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Abstract

In this paper we present two new numerical methods for unconstrained large-scale optimiza-
tion. These methods apply update formulae, which are derived by considering different techniques
of approximating the objective function. Theoretical analysis is given to show the advantages of
using these update formulae. It is observed that these update formulae can be employed within
the framework of limited memory strategy with only a modest increase in the linear algebra cost.
Comparative results with limited memory BFGS (L-BFGS) method are presented.

KEYWORDS: Large-scale optimization, limited memory methods, BFGS update.



Math. J. Okayama Univ. 47 (2005), 175–188

MODIFICATIONS OF THE LIMITED MEMORY BFGS
ALGORITHM FOR LARGE-SCALE NONLINEAR

OPTIMIZATION

Leong Wah JUNE and Malik Abu HASSAN

Abstract. In this paper we present two new numerical methods for
unconstrained large-scale optimization. These methods apply update
formulae, which are derived by considering different techniques of ap-
proximating the objective function. Theoretical analysis is given to show
the advantages of using these update formulae. It is observed that these
update formulae can be employed within the framework of limited mem-
ory strategy with only a modest increase in the linear algebra cost.
Comparative results with limited memory BFGS (L-BFGS) method are
presented.

1. Introduction

Large-scale unconstrained optimization is to minimize a nonlinear func-
tion f(x) in a finite dimensional space, that is

(1.1) minx∈<nf(x)

where n is large. We assume throughout that both the gradient g(x) =
∇f(x) and the Hessian matrix G(x) = ∇2f(x) of f exist and are continuous.

In 1980 Nocedal [8] introduced limited memory BFGS (L-BFGS) update
for large-scale unconstrained optimization. Subsequent numerical studies
on large-scale problems have shown that methods based on this updating
scheme can be very effective if the updated inverse Hessian approximation
are rescaled at every iteration [6],[13]. Indeed the L-BFGS method is cur-
rently the winner on many classes of problems and competes with truncated
Newton methods on a variety of large-scale nonlinear problems [13].

The L-BFGS method is a matrix secant method specifically designed for
low storage and linear algebra costs in computation of a Newton-like search
direction. This is done by employing a clever representation for the L-BFGS
update. Recall that the L-BFGS update is obtained by applying BFGS
update to an initial positive definite diagonal matrix (a scaling matrix) using
data from the few most recent iteration. The search direction is computed by
a simple matrix-vector multiplication. Change in the initial scaling matrix
and the data from past iterations can be introduced into the update at low
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176 L. W. JUNE AND M. A. HASSAN

cost. This is especially true if the initial scaling matrix is a positive multiple
of identity matrix as it is usually taken to be in practice. Once the search
direction is computed, an appropriate step-length is obtained from one of
the standard line search procedures.

In this paper we observe that some modified BFGS update such as
Biggs’[1], [2] BFGS update and Yuan’s[12] BFGS update can be employed
within the framework of limited memory strategy. Since these modified up-
dates are known to be quite efficient in minimization of low-dimensional
nonlinear objective functions, such an approach may improve efficiency of
the BFGS method in limited memory scheme. Moreover, only a modest
increase in the linear algebra cost when applying these modified updates.

Therefore, the aim of this paper is to propose an algorithmic framework,
which tries to adopt the previous advantages while still ensuring global con-
vergence towards stationary points. It is based on the simple idea of ap-
proximating the objective function by different techniques. In Section 2 we
will describe these techniques. The limited memory methods using these
update formulae are given in Section 3 and 4. In Section 5 the results of
our numerical experiments are reported. Convergence results are given in
Section 6, and finally the conclusions are made in Section 7.

2. Modified BFGS Methods using Different Function
Interpolation

Quasi-Newton methods are a class of numerical methods that are similar
to Newton’s method except that the inverse of Hessian (G(xk))−1 is replaced
by a n×n symmetric matrix Hk, which satisfies the quasi-Newton equation

(2.1) Hkyk−1 = sk−1,

where

(2.2) sk−1 = xk − xk−1 = λk−1dk−1, yk−1 = gk − gk−1,

and λk−1 > 0 is a step-length which satisfies some line search conditions.
Assuming Hk nonsingular, we define Bk = H−1

k . It is easy to see that the
quasi-Newton step

(2.3) dk = −Hkgk

is a stationary point of the following problem:

(2.4) mind∈<nφk(d) = f(xk) + dT gk +
1
2
dT Bkd

which is an approximation to problem (1.1) near the current itarate xk, since
φk(d) ≈ f(xk +d) for small d. In fact, the definition of φk(·) in (2.4) implies

2
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that

(2.5) φk(0) = f(xk),∇φk(0) = g(xk),

and the quasi-Newton condiiton (2.1) is equivalent to

(2.6) ∇φk(xk−1 − xk) = g(xk−1).

