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Magnetic and Kohn-Luttinger instabilities near a Van Hove singularity: Monolayer
versus twisted bilayer graphene
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Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientı́ficas, Serrano 123, 28006 Madrid, Spain

(Received 28 June 2013; published 27 September 2013)

We investigate the many-body instabilities of electrons interacting near Van Hove singularities arising in
monolayer and twisted bilayer graphene. We show that a pairing instability must be dominant over the tendency
to magnetic order as the Fermi level is tuned to the Van Hove singularity in the conduction band of graphene. As
a result of the extended character of the saddle points in the dispersion, we find that the pairing of the electrons
takes place preferentially in a channel of f -wave symmetry, with an order parameter vanishing at the position of
the saddle points along the Fermi line. In the case of the twisted bilayers, the dispersion has instead its symmetry
reduced down to the C3v group and, most importantly, it leads to susceptibilities that diverge at the saddle points
but are integrable along the Fermi line. This implies that a ferromagnetic instability becomes dominant in the
twisted graphene bilayers near the Van Hove singularity, with a strength which is amplified as the lowest subband
of the electron system becomes flatter for decreasing twist angle.
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I. INTRODUCTION

In recent years, there has been great interest in the investi-
gation of the correlations that may arise from e-e interactions
in monolayer1–9 as well as in bilayer graphene.10–13 In these
systems, the Coulomb repulsion between electrons constitutes
the dominant interaction, placing the carbon material in a
strong-coupling regime as e2 turns out to be nominally larger
than the Fermi velocity vF of the electrons.14 Yet the effects
of electron correlations have been quite elusive, apart from the
observation of the fractional quantum Hall effect in monolayer
graphene15,16 and several signatures of exotic phases in bilayer
graphene.17,18

The observation of superconductivity in a graphene system
is a widely shared aspiration, and some proposals have been
already put forward to induce a pairing instability in the carbon
layer.19–26 Several experimental studies have been carried out
showing the feasibility of superconducting correlations and
even supercurrents in graphene contacted with superconduct-
ing electrodes.27,28 However, it is still an intriguing question
whether graphene may support superconducting correlations
on its own under appropriate experimental conditions.

In that respect, a suitable way of amplifying the electronic
correlations may consist in tuning the Fermi level at the
points with divergent density of states (so-called Van Hove
singularities) that are present in the spectrum of both mono-
layer graphene and twisted graphene bilayers. Experimental
measures of the electronic dispersion in graphene at large
doping levels have shown indeed that the saddle points in
the conduction band develop an extended shape that may sig-
nificantly reinforce the modulation of the screened Coulomb
interaction.29 On the other hand, a Van Hove singularity
has been also observed experimentally in the lowest-energy
subband of the twisted bilayers,30,31 which makes them ideal
systems to address the effects of the strong correlation with a
minimum of electron doping.

In narrow-band electron systems, magnetic and super-
conducting instabilities are in general likely to appear as a
consequence of the enhanced density of states near the Fermi

level. The route towards superconductivity can be elaborated
starting from ideas proposed long ago by Kohn and Luttinger,
trying to understand whether a pairing instability could arise
out of a purely repulsive interaction.32 It happens that in
electron systems with anisotropic dispersion, the Coulomb
interaction can be screened with different intensity along the
Fermi surface, giving rise in some cases to a significant
modulation of the effective interaction. Then it becomes
possible that, after making the decomposition into the different
modes according to the symmetry group of the Fermi surface,
the couplings in some of the channels may turn out to be
negative.33,34 This sign of attractive interaction is enough to
trigger a superconducting instability, though the magnitude of
the negative couplings may be in general so small that the
critical scale for superconductivity becomes many orders of
magnitude smaller than the Fermi energy.

However, in cases where the Fermi surface is close to
saddle points in the electronic dispersion, the modulation
displayed by the screened e-e interaction can be quite strong,
as a result of the divergent density of states provided by the
saddle points. In models with such a Van Hove singularity
in the spectrum, the critical scale for the pairing instability
may be a small fraction of the typical energy scale of the
band structure, leading nevertheless to much higher transition
temperatures than those obtained in conventional models with
electron-phonon interactions. In the context of the high-Tc

cuprate superconductors, the proximity of the Fermi level
to a saddle point in the electronic dispersion35,36 has been
invoked to account for several unconventional properties of
the cuprates,37,38 including the d-wave order parameter of
the superconducting condensate.39,40 Many of these features
enter also in correspondence with the properties expected from
microscopic theories of the cuprates, based mainly on the
Hubbard model.

In the context of the honeycomb carbon lattice, an inves-
tigation of the role of the Van Hove singularities to induce a
superconducting instability has been carried out in Ref. 23. The
analysis was made there under the assumption of a relatively
small third-neighbor hopping, still preserving an approximate
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nesting of the Fermi line passing by the saddle points. Under
these conditions, the electron scattering is more intense at the
momentum connecting each two inequivalent saddle points,
and the superconducting instability turns out to appear in the
channel with d-wave symmetry. A similar conclusion was
reached in the analysis of Ref. 41. Anyhow, that geometry
of the Fermi line does not seem to be applicable to the Van
Hove singularity in the conduction band of graphene, where
the extended character of the saddle points favors the scattering
of electrons with vanishing momentum transfer. Then, the
development of the superconducting instability takes place
in general in the f -wave channel.29 The same symmetry
of the order parameter has been also obtained in numerical
studies of the Van Hove singularity under the assumption of
short-range Coulomb interaction.42 In a different unrelated
situation, f -wave symmetry has been also predicted for a
superconducting instability arising in graphene at low doping
levels about the charge neutrality point.22

In the present paper, we will apply the Kohn-Luttinger
mechanism of superconductivity to the case where there is an
extended Van Hove singularity in the electronic spectrum, as
happens in the conduction band of graphene. We will provide
a very general argument to show that the superconducting
instability must have then f -wave symmetry. As the electron
scattering is greatly enhanced by the extended character of
the saddle points in the dispersion, the uniform magnetic
susceptibility can also grow large in that situation. We will see
however that the couplings measuring the effective attraction
in the pairing channels are also amplified, formally diverging
when the critical point for a ferromagnetic instability is
approached. This explains that the pairing instability turns
out to prevail over the tendency towards magnetic order in the
presence of the extended Van Hove singularity.

