. We also propose algorithms to reduce the complexities of direct ergodic secrecy rate maximization by: 1) maximizing a cut-off rate-based approximation for the ergodic secrecy rate, simplifying the mutual information expression, which lacks a closed-form and 2) diagonalizing the channels toward the legitimate receiver and the eavesdropper, which allows for employing a per-group precoding-based technique. Our numerical results reveal that jointly optimizing the precoder and the AN outperforms the existing solutions in the literature, which rely on the precoder optimization only. We also demonstrate that the proposed low complexity alternatives result in a small loss in performance while offering a significant reduction in computational complexity. © 2002-2012 IEEE

    Cooperative underwater acoustic communications

    Get PDF
    This article presents a contemporary overview of underwater acoustic communication (UWAC) and investigates physical layer aspects on cooperative transmission techniques for future UWAC systems. Taking advantage of the broadcast nature of wireless transmission, cooperative communication realizes spatial diversity advantages in a distributed manner. The current literature on cooperative communication focuses on terrestrial wireless systems at radio frequencies with sporadic results on cooperative UWAC. In this article, we summarize initial results on cooperative UWAC and investigate the performance of a multicarrier cooperative UWAC considering the inherent unique characteristics of the underwater channel. Our simulation results demonstrate the superiority of cooperative UWAC systems over their point-to-point counterparts. © 1979-2012 IEEE

    Low-Rank Channel Estimation for Millimeter Wave and Terahertz Hybrid MIMO Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) is one of the fundamental technologies for 5G and beyond. The increased number of antenna elements at both the transmitter and the receiver translates into a large-dimension channel matrix. In addition, the power requirements for the massive MIMO systems are high, especially when fully digital transceivers are deployed. To address this challenge, hybrid analog-digital transceivers are considered a viable alternative. However, for hybrid systems, the number of observations during each channel use is reduced. The high dimensions of the channel matrix and the reduced number of observations make the channel estimation task challenging. Thus, channel estimation may require increased training overhead and higher computational complexity. The need for high data rates is increasing rapidly, forcing a shift of wireless communication towards higher frequency bands such as millimeter Wave (mmWave) and terahertz (THz). The wireless channel at these bands is comprised of only a few dominant paths. This makes the channel sparse in the angular domain and the resulting channel matrix has a low rank. This thesis aims to provide channel estimation solutions benefiting from the low rankness and sparse nature of the channel. The motivation behind this thesis is to offer a desirable trade-off between training overhead and computational complexity while providing a desirable estimate of the channel

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Spatial modulation schemes and modem architectures for millimeter wave radio systems

