87 research outputs found

    Linear N-point camera pose determination

    Full text link

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Markerless Camera Pose Estimation - An Overview

    Get PDF
    As shown by the human perception, a correct interpretation of a 3D scene on the basis of a 2D image is possible without markers. Solely by identifying natural features of different objects, their locations and orientations on the image can be identified. This allows a three dimensional interpretation of a two dimensional pictured scene. The key aspect for this interpretation is the correct estimation of the camera pose, i.e. the knowledge of the orientation and location a picture was recorded. This paper is intended to provide an overview of the usual camera pose estimation pipeline as well as to present and discuss the several classes of pose estimation algorithms

    Leveraging feature uncertainty in the PnP problem

    Get PDF
    Trabajo presentado a la 25th British Machine Vision Conference (BMVC), celebrada en Nottingham (UK) del 1 al 5 de septiembre de 2014.-- Este ítem (excepto textos e imágenes no creados por el autor) está sujeto a una licencia de Creative Commons: Attribution-NonCommercial-NoDerivs 3.0 Spain.We propose a real-time and accurate solution to the Perspective-n-Point (PnP) problem --estimating the pose of a calibrated camera from n 3D-to-2D point correspondences-- that exploits the fact that in practice the 2D position of not all 2D features is estimated with the same accuracy. Assuming a model of such feature uncertainties is known in advance, we reformulate the PnP problem as a maximum likelihood minimization approximated by an unconstrained Sampson error function, which naturally penalizes the most noisy correspondences. The advantages of this approach are clearly demonstrated in synthetic experiments where feature uncertainties are exactly known. Pre-estimating the features uncertainties in real experiments is, though, not easy. In this paper we model feature uncertainty as 2D Gaussian distributions representing the sensitivity of the 2D feature detectors to different camera viewpoints. When using these noise models with our PnP formulation we still obtain promising pose estimation results that outperform the most recent approaches.This work has been partially funded by Spanish government under projects DPI2011-27510, IPT-2012-0630-020000, IPT-2011-1015-430000 and CICYT grant TIN2012-39203; by the EU project ARCAS FP7-ICT-2011-28761; and by the ERA-Net Chistera project ViSen PCIN-2013-047.Peer Reviewe

    A unified 2D-3D video scene change detection framework for mobile camera platforms

    Get PDF
    In this paper, we present a novel scene change detection algorithm for mobile camera platforms. Our approach integrates sparse 3D scene background modelling and dense 2D image background modelling into a unified framework. The 3D scene background modelling identifies inconsistent clusters over time in a set of 3D cloud points as the scene changes. The 2D image background modelling further confirms the scene changes by finding inconsistent appearances in a set of aligned images using the classical MRF background subtraction technique. We evaluate the performance of our proposed system on a number of challenging video datasets obtained from a camera placed on a moving vehicle and the experiments show that our proposed method outperforms previous works in scene change detection, which suggested the feasibility of our approach.<br /

    Refined Pose Estimation for Square Markers Using Shape Fitting

    Get PDF

    Robust resection model for aligning the mobile mapping systems trajectories at degraded and denied urban environments

    Get PDF
    • …
    corecore