In the case of the twisted graphene bilayers, we will
see instead that they are more prone to develop a magnetic
instability as they approach the regime close to the formation
of flat zero-energy subbands for decreasing twist angle.43–45

We will show that the low-energy Van Hove singularity arising
from the hybridization of twisted Dirac cones favors then a
ferromagnetic instability in the system. This is reminiscent
of the evidence of ferromagnetism found in Monte Carlo
simulations of the Hubbard model in the square lattice with
next-to-nearest neighbor hopping, in the limit where the Van
Hove singularity undergoes a similar collapse at the bottom
of the band.46 As shown below, the many-body approaches
used here to describe these instabilities can be also put
in correspondence with renormalization group analyses of
the interacting electron system, which have also shown that
ferromagnetism is a likely instability when the Fermi level is
close to a Van Hove singularity, in the absence of significant
nesting of the Fermi surface.47

II. MAGNETIC AND PAIRING INSTABILITIES

In a two-dimensional system, the Van Hove singularities in
the density of states arise from the presence of saddle points
in the electronic dispersion, as those shown in a typical plot
for the graphene lattice in Fig. 1. For small deviation k of the
momentum with respect to the center of each saddle point, the
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FIG. 1. Plot of the dispersion of the conduction and valence bands
from a tight-binding model of graphene (energy is measured in units
of the nearest-neighbor hopping t and momentum in units of the
inverse of the C-C distance).

dispersion can be approximated by

ε(k) ≈ α k2
x − β k2

y. (1)

As a consequence of the flatness of the band around the
saddle points, a number of susceptibilities diverge at the Van
Hove singularity, with relative strengths that depend on the
particular values of the α and β parameters. The particle-
hole susceptibility χph(q,ω) at vanishing momentum transfer
is given for instance by

χph(0,ω) ≈ 1

4π2

1√
αβ

ln

(
�0

ω + μ

)
, (2)

where μ measures the deviation of the Fermi level with
respect to the Van Hove singularity and �0 is a high-energy
cutoff. The particle-hole susceptibility at momentum transfer
Q connecting two inequivalent saddle points also diverges as

χph(Q,ω) ≈ 1

2
√

3π2

c′

α + β
ln

(
�0

ω + μ

)
(3)

with a prefactor given in the case of α > 3β > 0 by

c′ = ln

(
1 + √

β/3α

1 − √
β/3α

)
+ ln

(
1 + √

3β/α

1 − √
3β/α

)
. (4)

The singularity in the expression (4) reflects the instance of
perfect nesting of the Fermi line, which corresponds in the
honeycomb lattice to α = 3β or α = β/3. Finally, the particle-
particle susceptibility χpp(q,ω) at vanishing total momentum
q of the pair of electrons diverges as

χpp(0,ω) ≈ 1

4π2

1√
αβ

ln

(
�0

ω + μ

)
. (5)

The large growth of the susceptibilities as μ → 0 leads
to the divergence of several response functions as one
approaches the Van Hove singularity. The strongest divergence
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among them dictates the character of the dominant electronic
instability in the system. In this respect, there are two different
scenarios, depending on the relative strength of the particle-
hole susceptibilities at momentum transfer 0 and Q. When
χph(Q,ω) > χph(0,ω), the tendency towards a spin-density-
wave instability at momentum Q prevails over a ferromagnetic
instability. In that case, however, a superconducting instability
may be also viable, due to the anisotropy created in the
effective e-e interaction by the large momentum-dependent
screening near the Van Hove singularity. This is actually the
possibility that was studied in Ref. 23. In those circumstances,
it was shown that the dominant superconducting instability
takes place in a d-wave channel, which corresponds to the
degenerate representation {cos(2mθ ), sin(2mθ )} (m integer,
2m not a multiple of 3) of the point symmetry group C6v .

The other scenario corresponds to the case in which
χph(Q,ω) < χph(0,ω). A ferromagnetic instability may arise
then in the system, as illustrated in the analysis of the square
lattice by renormalization group methods near the Van Hove
singularity47 and supported by Monte Carlo simulations.46

As mentioned before, the case of largest strength of the
particle-hole susceptibility χph(0,ω) is in general the relevant
instance for graphene monolayer and bilayer systems. We will
see in what follows that a superconducting instability is also
possible in this case, but with an order parameter which has
preferentially f -wave symmetry.

An important point regarding the many-body theory of
electrons near a Van Hove singularity is that all the momentum
dependence of the interaction potential is irrelevant when
scaling the theory towards the low-energy limit. This is the
reflection of the intense screening from the divergent density
of states, that reduces the effective interaction at low energies
to a purely local component in real space. This can be seen from
inspection of the effective action, written in terms of creation
[annihilation] operators ψ†

σ (k,t) [ψσ (k,t)] for electrons with
spin σ = ↑,↓ as

S =
∫

dt d2k
∑

σ

[ψ†
σ (k,t) i∂tψσ (k,t)

− ε(k) ψ†
σ (k,t)ψσ (k,t)]

− 1

2

∫
dt d2k

∑
σ,σ ′

ρσ (k,t) vσσ ′(k) ρσ ′(−k,t) (6)

with the Fourier transform ρσ (k,t) of the electron density
given by

ρσ (q,t) =
∫

d2k ψ†
σ (k + q,t)ψσ (k,t). (7)

Thus, one can check that the action (6) is invariant under
the scale transformation

t ′ = 1

s
t, k′ = √

sk, ψ ′ = 1√
s
ψ, (8)

provided one keeps only the zeroth-order term in the expansion
of vσσ ′(k) in powers of the momentum. Higher orders in the
power series of the potential would be affected by powers
of 1/

√
s, with the result that they would be increasingly

suppressed as s → ∞. This is the limit in which the theory is
scaled down to low energies, meaning that one can just remain
with the constant term v⊥ ≡ v↑↓(0) for the sake of studying

R
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FIG. 2. (Color online) Self-consistent diagrammatic equations for
the response functions R‖ and R⊥ in the RPA.

the low-energy instabilities of the electron system near the
Van Hove singularity.

A. Ferromagnetic instability

Focusing on the case where the largest electron-hole
susceptibility is given by χph(0,ω), we can sum up in the
framework of the RPA the most divergent contributions to
the charge and spin response functions. These are given by
correlators of the electron densities ρ↑(q,ω) and ρ↓(q,ω), that
we define now with more generality from electron creation
[annihilation] operators ψ

†
jσ (k,ω) [ψjσ (k,ω)] for a number of

independent saddle points j = 1, . . . N ,

ρσ (q,ωq) =
∑
j,j ′

∫
d2k dωk ψ

†
jσ (k + q,ωk + ωq)ψj ′σ (k,ωk).

(9)

The response functions for charge and spin are given respec-
tively by

Rc(q,ω) = 〈[ρ↑(q,ω) + ρ↓(q,ω)] [ρ↑(−q, − ω)

+ ρ↓(−q, − ω)]〉, (10)

Rs(q,ω) = 〈[ρ↑(q,ω) − ρ↓(q,ω)] [ρ↑(−q, − ω)

− ρ↓(−q, − ω)]〉. (11)

In general, the e-e interaction may be mediated by a
potential v‖(q) between electrons with parallel spin and v⊥(q)
for electrons with opposite spin projections. In the RPA,
the response functions R‖ = (Rc + Rs)/2 and R⊥ = (Rc −
Rs)/2 must obey the self-consistent equations represented
diagrammatically in Fig. 2. We have then

R‖(0,ω) = 2Nχph(0,ω) − Nχph(0,ω) v‖(0) R‖(0,ω)

−Nχph(0,ω) v⊥(0) R⊥(0,ω), (12)

R⊥(0,ω) = −Nχph(0,ω) v⊥(0) R‖(0,ω)

−Nχph(0,ω) v‖(0) R⊥(0,ω). (13)

Solving the linear system (12) and (13), we find

R‖(0,ω) = 2Nχph(0,ω) [1 + Nv‖(0)χph(0,ω)]

[1 + Nv‖(0)χph(0,ω)]2 − [Nv⊥(0)χph(0,ω)]2
,

(14)

R⊥(0,ω) = −2N2v⊥(0) [χph(0,ω)]2

[1 + Nv‖(0)χph(0,ω)]2 − [Nv⊥(0)χph(0,ω)]2
.