    Get PDF
    The rapid growth of wireless industry opens the door to several use cases such as internet of things and device-to-device communications, which require boosting the reliability and the spectral efficiency of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high-speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. In conventional (fully digital) multiple-input-multiple-output (MIMO) transceivers, each antenna is connected to a specific radio-frequency (RF) chain and high resolution analog-to-digital-converter. Unfortunately, these devices are expensive and power hungry especially at mmWave frequency band and when operating in large bandwidths. Having this in mind, several MIMO transceiver architectures have been proposed with the purpose of reducing the hardware cost and the energy consumption. Fully connected hybrid analog and digital precoding schemes were proposed in with the aim of replacing some of the conventional RF chains by energy efficient analog devices. These fully connected mapping requires many analog devices that leads to non-negligible energy consumption. Partially connected hybrid architectures have been proposed to improve the energy efficiency of the fully connected transceivers by reducing the number of analog devices. Simplifying the transceiver’s architecture to reduce the power consumption results in a degradation of the attained spectral efficiency. In this PhD dissertation, we propose novel modulation schemes and massive MIMO transceiver design to combat the challenges at the mmWave cellular systems. The structure of the doctoral manuscript can be expressed as In Chapter 1, we introduce the transceiver design challenges at mmWave cellular communications. Then, we illustrate several state of the art architectures and highlight their limitations. After that, we propose scheme that attains high-energy efficiency and spectrum efficiency. In chapter 2, first, we mathematically describe the state of the art of the SM and highlight the main challenges with these schemes when applied at mmWave frequency band. In order to combat these challenges (for example, high cost and high power consumption), we propose novel SM schemes specifically designed for mmWave massive MIMO systems. After that, we explain how these schemes can be exploited in attaining energy efficient UT architecture. Finally, we present the channel model, systems assumptions and the transceiver devices power consumption models. In chapter 3, we consider single user SM system. First, we propose downlink (DL) receive SM (RSM) scheme where the UT can be implemented with single or multiple radio-frequency chains and the BS can be fully digital or hybrid architecture. Moreover, we consider different precoders at the BS and propose low complexity and efficient antenna selection schemes for narrowband and wideband transmissions. After that, we propose joint uplink-downlink SM scheme where we consider RSM in the DL and transmit SM (TSM) in the UL based on energy efficient hybrid UT architecture. In chapter 4, we extend the SM system to the multi-user case. Specifically, we develop joint multi-user power allocation, user selection and antenna selection algorithms for the broadcast and the multiple access channels. Chapter 5 is presented for concluding the thesis and proposing future research directions.Considerando los altos requerimientos de los servicios de nueva generación, las infraestructuras de red actual se han visto obligadas a evolucionar en la forma de manejar los diferentes recursos de red y computación. Con este fin, nuevas tecnologías han surgido para soportar las funcionalidades necesarias para esta evolución, significando también un gran cambio de paradigma en el diseño de arquitecturas para la futura implementación de redes.En este sentido, este documento de tesis doctoral presenta un análisis sobre estas tecnologías, enfocado en el caso de redes inter/intra Data Centre. Por consiguiente, la introducción de tecnologías basadas en redes ópticas ha sido estudiada, con el fin de identificar problemas actuales que puedan llegar a ser solucionados mediante el diseño y aplicación de nuevas técnicas, asimismo como a través del desarrollo o la extensión de los componentes de arquitectura de red.Con este propósito, se han definido una serie de propuestas relacionadas con aspectos cruciales, así como el control de dispositivos ópticos por SDN para habilitar el manejo de redes híbridas, la necesidad de definir un mecanismo de descubrimiento de topologías ópticas capaz de exponer información precisa, y el analizar las brechas existentes para la definición de una arquitectura común en fin de soportar las comunicaciones 5G.Para validar estas propuestas, se han presentado una serie de validaciones experimentales por medio de escenarios de prueba específicos, demostrando los avances en control, orquestación, virtualización y manejo de recursos con el fin de optimizar su utilización. Los resultados expuestos, además de corroborar la correcta operación de los métodos y componentes propuestos, abre el camino hacia nuevas formas de adaptar los actuales despliegues de red respecto a los desafíos definidos en el inicio de una nueva era de las telecomunicaciones.Postprint (published version

    Advanced Channel Estimation Techniques for Multiple-Input Multiple-Output Multi-Carrier Systems in Doubly-Dispersive Channels

