2,566 research outputs found

    Tests with a Carlina-type diluted telescope; Primary coherencing

    Full text link
    Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute- Provence Observatory is one of the proposed solutions. It consists in an optical interferometer configured like a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed cospherical segments, a helium balloon (or cables suspended between two mountains), carries a gondola containing the focal optics. Since 2003, we have been building a technical demonstrator of this diluted telescope. First fringes were obtained in May 2004 with two closely-spaced primary segments and a CCD on the focal gondola. We have been testing the whole optical train with three primary mirrors. The main aim of this article is to describe the metrology that we have conceived, and tested under the helium balloon to align the primary mirrors separate by 5-10 m on the ground with an accuracy of a few microns. The servo loop stabilizes the mirror of metrology under the helium balloon with an accuracy better than 5 mm while it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have obtained the white fringes of metrology; i.e., the three mirrors are aligned (cospherized) with an accuracy of {\approx} 1 micron. We show data proving the stability of fringes over 15 minutes, therefore providing evidence that the mechanical parts are stabilized within a few microns. This is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could be one of the first members of a new class of telescopes named diluted telescopes.Comment: 18 pages, 17 figures, A&A, accepte

    Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10-Meter Telescope at Visible Wavelengths

    Full text link
    One important frontier for astronomical adaptive optics (AO) involves methods such as Multi-Object AO and Multi-Conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star adaptive optics at visible wavelengths on a 10-meter-class telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object / Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new techniques in wavefront sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl on-axis, with 24.5% and 22.6% at 10" and 15", respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 seconds of simulation. The MOAO-corrected field of view is ~25 times larger in area than that limited by anisoplanatism at R-band. Our error budget is composed of terms verified through independent, empirical experiments. Error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, 3D turbulators, telescope and LGS simulators, and external calibration ports for deformable mirrors.Comment: 29 pages, 11 figures, submitted to PAS

    TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    Full text link
    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observations are presented here. The TIRSPEC has been made available to the worldwide astronomical community for science observations from May 2014.Comment: 20 pages, 21 figures, 2 tables. Accepted for publication in Journal of Astronomical Instrumentatio

    The design and characterisation of miniature robotics for astronomical instruments

    Get PDF
    Micro robotics has the potential to improve the efficiency and reduce cost of future multi-object instruments for astronomy. This thesis reports on the development and evolution of a micro autonomous pick-off mirror called the Micro Autonomous Positioning System (MAPS) that can be used in a multi-object spectrograph. The design of these micro-autonomous pick-off mirrors is novel as they are capable of high precision positioning using electromagnetic propulsion through utilising non-conventional components and techniques. These devices are self-driven robotic units, which with the help of an external control system are capable of positioning themselves on an instruments focal plane to within 24 μm. This is different from other high precision micro robotics as they normally use piezoelectric actuators for propulsion. Micro robots have been developed that use electromagnetic motors, however they are not used for high precision applications. Although there is a plethora of literature covering design, functionality and capability of precision micro autonomous systems, there is limited research on characterisation methods for their use in astronomical applications. This work contributes not only to the science supporting the design of a micro-autonomous pick-off mirror but also presents a framework for characterising such miniature mechanisms. The majority of instruments are presented with a curved focal plane. Therefore, to ensure that the pick-off mirrors are aligned properly with the receiving optics, either the pick-off mirror needs to be tipped or the receiving optics repositioned. Currently this function is implemented in the beam steering mirror (i.e. the receiving optics). The travel range required by the beam steering mirror is relatively large, and as such, it is more difficult to achieve the positional accuracy and stability. By incorporating this functionality in the pick-off mirror, the instrument can be optimised in terms of size, accuracy and stability. A unique self-adjusting mirror (SAM) is thus proposed as a solution and detailed. As a proof-of-concepts both MAPS and SAM usability in multi-object spectrographs was evaluated and validated. The results indicate their potential to meet the requirements of astronomical instruments and reduce both the size and cost

    SOXS: a wide band spectrograph to follow up transients

    Get PDF
    SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.Comment: 12 pages, 14 figures, to be published in SPIE Proceedings 1070

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11
    • …
    corecore