(15)
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We can go back now to the charge and spin response
functions, obtaining the result

Rc(0,ω) = 2Nχph(0,ω)

1 + N [v‖(0) + v⊥(0)] χph(0,ω)
, (16)

Rs(0,ω) = 2Nχph(0,ω)

1 + N [v‖(0) − v⊥(0)] χph(0,ω)
. (17)

We find then the origin of the spin instability when v‖(0) <

v⊥(0). This is the natural situation when the screening effects
are so strong that the e-e interaction is reduced to a purely
on-site repulsion. In the context of electrons interacting near a
Van Hove singularity, we have already seen that v⊥(0) is the
only component of the interaction which is not irrelevant in
the low-energy limit. This explains why the tendency towards
uniform spin order is a natural instability in systems with a
large density of states for which the interaction can be modeled
by a local Coulomb repulsion.

A remarkable feature is that the ferromagnetic instability
can be always reached, no matter the strength of the interaction,
provided one can place the Fermi level arbitrarily close to
the Van Hove singularity. Taking then the expression of
the particle-hole susceptibility in (2) and assuming a local
interaction with constant potential v⊥(p), the instability is
found at the critical energy

ωc = �0 exp

(
−4π2√αβ

Nv⊥

)
. (18)

We have anyhow to bear in mind that a very low value of
ωc may represent the unfeasibility to observe in practice any
instability, if that energy is below the resolution with which
one can approach experimentally the singularity. This also
includes the possible effect of disorder, that may attenuate the
divergence of the density of states below a certain energy scale
as we will discuss later.

Regarding the expressions (16) and (17), we point out that
their coincidence with the results obtained from a scaling
analysis of the Van Hove singularity47 is reassuring. That is,
the present results can be also interpreted as the lowest order of
a renormalization group approach to the singularity. This level
of approximation still misses relevant effects, some of them
reinforcing the divergent density of states (renormalization of
the saddle point dispersion) and others tending to weaken the
electronic correlations (renormalization of the quasiparticle
peak).48 Nevertheless, Eq. (18) can be used at least to estimate
the order of magnitude of the critical energy scale. Full
nonperturbative studies of the low-energy instabilities arising
near a Van Hove singularity (as those carried out by means
of Monte Carlo simulations in the square lattice46) have also
certified the existence of the ferromagnetic phase, in regions of
the phase diagram where the condition χph(Q,ω) < χph(0,ω)
is satisfied.

B. Pairing instability

A pairing instability is also possible when the Fermi
level is close to the Van Hove singularity, as the strong
screening effects make the effective e-e interaction quite
anisotropic as a function of the momenta of the electrons. The
tendency towards superconducting order requires however the
development of an attractive interaction in any of the channels

= + VV

FIG. 3. Self-consistent diagrammatic equation for the BCS vertex
V in the ladder approximation.

for the different representations of the point symmetry group.
When this happens, the pairing instability can be greatly
enhanced due to the divergent density of states, already
reflected in the particle-particle susceptibility given by Eq. (5).

The pairing instability can be studied by looking at the
behavior of the so-called BCS vertex, that is the four-fermion
interaction vertex for vanishing total momentum and spin of
the incoming electrons. Such a function can be parametrized
in terms of the angles θ and θ ′ of the respective momenta of
the spin-up incoming and outgoing electrons. Henceforth we
will therefore denote the BCS vertex by V (θ,θ ′; ω), ω being
the energy of the pair of electrons.

Adopting a methodology similar to that for the ferromag-
netic instability, we will seek to sum up the most divergent
contributions to the BCS vertex function. These can be
encoded in the diagrammatic equation represented in Fig. 3,
where the second term on the right-hand side accounts for the
divergence of the particle-particle susceptibility. The particle-
particle loop involves an integration in momentum space, that
can be parametrized in terms of the differential elements dk‖
and dk⊥, longitudinal and normal, respectively, to the lines
of constant energy. Alternatively, one can pass to integration
variables defined by the energy ε of the contour lines and the
angle θ along them. Thus, we end up with the self-consistent
equation

V (θ,θ ′; ω) = V0(θ,θ ′) − 1

(2π )2

∫ �

0
dε

∫ 2π

0
dθ ′′ ∂k⊥

∂ε

∂k‖
∂θ ′′

×V0(θ,θ ′′)
1

ε − ω
2

V (θ ′′,θ ′; ω). (19)

At this point, one can make contact with the more powerful
scaling approach by differentiating with respect to the high-
energy cutoff � and applying self-consistency to the right-hand
side of the equation. Then we get

∂V (θ,θ ′; ω)

∂�

= − 1

(2π )2

∫ 2π

0
dθ ′′ ∂k⊥

∂ε

∂k‖
∂θ ′′ V (θ,θ ′′; ω)

1

�
V (θ ′′,θ ′; ω).

(20)

This is precisely the equation that one obtains in a renor-
malization group approach to the pairing instability and, in
the present context, it has the advantage of allowing a proper
consideration of the effect of the divergent density of states
upon scaling in the low-energy limit. The density of states can
be actually expressed as

n(�) = 1

(2π )2

∫ 2π

0
dθ ′′ ∂k⊥

∂ε

∂k‖
∂θ ′′ , (21)

where the integral is carried out along a contour line of energy
�. Then we can write Eq. (20) in simpler form by passing to
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the angular variable

φ(θ ) = 1

2πn(�)

∫ θ

0
dθ ′′ ∂k⊥

∂ε

∂k‖
∂θ ′′ . (22)

In terms of the new function Ṽ (φ,φ′; ω) = V (θ,θ ′; ω), the
scaling equation reads

�
∂Ṽ (φ,φ′; ω)

∂�
= −n(�)

2π

∫ 2π

0
dφ′′Ṽ (φ,φ′′; ω)Ṽ (φ′′,φ′; ω).