Thus, φk(x− xk) is a quadratic interpolation of f(x) at xk and xk−1, satis-
fying conditions (2.5)-(2.6). The matrix Bk (or Hk) can be updated so that
the quasi-Newton equation is satisfied.

One well known update formula is the BFGS formula which updates Bk+1

from Bk, sk and yk in the following way:

(2.7) Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

.

In Yuan [12], approximate function φk(d) in (2.4) is required to satisfy the
interpolation condition

(2.8) φk(xk−1 − xk) = f(xk−1)

instead of (2.6). This change was inspired from the fact that for one-
dimensional problem, using (2.8) gives a slightly faster local convergence
if we assume λk = 1 for all k. Equation (2.8) can be rewritten as

(2.9) sT
k−1Bksk−1 = 2

[
f(xk−1) − f(xk) + sT

k−1gk

]
.

In order to satisfy (2.9), the BFGS formula is modified as follows:

(2.10) Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+ tk
yky

T
k

sT
k yk

,

where

(2.11) tk =
2

sT
k yk

[
f(xk) − f(xk+1) + sT

k gk+1

]
.

If Hk+1 is the inverse of Bk+1, then

(2.12) Hk+1 = Hk +
1

sT
k yk

[(
αk +

yT
k Hkyk

sT
k yk

)
sks

T
k − sky

T
k Hk − Hkyks

T
k

]
with

(2.13) αk =
1
tk

.

Assume that Bk is positive definite and that sT
k yk > 0, Bk+1 defined by

(2.10) is positive definite if and only if tk > 0. The inequality tk > 0 is trivial
if f is strictly convex, and it is also true if the step-length λk is chosen by
an exact line search, which requires sT

k gk+1 = 0. For a uniformly convex
function, it can be easily shown that there exists a constant δ > 0 such

3
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178 L. W. JUNE AND M. A. HASSAN

that tk ∈ [δ, 2] for all k, and consequently global convergence proof of the
BFGS method for convex functions with inexact line searches, which was
given by Powell [10]. However, for a general nonlinear function f , inexact
line searches do not imply the positivity of tk, hence Yuan [12] truncated
tk to the interval [0.01, 100], and showed that the global convergence of the
modified BFGS algorithm is preserved for convex functions. If the objective
function f is cubic along the line segment between xk−1 and xk then we
have the following relation

(2.14) sT
k−1G(xk)sk−1 = 4sT

k−1gk + 2sT
k−1gk+1 − 6 [f(xk−1) − f(xk)] ,

by considering the Hermit interpolation on the line between xk−1 and xk.
Hence it is reasonable to require that the new approximate Hessian satisfies
condition

(2.15) sT
k−1Bksk−1 = 4sT

k−1gk + 2sT
k−1gk+1 − 6 [f(xk−1) − f(xk)]

instead of (2.11). Biggs [1], [2] gives the update of (2.12) with the value tk
chosen so that (2.15) holds. The respected value of tk is given by

(2.16) tk =
6

sT
k yk

[
f(xk) − f(xk+1) + sT

k gk+1

]
− 2.

For one-dimensional problems, Wang and Yuan [11] showed that (2.10)
with (2.16) and without line searches (that is λk = 1 for all k) implies
R−quadratic convergence, and except some special cases (2.10) with (2.16)
also give Q−convergence. It is well known that the convergence rate of
secant method is (1 +

√
5)/2 which is approximately 1.618 and less than 2.

