5,839 research outputs found

    Linear scaling between momentum and spin scattering in graphene

    Get PDF
    Spin transport in graphene carries the potential of a long spin diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 um. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to 10^13 cm^-2) carrier density range of graphene. A linear scaling between the spin diffusion length and the diffusion coefficient is observed. We measure nearly identical spin- and charge diffusion coefficients indicating that electron-electron interactions are relatively weak and transport is limited by impurity potential scattering. When extrapolated to the maximum carrier mobilities of 2x10^5 cm^2/Vs, our results predict that a considerable increase in the spin diffusion length should be possible

    Electron spin relaxation in graphene with random Rashba field: Comparison of D'yakonov-Perel' and Elliott-Yafet--like mechanisms

    Full text link
    Aiming to understand the main spin relaxation mechanism in graphene, we investigate the spin relaxation with random Rashba field induced by both adatoms and substrate, by means of the kinetic spin Bloch equation approach. The charged adatoms on one hand enhance the Rashba spin-orbit coupling locally and on the other hand serve as Coulomb potential scatterers. Both effects contribute to spin relaxation limited by the D'yakonov-Perel' mechanism. In addition, the random Rashba field also causes spin relaxation by spin-flip scattering, manifesting itself as an Elliott-Yafet--like mechanism. Both mechanisms are sensitive to the correlation length of the random Rashba field, which may be affected by the environmental parameters such as electron density and temperature. By fitting and comparing the experiments from the Groningen group [J\'ozsa {\it et al.}, Phys. Rev. B {\bf 80}, 241403(R) (2009)] and Riverside group [Pi {\it et al.}, Phys. Rev. Lett. {\bf 104}, 187201 (2010); Han and Kawakami, {\it ibid.} {\bf 107}, 047207 (2011)] which show either D'yakonov-Perel'-- (with the spin relaxation rate being inversely proportional to the momentum scattering rate) or Elliott-Yafet--like (with the spin relaxation rate being proportional to the momentum scattering rate) properties, we suggest that the D'yakonov-Perel' mechanism dominates the spin relaxation in graphene. The latest experimental finding of a nonmonotonic dependence of spin relaxation time on diffusion coefficient by Jo {\it et al.} [Phys. Rev. B {\bf 84}, 075453 (2011)] is also well reproduced by our model.Comment: 13 pages, 9 figures, to be published in New J. Phy

    Disorder and Electronic Transport in Graphene

    Full text link
    In this review, we provide an account of the recent progress in understanding electronic transport in disordered graphene systems. Starting from a theoretical description that emphasizes the role played by band structure properties and lattice symmetries, we describe the nature of disorder in these systems and its relation to transport properties. While the focus is primarily on theoretical and conceptual aspects, connections to experiments are also included. Issues such as short versus long-range disorder, localization (strong and weak), the carrier density dependence of the conductivity, and conductance fluctuations are considered and some open problems are pointed out.Comment: 18 pages, 5 figures, Topical Revie

    Orbital symmetry fingerprints for magnetic adatoms in graphene

    Get PDF
    In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference effects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.Comment: 15 pages, 11 figures. Added discussion about the multi-orbital case and the validity of the single orbital picture. Published versio

    Elliot-Yafet mechanism in graphene

    Full text link
    The differences between spin relaxation in graphene and in other materials are discussed. For relaxation by scattering processes, the Elliot-Yafet mechanism, the relation between the spin and the momentum scattering times acquires a dependence on the carrier density, which is independent of the scattering mechanism and the relation between mobility and carrier concentration. This dependence puts severe restrictions on the origin of the spin relaxation in graphene. The density dependence of the spin relaxation allows us to distinguish between ordinary impurities and defects which modify locally the spin-orbit interaction.Comment: 4 pages + \epsilon + S

    Magnetic and Kohn-Luttinger instabilities near a Van Hove singularity: monolayer versus twisted bilayer graphene

    Get PDF
    We investigate the many-body instabilities of electrons interacting near Van Hove singularities arising in monolayer and twisted bilayer graphene. We show that a pairing instability must be dominant over the tendency to magnetic order as the Fermi level is tuned to the Van Hove singularity in the conduction band of graphene. As a result of the extended character of the saddle points in the dispersion, we find that the pairing of the electrons takes place preferentially in a channel of f-wave symmetry, with an order parameter vanishing at the position of the saddle points along the Fermi line. In the case of the twisted bilayers, the dispersion has instead its symmetry reduced down to the C_{3v} group and, most importantly, it leads to susceptibilities that diverge at the saddle points but are integrable along the Fermi line. This implies that a ferromagnetic instability becomes dominant in the twisted graphene bilayers near the Van Hove singularity, with a strength which is amplified as the lowest subband of the electron system becomes flatter for decreasing twist angle.Comment: 16 pages, 10 figure

    Graphene via large N I: Renormalization

    Full text link
    We analyze the competing effects of moderate to strong Coulomb electron-electron interactions and weak quenched disorder in graphene. Using a one-loop renormalization group calculation controlled within the large-N approximation, we demonstrate that, at successively lower energy (temperature or chemical potential) scales, a type of non-Abelian vector potential disorder always asserts itself as the dominant elastic scattering mechanism for generic short-ranged microscopic defect distributions. Vector potential disorder is tied to both elastic lattice deformations ("ripples") and topological lattice defects. We identify several well-defined scaling regimes, for which we provide scaling predictions for the electrical conductivity and thermopower, valid when the inelastic lifetime due to interactions exceeds the elastic lifetime due to disorder. Coulomb interaction effects should figure strongly into the physics of suspended graphene films, where rs > 1; we expect vector potential disorder to play an important role in the description of transport in such films.Comment: 25 pages, 21 figure
    corecore