(23)

The BCS vertex is a function of the frequency ω as well as of
the high-energy cutoff �. Under the assumption of scaling, it
must be actually a function of the ratio ω/�, so the low-energy
limit ω → 0 can be approached by solving Eq. (23) in the limit
of large �. In the particular case of approximately constant
density of states n and angle-independent vertex Ṽ (ω), the
solution of the equation leads to a singularity for attractive
interaction Ṽ < 0, with the well-known relation between the
low-energy critical scale ωc and the high-energy cutoff

ωc ≈ �0 exp{−1/λ}, λ ≡ n|Ṽ (�0)|. (24)

In the proximity of the Van Hove singularity, however, we see
that a pairing instability may be enhanced by the logarithmic
divergence of n(�), increasing significantly the value of ωc.

In the case of energy-dependent density of states, we can
still resort to an approximation that allows us to estimate the
strength of a pairing instability by using a relation like (24), in
terms of a set of constant effective couplings. For that purpose,
we can introduce in Eq. (20) the change of variables

V̂ (θ,θ ′; ω) =
√

1

2π

∂k⊥(θ )

∂ε

∂k‖(θ )

∂θ

×
√

1

2π

∂k⊥(θ ′)
∂ε

∂k‖(θ ′)
∂θ ′ V (θ,θ ′; ω). (25)

In terms of the redefined vertex, the scaling equation can be
then approximated by

�
∂V̂ (θ,θ ′; ω)

∂�
= − 1

2π

∫ 2π

0
dθ ′′V̂ (θ,θ ′′; ω)V̂ (θ ′′,θ ′; ω).

(26)

The vertex (25) is actually the starting point of usual analyses
of the pairing instabilities near a Van Hove singularity,49,50

where the couplings computed for the effective attraction can
be interpreted in the framework of the standard BCS theory.

The integration of Eq. (26) can be facilitated by expanding
the vertex V̂ (θ,θ ′; ω) in terms of the modes �

(γ )
m (θ ) for the

different representations γ of the point symmetry group,

V̂ (θ,θ ′; ω) =
∑
γ,m,n

V (γ )
m,n�

(γ )
m (θ )�(γ )

n (θ ′). (27)

We arrive then at a set of equations for each representation γ :

�
∂V

(γ )
m,n

∂�
= −

∑
s

V (γ )
m,sV

(γ )
s,n . (28)

It becomes clear that, for positive initial values of V
(γ )
m,n, the

couplings fade away in the low-energy regime approached as
� → ∞. In the present case of highly anisotropic screening,

some of the channels may start however with an attractive
effective interaction. Then, as observed from Eq. (28), this
will be enough to trigger a pairing instability at a low-energy
critical scale like that in Eq. (24).

A sensible way of computing initial values for V
(γ )
m,n is to start

with a dressed vertex accounting for the effects of the electron-
hole polarization not included in the sum of Fig. 3. One can
indeed perform the sum of RPA and ladder contributions
obtained from iteration of the electron-hole scattering, as
proposed in Ref. 49. Assuming as in the previous section a local
interaction with constant potential v⊥ in momentum space, the
initial value of the BCS vertex is given in this approximation
by49

V̂0(θ,θ ′) = F (θ )F (θ ′)
(

v⊥ + v2
⊥χph(k + k′)

1 − v⊥χph(k + k′)

+ v3
⊥χ2

ph(k − k′)

1 − v2
⊥χ2

ph(k − k′)

)
(29)

with

F (θ ) =
√

1

2π

∂k⊥(θ )

∂ε

∂k‖(θ )

∂θ
(30)

and k,k′ being the respective momenta at angles θ,θ ′ over the
energy contour line. The singularity in the fractions of Eq. (29)
corresponds at vanishing momentum to the ferromagnetic
instability discussed in the previous section. As already
mentioned, the mode expansion of (29) may lead however
to a negative coupling in some of the channels, making the
pairing instability to prevail at a higher critical scale, as we
will see in the next section.

III. VAN HOVE SINGULARITIES IN MONOLAYER AND
TWISTED BILAYER GRAPHENE

In all the relevant instances where a Van Hove singularity
arises in graphene-based systems, the electron-hole suscep-
tibility appears to reach its maximum peak at vanishing
momentum transfer. This narrows down the possible electronic
instabilities to either a tendency towards ferromagnetism or
towards Cooper pairing with unconventional (preferentially
f -wave) order parameter. The case of monolayer graphene
with large electron doping is an example of the latter instance,
as a result of the strong modulation of the interaction around
the extended saddle points in the electronic dispersion. The
tendency to magnetic order turns out to be dominant instead
in the twisted graphene bilayers, given the lower degree of
symmetry but larger number of saddle points in the dispersion.

A. Monolayer graphene

The electronic dispersion near the Van Hove singularity
in the conduction band of graphene has been mapped in
the ARPES experiments reported in Ref. 29. The saddle
point dispersion around the M point of the Brillouin zone
shows an extended character that cannot be accounted for by
conventional approaches such as the LDA or GW approxima-
tions, reflecting that it arises as an effect of strong electronic
correlation. One can anyhow fit empirically the electronic
dispersion by writing down a tight-binding Hamiltonian
for electron creation (annihilation) operators c

†
i (ci) in the
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FIG. 4. (Color online) Plot of energy contour lines around the
saddle points in the conduction band of graphene, obtained from a
tight-binding model with first-, second-, and third-neighbor hopping
parameters (momenta kx and ky are measured in units of the inverse
of the C-C distance).

honeycomb lattice

H = −t
∑
i,j

c
†
i cj − t ′

∑
i,j

c
†
i cj − t ′′

∑
i,j

c
†
i cj , (31)

where the sums account respectively for hopping between
first-, second-, and third-neighbor carbon atoms. The hopping
parameters giving the best fit to the experimental results can be
found in Ref. 29. A plot of the energy contour lines obtained
from the diagonalization of (31) near the Van Hove singularity
in the conduction band is shown in Fig. 4.

The extended character of the saddle points seen in
Fig. 4 leads to a marked enhancement of the electron-hole
susceptibility at vanishing momentum transfer. Moreover, the
BCS vertex develops a strong modulation along the Fermi
line passing near the saddle points, as observed in Fig. 5. The
oscillations are translated to the initial condition (29) for the
vertex, in such a way that the periodic behavior along the Fermi
line is dominated by the first harmonics:

V̂0(θ,θ ) = c0 + c2 cos(2θ ) + c4 cos(4θ ) + c6 cos(6θ ) + · · · ,

(32)

F VHS 1 meV
T  12 K

0 2

V
0,

F VHS  10 meV
T  12 K

0 2
θ

V
0,

θ

θθ

FIG. 5. (Color online) Modulation of the BCS vertex as the angle
θ makes a complete turn along the Fermi line, for different shifts
of the Fermi energy εF with respect to the level of the Van Hove
singularity εVHS and temperature T = 12 K.

