3,037 research outputs found

    Vertex coloring with forbidden subgraphs

    Get PDF
    Given a set LL of graphs, a graph GG is LL-free if GG does not contain any graph in LL as induced subgraph. A holehole is an induced cycle of length at least 44. A holehole-twintwin is a graph obtained by adding a vertex adjacent to three consecutive vertices in a holehole. Hole-twins are closely related to the characterization of the line graphs in terms of forbidden subgraphs. By using {\it clique-width} and {\it perfect graphs} theory, we show that (clawclaw,4K14K_1,holehole-twintwin)-free graphs and (4K14K_1,holehole-twintwin,55-wheelwheel)-free graphs are either perfect or have bounded clique-width. And thus the coloring of them can be done in polynomial time

    On the (non-)existence of polynomial kernels for Pl-free edge modification problems

    Full text link
    Given a graph G = (V,E) and an integer k, an edge modification problem for a graph property P consists in deciding whether there exists a set of edges F of size at most k such that the graph H = (V,E \vartriangle F) satisfies the property P. In the P edge-completion problem, the set F of edges is constrained to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no constraint is imposed on F in the P edge-edition problem. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size k of the edge set F, it has been proved that if P is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three P edge-modification problems are FPT. It was then natural to ask whether these problems also admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and Wahlstrom answered this question negatively. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom asked whether the result holds when the forbidden subgraphs are paths or cycles and pointed out that the problem is already open in the case of P4-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that parameterized cograph edge modification problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for the Pl-free and Cl-free edge-deletion problems for large enough l

    Mixed unit interval graphs

    Get PDF
    AbstractThe class of intersection graphs of unit intervals of the real line whose ends may be open or closed is a strict superclass of the well-known class of unit interval graphs. We pose a conjecture concerning characterizations of such mixed unit interval graphs, verify parts of it in general, and prove it completely for diamond-free graphs. In particular, we characterize diamond-free mixed unit interval graphs by means of an infinite family of forbidden induced subgraphs, and we show that a diamond-free graph is mixed unit interval if and only if it has intersection representations using unit intervals such that all ends of the intervals are integral

    On the 12-representability of induced subgraphs of a grid graph

    Get PDF
    The notion of a 12-representable graph was introduced by Jones, Kitaev, Pyatkin and Remmel in [Representing graphs via pattern avoiding words, Electron. J. Combin. 22 (2015) #P2.53]. This notion generalizes the notions of the much studied permutation graphs and co-interval graphs. It is known that any 12-representable graph is a comparability graph, and also that a tree is 12-representable if and only if it is a double caterpillar. Moreover, Jones et al. initiated the study of 12- representability of induced subgraphs of a grid graph, and asked whether it is possible to characterize such graphs. This question of Jones et al. is meant to be about induced subgraphs of a grid graph that consist of squares, which we call square grid graphs. However, an induced subgraph in a grid graph does not have to contain entire squares, and we call such graphs line grid graphs. In this paper we answer the question of Jones et al. by providing a complete characterization of 12-representable square grid graphs in terms of forbidden induced subgraphs. Moreover, we conjecture such a characterization for the line grid graphs and give a number of results towards solving this challenging conjecture. Our results are a major step in the direction of characterization of all 12-representable graphs since beyond our characterization, we also discuss relations between graph labelings and 12-representability, one of the key open questions in the area
    • …
    corecore