65,569 research outputs found

    Performance limitations in autocatalytic networks in biology

    Get PDF
    Autocatalytic networks, where a member can stimulate its own production, can be unstable when not controlled by feedback. Even when such networks are stabilized by regulating control feedbacks, they tend to exhibit non-minimum phase behavior. In this paper, we study the hard limits of the ideal performance of such networks and the hard limit of their minimum output energy. We consider a simplified model of glycolysis as our motivating example. For the glycolysis model, we characterize hard limits on the minimum output energy by analyzing the limiting behavior of the optimal cheap control problem for two different interconnection topologies. We show that some network interconnection topologies result in zero hard limits. Then, we develop necessary tools and concepts to extend our results to a general class of autocatalytic networks

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Scalable Layer-2/Layer-3 Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers are becoming an important alternative to proprietary and expensive network devices, because they exploit the economy of scale of the PC market and open-source software. When considering maximum performance in terms of throughput, PC-based routers suffer from limitations stemming from the single PC architecture, e.g., limited bus bandwidth, and high memory access latency. To overcome these limitations, in this paper we present a multistage architecture that combines a layer-2 load-balancer front-end and a layer-3 routing back-end, interconnected by standard Ethernet switches. Both the front-end and the back-end are implemented using standard PCs and open- source software. After describing the architecture, evaluation is performed on a lab test-bed, to show its scalability. While the proposed solution allows to increase performance of PC- based routers, it also allows to distribute packet manipulation functionalities, and to automatically recover from component failures

    Optical Interconnection Networks Based on Microring Resonators

    Get PDF
    Abstract — Interconnection networks must transport an always increasing information density and connect a rising number of processing units. Electronic technologies have been able to sustain the traffic growth rate, but are getting close to their physical limits. In this context, optical interconnection networks are becoming progressively more attractive, especially because new photonic devices can be directly integrated in CMOS technology. Indeed, interest in microring resonators as switching components is rising, but their usability in full optical interconnection architectures is still limited by their physical characteristics. Indeed, differently from classical devices used for switching, switching elements based on microring resonators exhibit asymmetric power losses depending on the output ports input signals are directed to. In this paper, we study classical interconnection architectures such as crossbar, Benes and Clos networks exploiting microring resonators as building blocks. Since classical interconnection networks lack either scalability or complexity, we propose two new architectures to improve performance of microring based interconnection networks while keeping a reasonable complexity. I

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa
    corecore