302 research outputs found

    Modifications of the Limited Memory BFGS Algorithm for Large-scale Nonlinear Optimization

    Get PDF
    In this paper we present two new numerical methods for unconstrained large-scale optimization. These methods apply update formulae, which are derived by considering different techniques of approximating the objective function. Theoretical analysis is given to show the advantages of using these update formulae. It is observed that these update formulae can be employed within the framework of limited memory strategy with only a modest increase in the linear algebra cost. Comparative results with limited memory BFGS (L-BFGS) method are presented.</p

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation

    Full text link
    The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank rr reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank rr of a large n×mn\times m matrix from C(r)rnmC(r)r\sqrt{nm} entries, where C(r)C(r) is a constant close to 11. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches.Comment: NIPS Conference 201

    Limited memory gradient methods for unconstrained optimization

    Full text link
    The limited memory steepest descent method (Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher's method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher's method can also be interpreted from this viewpoint

    An Inexact Successive Quadratic Approximation Method for Convex L-1 Regularized Optimization

    Full text link
    We study a Newton-like method for the minimization of an objective function that is the sum of a smooth convex function and an l-1 regularization term. This method, which is sometimes referred to in the literature as a proximal Newton method, computes a step by minimizing a piecewise quadratic model of the objective function. In order to make this approach efficient in practice, it is imperative to perform this inner minimization inexactly. In this paper, we give inexactness conditions that guarantee global convergence and that can be used to control the local rate of convergence of the iteration. Our inexactness conditions are based on a semi-smooth function that represents a (continuous) measure of the optimality conditions of the problem, and that embodies the soft-thresholding iteration. We give careful consideration to the algorithm employed for the inner minimization, and report numerical results on two test sets originating in machine learning
    corecore