    Get PDF
    Flexible numerology of the physical layer has been introduced in the latest release of 5G new radio (NR) and the baseline waveform generation is chosen to be cyclic-prefix based orthogonal frequency division multiplexing (CP-OFDM). Thanks to the narrow subcarrier spacing and low complexity one tap equalization (EQ) of OFDM, it suits well to time-dispersive channels. For the upcoming 5G and beyond use-case scenarios, it is foreseen that the users might experience high mobility conditions. While the frame structure of the 5G NR is designed for long coherence times, the synchronization and channel estimation (CE) procedures are not fully and reliably covered for diverse applications. The research on alternative multi-carrier waveforms has brought up valuable results in terms of spectral efficiency, applications coexistence and flexibility. Nevertheless, the receiver design becomes more challenging for multiple-input multiple-output (MIMO) non-orthogonal multi-carriers because the receiver must deal with multiple dimensions of interference. This thesis aims to deliver accurate pilot-aided estimations of the wireless channel for coherent detection. Considering a MIMO non-orthogonal multi-carrier, e.g. generalized frequency division multiplexing (GFDM), we initially derive the classical and Bayesian estimators for rich multi-path fading channels, where we theoretically assess the choice of pilot design. Moreover, the well time- and frequency-localization of the pilots in non-orthogonal multi-carriers allows to reuse their energy from cyclic-prefix (CP). Taking advantage of this feature, we derive an iterative approach for joint CE and EQ of MIMO systems. Furthermore, exploiting the block-circularity of GFDM, we comprehensively analyze the complexity aspects, and propose a solution for low complexity implementation. Assuming very high mobility use-cases where the channel varies within the symbol duration, further considerations, particularly the channel coherence time must be taken into account. A promising candidate that is fully independent of the multi-carrier choice is unique word (UW) transmission, where the CP of random nature is replaced by a deterministic sequence. This feature, allows per-block synchronization and channel estimation for robust transmission over extremely doubly-dispersive channels. In this thesis, we propose a novel approach to extend the UW-based physical layer design to MIMO systems and we provide an in-depth study of their out-of-band emission, synchronization, CE and EQ procedures. Via theoretical derivations and simulation results, and comparisons with respect to the state-of-the-art CP-OFDM systems, we show that the proposed UW-based frame design facilitates robust transmission over extremely doubly-dispersive channels.:1 Introduction 1 1.1 Multi-Carrier Waveforms 1 1.2 MIMO Systems 3 1.3 Contributions and Thesis Structure 4 1.4 Notations 6 2 State-of-the-art and Fundamentals 9 2.1 Linear Systems and Problem Statement 9 2.2 GFDM Modulation 11 2.3 MIMO Wireless Channel 12 2.4 Classical and Bayesian Channel Estimation in MIMO OFDM Systems 15 2.5 UW-Based Transmission in SISO Systems 17 2.6 Summary 19 3 Channel Estimation for MIMO Non-Orthogonal Waveforms 21 3.1 Classical and Bayesian Channel Estimation in MIMO GFDM Systems 22 3.1.1 MIMO LS Channel Estimation 23 3.1.2 MIMO LMMSE Channel Estimation 24 3.1.3 Simulation Results 25 3.2 Basic Pilot Designs for GFDM Channel Estimation 29 3.2.1 LS/HM Channel Estimation 31 3.2.2 LMMSE Channel Estimation for GFDM 32 3.2.3 Error Characterization 33 3.2.4 Simulation Results 36 3.3 Interference-Free Pilot Insertion for MIMO GFDM Channel Estimation 39 3.3.1 Interference-Free Pilot Insertion 39 3.3.2 Pilot Observation 40 3.3.3 Complexity 41 3.3.4 Simulation Results 41 3.4 Bayesian Pilot- and CP-aided Channel Estimation in MIMO NonOrthogonal Multi-Carriers 45 3.4.1 Review on System Model 46 3.4.2 Single-Input-Single-Output Systems 47 3.4.3 Extension to MIMO 50 3.4.4 Application to GFDM 51 3.4.5 Joint Channel Estimation and Equalization via LMMSE Parallel Interference Cancellation 57 3.4.6 Complexity Analysis 61 3.4.7 Simulation Results 61 3.5 Pilot- and CP-aided Channel Estimation in Time-Varying Scenarios 67 3.5.1 Adaptive Filtering based on Wiener-Hopf Approac 68 3.5.2 Simulation Results 69 3.6 Summary 72 4 Design of UW-Based Transmission for MIMO Multi-Carriers 73 4.1 Frame Design, Efficiency and Overhead Analysis 74 4.1.1 Illustrative Scenario 74 4.1.2 CP vs. UW Efficiency Analysis 76 4.1.3 Numerical Results 77 4.2 Sequences for UW and OOB Radiation 78 4.2.1 Orthogonal Polyphase Sequences 79 4.2.2 Waveform Engineering for UW Sequences combined with GFDM 79 4.2.3 Simulation Results for OOB Emission of UW-GFDM 81 4.3 Synchronization 82 4.3.1 Transmission over a Centralized MIMO Wireless Channel 82 4.3.2 Coarse Time Acquisition 83 4.3.3 CFO Estimation and Removal 85 4.3.4 Fine Time Acquisition 86 4.3.5 Simulation Results 88 4.4 Channel Estimation 92 4.4.1 MIMO UW-based LMMSE CE 92 4.4.2 Adaptive Filtering 93 4.4.3 Circular UW Transmission 94 4.4.4 Simulation Results 95 4.5 Equalization with Imperfect Channel Knowledge 96 4.5.1 UW-Free Equalization 97 4.5.2 Simulation Results 99 4.6 Summary 102 5 Conclusions and Perspectives 103 5.1 Main Outcomes in Short 103 5.2 Open Challenges 105 A Complementary Materials 107 A.1 Linear Algebra Identities 107 A.2 Proof of lower triangular Toeplitz channel matrix being defective 108 A.3 Calculation of noise-plus-interference covariance matrix for Pilot- and CPaided CE 108 A.4 Bock diagonalization of the effective channel for GFDM 109 A.5 Detailed complexity analysis of Sec. 3.4 109 A.6 CRLB derivations for the pdf (4.24) 113 A.7 Proof that (4.45) emulates a circular CIR at the receiver 11

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore