5 research outputs found

    Optimized Method for Generating and Acquiring GPS Gold Codes

    Get PDF
    We propose a simpler and faster Gold codes generator, which can be efficiently initialized to any desired code, with a minimum delay. Its principle consists of generating only one sequence (code number 1) from which we can produce all the other different signal codes. This is realized by simply shifting this sequence by different delays that are judiciously determined by using the bicorrelation function characteristics. This is in contrast to the classical Linear Feedback Shift Register (LFSR) based Gold codes generator that requires, in addition to the shift process, a significant number of logic XOR gates and a phase selector to change the code. The presence of all these logic XOR gates in classical LFSR based Gold codes generator provokes the consumption of an additional time in the generation and acquisition processes. In addition to its simplicity and its rapidity, the proposed architecture, due to the total absence of XOR gates, has fewer resources than the conventional Gold generator and can thus be produced at lower cost. The Digital Signal Processing (DSP) implementations have shown that the proposed architecture presents a solution for acquiring Global Positioning System (GPS) satellites signals optimally and in a parallel way

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    Embedding deterministic patterns in partial pseudo-exhaustive test

    Get PDF
    The topic of this thesis is related to testing of very large scale integration circuits. The thesis presents the idea of optimizing mixed-mode built-in self-test (BIST) scheme. Mixed-mode BIST consists of two phases. The first phase is pseudo-random testing or partial pseudo-exhaustive testing (P-PET). For the faults not detected by the first phase, deterministic test patterns are generated and applied in the second phase. Hence, the defect coverage of the first phase influences the number of patterns to be generated and stored. The advantages of P-PET in comparison with usual pseudo-random test are in obtaining higher fault coverage and reducing the number of deterministic patterns in the second phase of mixed-mode BIST. Test pattern generation for P-PET is achieved by selecting characteristic polynomials of multiple-polynomial linear feedback shift register (MP-LFSR). In this thesis, the mixed-mode BIST scheme with P-PET in the first phase is further improved in terms of the fault coverage of the first phase. This is achieved by optimization of polynomial selection of P-PET. In usual mixed-mode BIST, the set of undetected by the first phase faults is handled in the second phase by generating deterministic test patterns for them. The method in the thesis is based on consideration of these patterns during polynomial selection. In other words, we are embedding deterministic test patterns in P-PET. In order to solve the problem, the algorithm for the selection of characteristic polynomials covering the pre-generated patterns is developed. The advantages of the proposed approach in terms of the defect coverage and the number of faults left after the first phase are presented using contemporary industrial circuits. A comparison with usual pseudo-random testing is also performed. The results prove the benefits of P-PET with embedded test patterns in terms of the fault coverage, while maintaining comparable test length and time
    corecore