V̂0(0,θ ) = c′
0 + c′

2 cos(2θ ) + c′
4 cos(4θ ) + c′

6 cos(6θ ) + · · · ,

(33)

V̂0(θ, − θ ) = c′′
0 + c′′

2 cos(2θ ) + c′′
4 cos(4θ )

+ c′′
6 cos(6θ ) + · · · . (34)

The expansions (32)–(34) match well with the periodicity
of the modes for the irreducible representations of the
C6v symmetry group. Four of them are one-dimensional,
with respective sets of basis functions given by {cos(6nθ )},
{sin(6nθ )}, {cos[(6n + 3)θ ]}, and {sin[(6n + 3)θ ]} (n being
always an integer). The remaining two representations are two-
dimensional, corresponding to the sets {cos(mθ ), sin(mθ )},
with the integer m running over all values that are not multiples
of 3 and which are odd for one of the representations and
even for the other. The dominant terms in (32)–(34) can be
accounted for by approximating the BCS vertex with the first
modes of the irreducible representations:

V̂ (θ,θ ′; ω)

= V0,0 + 2V2,2[cos(2θ ) cos(2θ ′) + sin(2θ ) sin(2θ ′)]
+ 2V2,4[cos(2θ ) cos(4θ ′) − sin(2θ ) sin(4θ ′) + θ ↔ θ ′]
+ 2V3,3 sin(3θ ) sin(3θ ′) + 2V ′

3,3 cos(3θ ) cos(3θ ′)

+
√

2V0,6[cos(6θ ) + cos(6θ ′)] + · · · . (35)

Comparing (35) with (32)–(34), one can draw eas-
ily the correspondence c6 = 4V2,4 − V3,3 + 2

√
2V0,6,c

′
2 =

2V2,2 + 2V2,4,c
′
4 = 2V2,4,c

′
6 = √

2V0,6, and c′′
2 = 4V2,4,c

′′
4 =

2V2,2,c
′′
6 = V3,3 + 2

√
2V0,6.

Using very simple arguments, it is possible to show that
at least one of the couplings in the expansion (35) must be
negative, for the particular case of dispersion with the shape
depicted in Fig. 4. We may take for instance two specific pairs
of angles for which the BCS vertex is amplified by electron-
hole scattering, namely

V̂
(

π
6 , π

6 ; ω
) ≈ V0,0 + 2V2,2 − 4V2,4 + 2V3,3 − 2

√
2V0,6

(36)

and

V̂
(

π
2 , − π

2 ; ω
) ≈ V0,0 + 2V2,2 − 4V2,4 − 2V3,3 − 2

√
2V0,6.

(37)

Looking now at the initial condition given by Eq. (29), it
becomes clear that

V̂0
(

π
6 , π

6

)
< V̂0

(
π
2 , − π

2

)
, (38)

since V̂0(π/2, − π/2) is enhanced by the term depending on
χph(k + k′) in (29) at k′ = −k, while V̂0(π/6,π/6) is enhanced
by the weaker term that depends on χph(k − k′) at k′ = k. On
the other hand, we have

V̂
(

π
6 , π

6 ; ω
) − V̂

(
π
2 , − π

2 ; ω
) ≈ 4V3,3 , (39)

implying that V3,3 must be negative.
It can be checked that V3,3 is actually the dominant negative

coupling among the terms that appear in the expression (35).
We arrive therefore at the conclusion that the f wave must
be the symmetry of the dominant pairing instability at weak
coupling, when only the first terms are significant in the
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FIG. 6. (Color online) Plot of the absolute value of the negative
couplings V (γ ) in the channels with sin(3θ ) symmetry (upper curves)
and cos(3θ ) symmetry (lower curves) as functions of the ratio of
the potential v⊥ to the square of the C-C distance a. The dashed
lines represent the location of the singularities in the fractions of the
expression (29).

expansion of the vertex. This is in agreement with the results
reported in Ref. 29 near the Van Hove singularity in the
conduction band of graphene, where was found a dominant
superconducting instability with the f -wave order parameter
over most of the phase diagram [we note that the instability was
assigned in that reference to the representation with cos(3θ )
symmetry, consequent with the fact that the axes were rotated
by π/2 with respect to the present notation]. The actual values
of the negative couplings can be seen for two different doping
levels in Fig. 6, which represents the projections V (γ ) of the
vertex (29) after its numerical evaluation in a grid of 800 × 800
points in the Brillouin zone of the honeycomb lattice.

Very close to the Van Hove singularity, there could be
still room for a different pairing instability with d-wave
symmetry,29 though the analysis cannot be based then on a
simple picture such as that from expression (35). Remaining
otherwise with the weak-coupling expansion, the scaling
equation (28) becomes in the sector of the representation
{cos(mθ ), sin(mθ )} for m even

�
∂

∂�

(
V2,2 V2,4

V4,2 V4,4

)
≈ −

(
V2,2 V2,4

V4,2 V4,4

) (
V2,2 V2,4

V4,2 V4,4

)
.

(40)

This equation can be integrated by passing to the eigenvalues
of the matrix of couplings,

λ1,2 = 1
2 (V2,2 + V4,4) ± 1

2

√
(V2,2 − V4,4)2 + 4V 2

2,4. (41)

In the present situation where the electron-hole polarization is
largest at vanishing momentum transfer, both couplings V2,2

and V4,4 are positive and comparable in the expansion (35).
This means that both eigenvalues turn out to be positive, so
that a d-wave instability cannot exist over most of the phase
diagram, away from the strong-coupling regime in which
v⊥χph is close to the poles in the expression (29). The same
consideration can be applied to a p-wave instability. It is only
for doping levels very close to the Van Hove singularity, where
the simple approximation (35) does not apply and many more
modes start to contribute significantly to the expansion, that
other instabilities apart from the mentioned f wave may come
into play. The precise analysis depends then on the particular
shape of the dispersion but, as the numerical computation of
Ref. 29 shows, the instability with f -wave symmetry appears
to be dominant even for relatively low values of the doping

level μ, until the Fermi energy is tuned within ∼0.1 meV
about the Van Hove singularity.

At this point, it is interesting to compare the above results
with those obtained in Ref. 23 for the case of largest electron-
hole scattering at a momentum Q connecting the saddle
points in the electron dispersion. Under the assumption that
χph(Q,ω) > χph(0,ω), it was shown there that the couplings
V2,2 and V2,4 are both negative, implying the development of
a dominant pairing instability always with d-wave symmetry.
The prevalence of χph(Q,ω) requires however a condition of
approximate nesting of the Fermi line near the saddle points.
As we have seen, this is very far from being realized in the
conduction band of graphene, which stresses the role of a
largest electron-hole scattering at q = 0 to account for the
pairing instabilities found in the present case.

