One important frontier for astronomical adaptive optics (AO) involves methods
such as Multi-Object AO and Multi-Conjugate AO that have the potential to give
a significantly larger field of view than conventional AO techniques. A second
key emphasis over the next decade will be to push astronomical AO to visible
wavelengths. We have conducted the first laboratory simulations of wide-field,
laser guide star adaptive optics at visible wavelengths on a 10-meter-class
telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object
/ Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new
techniques in wavefront sensing and control that are crucial to future on-sky
MOAO systems. We (1) test and confirm the feasibility of highly accurate
atmospheric tomography with laser guide stars, (2) demonstrate key innovations
allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors
of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget
model describing system performance. The AO system maintains a performance of
32.4% Strehl on-axis, with 24.5% and 22.6% at 10" and 15", respectively, at a
science wavelength of 710 nm (R-band) over the equivalent of 0.8 seconds of
simulation. The MOAO-corrected field of view is ~25 times larger in area than
that limited by anisoplanatism at R-band. Our error budget is composed of terms
verified through independent, empirical experiments. Error terms arising from
calibration inaccuracies and optical drift are comparable in magnitude to
traditional terms like fitting error and tomographic error. This makes a strong
case for implementing additional calibration facilities in future AO systems,
including accelerometers on powered optics, 3D turbulators, telescope and LGS
simulators, and external calibration ports for deformable mirrors.Comment: 29 pages, 11 figures, submitted to PAS