In principle, a ferromagnetic instability could also compete
with the tendency to Cooper pairing in the presence of a large
susceptibility χph(0,ω). At a given temperature and doping
level, there is a critical interaction (v⊥)c at which the ferro-
magnetic instability can take place, determined by the location
of the singularity in the fractions of the expression (29).
It is important to note however that the negative couplings
V (γ ) derived for the pairing instability diverge as that critical
interaction strength is approached. This is clearly appreciated
in the evolution of the couplings shown in Fig. 6. That is, the
extended character of the saddle points makes the singularity
in the vertex (29) nonintegrable along the Fermi line. This
means that, before the temperature Tferro of the singularity for
a given critical (v⊥)c is reached, the critical temperature Tc

for the pairing instability is able to exceed that value of Tferro

as the coupling V (γ ) diverges [in the limit v⊥ → (v⊥)c] in the
expression

kBTc ≈ �0 exp{−1/|V (γ )|}. (42)

Consequently, it is clear that the pairing instability must prevail
over the ferromagnetic instability, in this particular case of the
Van Hove singularity in the conduction band of graphene.

B. Twisted graphene bilayer

Band structure. Twisted graphene bilayers are a class of
coupled graphene layers in which there is a relative rotation
between the symmetry axes of the two carbon sheets. This
gives rise to characteristic moiré patterns showing the periodic
repetition of an alternating stacking with the form of a
hexagonal superlattice,43 as observed in some experimental
samples of graphene bilayers.51,52 We are going to deal here
with a description of the twisted bilayers for relatively large
period of the moiré pattern, which will allow us to apply
a continuum approach to the interactions among the large
number of atoms in the unit cell of the superlattice. This
has in general primitive vectors L± = L(

√
3/2, ± 1/2), where

the period L is given in terms of the twist angle θ by the
relation L = a0/[2 sin(θ/2)] (a0 being the lattice constant of
graphene). Starting from perfect Bernal stacking at θ = π/3,
the values of the twist angle consistent with a commensurate
superlattice are quantized in terms of a pair of integers
(n,m),53,54 being constrained by the condition

cos(θ ) = 1

2

n2 + m2 + 4mn

n2 + m2 + mn
. (43)
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FIG. 7. (Color online) (a) and (b): Plot of energy contour lines showing the saddle points in the lowest-energy subband of twisted graphene
bilayers corresponding respectively to n = 10 (θ ≈ 3.15◦) and n = 22 (θ ≈ 1.47◦) in the sequence (44). (c) Scheme showing the relative
rotation of the Brillouin zones of the layers (large hexagons) and the relative position of the two regions (small hexagons) making up the
Brillouin zone of the twisted bilayer.

In what follows, we will focus on the limit of small twist
angle, which can be approached by taking m = n + 1 and
increasing n. This choice gives rise to the sequence of
periods

Ln =
√

3n2 + 3n + 1 a0 (44)

for integer n � 0.43

The band structure of the twisted bilayer can be obtained
by realizing first that there must be a relative twist between
the Brillouin zones of the two carbon layers, given by the
angle of rotation θ . This leads to a mismatch in the position
of the respective K points which, if originally placed at
K = (4π/3a0,0), can be taken as shifted in opposite directions
by ±�K/2 = (0, ± |K| sin(θ/2)) [see Fig. 7(c)]. Next, one
has to account for the hybridization of states in the π

bands of the two layers, which can undergo scattering with

a momentum transfer dictated by the periodic structure of
the moiré superlattice. This leads to folding of the bands of
the twisted bilayer into an hexagonal Brillouin zone, with
reciprocal vectors Q1,2 = (2π/L)(±1/

√
3,1).43

For relatively large values of L compared to a0, the
low-energy physics of the twisted bilayer can be extracted
from the hybridization between states around the respective
Dirac points of the two layers rotated by a small twist θ .
In this approach, one can make a microscopic average of
the tunneling amplitude between the two graphene layers,
represented by smooth interlayer potentials VAA′(r),VAB ′ (r),
and VBA′(r) accounting for the modulated hopping between
sublattices A,B of one layer and A′,B ′ of the other layer. In
the space of four-component spinors (ψA,ψB,ψA′ ,ψB ′ ) made
of the electronic amplitudes on each sublattice of the two
graphene layers, the Hamiltonian can be written in the form45

H = vF

⎛⎜⎝ 0 −i∂x − ∂y + i�|K|/2 VAA′(r) VAB ′(r)
−i∂x + ∂y − i�|K|/2 0 VBA′(r) VAA′(r)

V �
AA′(r) V �

BA′(r) 0 −i∂x − ∂y − i�|K|/2
V �

AB ′ (r) V �
AA′(r) −i∂x + ∂y + i�|K|/2 0

⎞⎟⎠ . (45)

This provides the pertinent construction around a pair of Dirac
points shifted by ±�|K|/2 with respect to the original K

points of the graphene layers. One has anyhow to bear in
mind that the complete spectrum must be obtained by adding
the contribution of a similar Hamiltonian representing the
hybridization of the Dirac cones at the opposite K points,
which can be obtained by reversing the sign of the x variable
and exchanging the two layers in Eq. (45).

The lowest-energy subbands of the twisted graphene
bilayers can be found by diagonalizing the Hamiltonian
with a sensible representation of the interlayer potentials,
in accordance with the symmetry of the hexagonal super-
lattice. This implies in particular the periodicity VAA′(r) =
VAA′(r + L+) = VAA′(r + L−), and the relations VAB ′(r) =

VAA′(r + (L+ + L−)/3), VBA′(r) = VAA′(r − (L+ + L−)/3).
A common procedure is to assume that the interlayer hopping
is dominated by processes with momentum transfer Q0 = 0
or equal to the reciprocal vectors Q1,2, so that VAA′(r) ≈
(w/vF )

∑
j exp(iQj · r).43,44 For the lowest subband obtained

using this approximation, the energy contour lines correspond-
ing to the bilayers with n = 10 and 22 in the sequence (44)
are represented in Figs. 7(a) and 7(b). In the plots, the
development of saddle points in the dispersion between each
pair of neighboring Dirac points is manifest, although with
a little lateral displacement that breaks the symmetry down
to C3v .

Pairing instabilities. When analyzing the possible pairing
instabilities in this system, one has to pay attention to the
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fact that the Fermi line of the twisted bilayer is made of
two disconnected sections, which are related by the inversion
k → −k as represented in Fig. 7(c). This means that we can
distinguish between two different processes in the scattering
of the Cooper pairs, depending on whether there is exchange
or not of the two electrons from one section of the Fermi line to
the other. The strength of the Coulomb interaction is different
in the two cases, as the exchange of the electrons in the Cooper
pair implies a large momentum transfer of the order of |K|,
while that must be of order ∼1/L when each electron remains
in the same section of the Fermi line. In the first instance,
the Coulomb repulsion is given by the unscreened potential
v0(K) = 2πe2/|K|. In the other case, the interaction is already
screened for momenta ∼1/L. This effect can be estimated
from the charge density required to place the Fermi level close
to the Van Hove singularity, located at an energy εVHS ∼ vF /L

from the Dirac point. Applying the charge polarization χD(k)
in the Dirac theory for a number of ND = 8 doped Dirac cones
(including spin) in the twisted bilayer

χD

(
1
L

) ≈ ND εVHS

2πv2
F

∼ ND

2πvF L
, (46)

we can estimate the strength of the screened Coulomb potential
as

v
(

1
L

) = v0
(

1
L

)
1 + v0

(
1
L

)
χD

(
1
L

)
∼ 2πvF L

ND

. (47)

The important point is that, already for a period Ln with
n ≈ 10, the strength of the effective interaction v(1/Ln) is
about one order of magnitude above that of the unscreened
potential v0(K). Then, it is safe to neglect the influence of the
scattering of Cooper pairs with large momentum transfer in
the evaluation of the initial condition (29). Moreover, with the
system placed in close proximity to the Van Hove singularity,
the electron-hole susceptibility only experiences a significant
enhancement at small momentum. Therefore, in order to study
the effect of the singularities on the right-hand side of Eq. (29),
it is justified to discard the second term in favor of the third,
which is the only source of a possible pole.

We observe that the previous argument leading to a negative
coupling V3,3 from the relation (39) does not apply in the
case of the twisted graphene bilayers, as it was based on the
dominance of the term depending on χph(k + k′) in Eq. (29)
for monolayer graphene. In the present case, one can still
decompose the BCS vertex as a series of the basis functions for
irreducible representations of the C3v point symmetry group.
Two of these are one-dimensional, corresponding to the sets
{cos[(3n)θ ]} and {sin[(3n)θ ]} for integer n, and the remaining
is two-dimensional, represented by the set {cos(mθ ), sin(mθ )}
for integer m not being a multiple of 3. It has to be remarked,
however, that the electron-hole susceptibility lacks in the
twisted bilayers the very large enhancement at vanishing
momentum that was the consequence of the extended character
of the Van Hove singularity in monolayer graphene. This does
not prevent that some negative coupling may arise in any of the
channels for the above representations, but one can anticipate
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FIG. 8. (Color online) Plot of the absolute value of the negative
couplings V (γ ) for the irreducible representations {sin[(3n)θ ]} (upper
curve) and {cos[(3n)θ ]} (lower curve) of the C3v group, as functions
of the ratio of the potential v⊥ to the square of the lattice constant
Ln (for a twisted bilayer with n = 10). The dashed line represents
the point of the singularity in the spin response function for the same
value of Ln.

that the effect will not correspond now to the dominance of a
particular harmonic from the set of basis functions.

To estimate the scale of a possible pairing instability,
we have computed the polarization χph(q) in a grid with
600 × 600 points in each hexagon of the the Brillouin zone,
with the Fermi line close to the saddle points of the dispersions
represented in Fig. 7. A characteristic plot of the couplings
in the channels with effective attractive interaction is shown
in Fig. 8. We observe that the magnitude of the couplings
is significantly smaller than that found for the Van Hove
singularity in the conduction band of graphene. Taking into
account the correspondence (42) with the critical scale of a
possible pairing instability, it is clear that the present effective
attraction is too small to give rise to any observable effect in the
twisted bilayers. More importantly, the couplings do not grow
large when approaching the singularity in the second fraction
of Eq. (29), which means that the corresponding divergence
becomes integrable when computing the coefficients in the
expansion (27). This implies that the tendency towards pairing
cannot compete in this case with the instability in the spin
response function, no matter how closely the Van Hove
singularity is approached.

Ferromagnetic instability. In order to assess the strength
of the magnetic instability in the system, we have evaluated
χph(q) along high-symmetry directions down to vanishing
momentum, using this time a grid with 900 × 900 points
covering one of the hexagons of the Brillouin zone. Computing
at decreasing temperatures and doping levels progressively
close to the Van Hove singularity, we observe the development
of a pronounced peak in the susceptibility at zero momentum,
as shown in Figs. 9(a) and 10(a). This is consistent with the
logarithmic divergence anticipated in the continuum approach
of Sec. II. As seen in that section, such a behavior implies that,
ideally, the singularity in the response function Rs(0,ω) can be
reached for any strength of the local Coulomb repulsion, sim-
ply by lowering the temperature and approaching sufficiently
close the Van Hove singularity.

We remark that, in the model of the bilayer superlattice,
the spin-dependent interaction v⊥ arises at a microscopic level
from the on-site Coulomb repulsion U at each carbon atom.
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FIG. 9. (Color online) (a) Plot of the electron-hole susceptibility
(in units of the inverse of eV times L2

n) for temperatures corresponding
(from top to bottom) to kBT = 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5 meV, and (b) contour lines of the critical coupling for the
interaction strength v⊥/L2

n (in eV) as a function of temperature and
doping with respect to the Van Hove singularity, for a twisted bilayer
with n = 10 (θ ≈ 3.15◦) in the sequence (44).

The eigenstates in each subband of the twisted bilayer can be
written as linear combinations of the atomic orbitals in the
superlattice unit cell, normalized according to the number M

of atoms it contains. This means that, after projecting into the
lowest-energy subband, v⊥/L2

n must be of the order of U/M ,
having a magnitude that decreases in the sequence of twisted
bilayers as the inverse of L2

n. That has to be confronted with the
critical values that are predicted from the position of the pole
in the response function Rs(0,ω), which we have represented
for a twisted bilayer with n = 10 in Fig. 9(b). Assuming a
magnitude of the on-site Coulomb repulsion U ∼ 10 eV,55

we obtain U/M ∼ 0.03 eV for that particular superlattice.
We see that such an interaction strength cannot match the
lowest critical couplings represented in the figure, staying in
close proximity to the Van Hove singularity. Thus, for the
corresponding twisted bilayer, a signature of the magnetic
instability should be only expected at a temperature �1 K.

We have anyhow to bear in mind that the band structure
of the twisted bilayers undergoes important changes as the
period Ln increases, with a progressive reduction in the width
of the lowest-energy subband. It has been actually found
that such a bandwidth has a recurrent behavior, narrowing
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FIG. 10. (Color online) (a) Plot of the electron-hole susceptibility
(in units of the inverse of eV times L2

n) for temperatures corresponding
(from top to bottom) to kBT = 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5 meV, and (b) contour lines of the critical coupling for the
interaction strength v⊥/L2

n (in eV) as a function of temperature and
doping with respect to the Van Hove singularity, for a twisted bilayer
with n = 22 (θ ≈ 1.47◦) in the sequence (44).

down to approximately zero energy at a sequence of “magic”
twist angles.44,45 The first instance at which this happens
corresponds to n = 31. Then, in the way towards this magic
angle, the lowest subband of the bilayer becomes increasingly
flat, which has a significant impact on the values of the
electron-hole susceptibility. This can be appreciated in the plot
of Fig. 10(a), which shows the result of computing χph(q) for
a twisted bilayer with n = 22. From the position of the pole in
the spin response function Rs(0,ω), one can calculate again the
critical values of the interaction strength needed to reach the
magnetic instability. These are represented in Fig. 10(b) as a
function of the temperature and the deviation of the filling level
with respect to the Van Hove singularity. With a rough estimate
of U/M ∼ 0.007 eV for the corresponding twisted bilayer, we
find that the onset of the instability may now take place at
temperatures approaching the order of magnitude of 10 K.

It is interesting to observe that, from the point of view
of the real space, the limit of very small twist angle studied
here is characterized by a well-defined pattern of localization
in the moiré superlattice,45,56,57 such that the states in the
lowest-energy subband tend to be confined to the regions
with regular AA stacking (where all the atoms in one layer
are in registry with their homologous in the other layer).
This localization of the wave functions is the counterpart
of the progressive narrowing of the lowest subband, until it
becomes flat at the first magic angle. The particular pattern of
confinement is actually consistent with the tendency towards
ferromagnetism driven by the Van Hove singularity, as the
regions with regular AA stacking form a triangular superlattice
that is incompatible with a staggered order of the spins (implied
for instance by a antiferromagnetic instability). Indeed, the
localization of the wave functions, together with the quench
in kinetic energy due to the formation of the narrow subband,
is an effect that favors the uniform alignment of the spins.
In a Hubbard-like description of this correlated behavior in
the bilayer superlattice, the effective Coulomb interaction
has to scale in inverse proportion to the number of carbon
atoms covered by the confined states in a unit cell, as the
probability of the electron occupancy for a single atom is
reduced by that number. This is consistent with the above
estimate of the effective Coulomb repulsion, which justifies
our computational approach when such interaction strength is
much smaller than the bandwidth of the electron system. This
certainly happens in the two cases considered with n = 10
and 22. As the bandwidth goes to zero, the scaling approach
must break down however at some larger lattice constant of
the twisted bilayer, leaving then ferromagnetism as a likely
instability but much harder to analyze quantitatively.

IV. CONCLUSIONS

In this paper we have studied the many-body instabilities
of electrons interacting near Van Hove singularities arising in
monolayer and twisted bilayer graphene. In the first instance,
we have taken advantage of the experimental data available
for the dispersion around the saddle points in the conduction
band of graphene.29 While reaching there the level of the
singularity requires a large amount of doping, the results
obtained from ARPES have unveiled the extended character of
the saddle-point dispersion, showing the potential for a large
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instability of the electron system. On the other hand, twisted
graphene bilayers have Van Hove singularities that arise from
the hybridization of the Dirac cones of the two layers, being
therefore located at relatively low energies from the charge
neutrality point. They can be more easily reached upon doping,
but have the disadvantage of involving in general a weaker
singularity in the density of states, with lower strength of the
consequent electronic instabilities.

We have seen that a pairing instability must be dominant
over the tendency to magnetic order as the Fermi level is
tuned to the Van Hove singularity in the conduction band of
graphene. As a result of the extended character of the saddle
points in the dispersion, we have found that the pairing of
the electrons must take place preferentially in a channel of
f -wave symmetry, with an order parameter vanishing at the
position of the saddle points along the Fermi line. In the case
of the twisted bilayers, the dispersion has instead its symmetry
reduced down to the C3v group and, most importantly, it leads
to susceptibilities that diverge at the saddle points but are
integrable along the Fermi line. This implies that the attractive
couplings for the pairing instability do not grow large when
approaching the critical interaction strength marking the onset
of magnetic order. Thus, the magnetic instability becomes
prevalent in the twisted graphene bilayers, with a dominant
tendency towards ferromagnetism as the uniform magnetic
susceptibility inherits the divergence in the density of states at
the Van Hove singularity.

The divergence of the particle-hole and particle-particle
susceptibilities is the driving force for magnetic and pairing
instabilities at the Van Hove singularity. In order to account
for the latter, we have relied on the sum of the most divergent
contributions to the BCS vertex in the particle-particle channel,
which arise from the iteration of the scattering of the pair
of electrons. Assuming a purely repulsive interaction, the
series of corrections built in that way does not give rise in
principle to any singularity in the vertex, but the approach can
be significantly improved by considering that the scattering is
mediated by the effective RPA screened interaction. This leads
to a much more comprehensive approximation, in which the
f -wave pairing instability we have obtained can be interpreted
as being induced by the ferromagnetic fluctuations which grow
increasingly large near the singularity of the RPA series.

Conversely, one may also ask about the possible effect
of higher order corrections to the RPA description of the
ferromagnetic instability. These can play an important role in
the present context, since particle-particle loops are enhanced
as the square of the logarithm of the energy near the Van Hove
singularity. While the general analysis of their effect becomes
practically unfeasible, one can identify that an important set of
contributions corresponds to electron self-energy corrections.
These are enhanced by log-square terms to second order in
perturbation theory, with the potential to suppress the electron
quasiparticle weight at low energies.48 However, there is a
concomitant effect arising from the renormalization of the

saddle-point dispersion, which tends to become even flatter at
low energies, amplifying therefore the ferromagnetic fluctua-
tions. We may conclude that while the RPA is equivalent to
a lowest-order renormalization group approach and therefore
reliable for a Coulomb repulsion much lower than the energy
scale of the saddle-point dispersion, the low-energy behavior
of the system becomes more unpredictable away from such
weak-coupling regime. More elaborated analyses carried out
in the square lattice, relying on functional renormalization58

or on nonperturbative treatments based on Monte Carlo
simulations,46 have asserted anyhow the existence of the
ferromagnetic instability in the case of a dominant particle-
hole susceptibility at vanishing momentum transfer near the
Van Hove singularity.

In practice, there is also a restriction in the growth of the
different susceptibilities coming from the effect of disorder
or defects in the carbon lattice. These have the ability to
smear the singularity in the density of states, reducing its
nominal strength. The most dangerous effect comes in that
respect from the scattering off impurities, and the analysis
made in the two-dimensional square lattice has shown that the
logarithmic singularity in the density of states is suppressed
by corrections that depend on the function (1/4πtτ ) ln(4τ |ε|),
t being the nearest-neighbor hopping amplitude and τ the
relaxation time.59 In our case, for sufficiently clean samples,
we can assume for instance a value of the mean-free path in
the carbon lattice of the order of ∼1 μm, which would imply a
relaxation time τ ∼ 104t−1. Thus, we see that the divergence
in the density of states may not suffer a significant attenuation
when probed with a resolution of ∼0.1 meV. This level of
approximation to the singularity may be small enough to
observe the onset of the electronic instabilities since, as shown
above, it corresponds to doping levels at which experimental
signatures can be seen for reasonable values of the interaction
strength in monolayer as well as in twisted bilayer graphene.

The results presented in this paper may serve as a guide
for the effects that can be measured in real graphene samples
near a Van Hove singularity. Renormalization group methods
have been shown to provide in general a valuable approach to
the low-energy physics of the singular density of states, where
effects like the quasiparticle attenuation may be compensated
in part by the renormalization of the saddle-point dispersion.48

The carbon-based systems studied in the present paper may
provide an appropriate playground to test many of the physical
effects predicted, including the regime of strong correlations
supposed to arise in the vicinity of the Van Hove singularity.
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