3. Limited Memory BFGS Method

The limited memory BFGS method is described by Nocedal [8], where
it is called the SQN method. The user specifies the number m of BFGS
corrections that are to be kept, and provides a sparse symmetric and positive
definite matrix H0, which approximates the inverse Hessian of f . During the
first m iterations the method is identical to the BFGS method. For k > m,
Hk is obtained by applying m BFGS updates to H0 using information from
the m previous iterations. The method uses the inverse BFGS formula in
the form

(3.1) Hk+1 = V T
k HkVk + ρksks

T
k ,

where

(3.2) ρk = 1/yT
k sk, Vk = I − ρkyks

T
k .

( see Dennis and Schnabel [4].)
Algorithm 3.1. L-BFGS method

4
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(1) Choose x0, 0 < β′ < 1/2, β′ < β < 1, and initial matrix H0 = I. Set
k = 0.

(2) Compute
dk = −Hkgk

and
xk+1 = xk + λkdk

where λk satisfies

f(xk + λkdk) ≤ f(xk) + β′λkg
T
k dk,(3.3)

g(xk + λkdk)T dk ≥ βgT
k dk(3.4)

(the step-length λ = 1 is tried first).
(3) Let m̂ = min{k,m − 1}. Update H0 for m̂ + 1 times by using the

pairs {yj , sj}k
j=k−m̂, i.e. let

Hk+1 = (V T
k . . . V T

k−m̂)H0(Vk−m̂ . . . Vk)

+ ρk−m̂(V T
k . . . V T

k−m̂+1)sk−m̂sT
k−m̂(Vk−m̂+1 . . . Vk)

+ ρk−m̂+1(V T
k . . . V T

k−m̂+2)sk−m̂+1s
T
k−m̂+1(Vk−m̂+2 . . . Vk)(3.5)

...
+ ρksks

T
k

(4) Set k := k + 1 and go to Step 2.

4. Modified L-BFGS Algorithms

In practice, it is noted that the performances of Biggs and Yuan’s updates
are better than the original BFGS update for normal quasi-Newton methods
(see, for instance, Phua and Setiono [9] for the performance of Biggs’ update
and Yuan [12] for Yuan’s update).

To improve the performance of the L-BFGS algorithm, one possibility is
to use the Biggs and Yuan’s updates instead of the BFGS update. We note
that the modified BFGS update (2.12) can also be expressed in the form

(4.1) Hk+1 = V T
k HkVk + αkρksks

T
k .

Therefore, the major steps of the new limited memory methods are similar to
the L-BFGS algorithm, except that (3.5) in Step 3 of the L-BFGS algorithm
will be replaced by the following formula:

Hk+1 = (V T
k . . . V T

k−m̂)H0(Vk−m̂ . . . Vk)

+ αk−m̂ρk−m̂(V T
k . . . V T

k−m̂+1)sk−m̂sT
k−m̂(Vk−m̂+1 . . . Vk)

+ αk−m̂+1ρk−m̂+1(V T
k . . . V T

k−m̂+2)sk−m̂+1s
T
k−m̂+1(Vk−m̂+2 . . . Vk)(4.2)

...
+ αkρksks

T
k .
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180 L. W. JUNE AND M. A. HASSAN

However, for the following reasons we do not use the above mentioned for-
mula for our limited memory scheme:

(1) In order to use (4.2) replacing (3.5), we need to calculate and store
αk−m̂, αk−m̂+1, . . . , αk, which will require an additional of
m̂=min{k,m − 1} storage. Resource in storage is the most cru-
cial factor to determine the successfulness of a method when applied
to large-scale problems.

(2) So far, the convergence rate of the modified BFGS updates in a
limited memory scheme is not established. Convergence analysis of
these updates was only given for standard quasi-Newton under cer-
tain conditions. On the other hand, Liu and Nocedal [6] established
the convergence of the L-BFGS method.

(3) For n−dimensional problems, Dennis and Moré [3] showed that the
standard BFGS method converged Q−superlinearly using an inex-
act line search if the current iterate xk is sufficiently close to x∗.
Therefore, the BFGS update should be preferred if xk happened to
be so.

For reasons that we have discussed,we shall not use the fully modified BFGS
update (4.2) to replace (3.5). Instead a partially modified BFGS update will
be applied in Step 3 of the L-BFGS algorithm. The users will specify the
number m̃ < min{k,m − 1} of modified BFGS corrections that are to be
used. During the first m̃ iterations the method is identical to the modified
BFGS method and Hk is obtained by applying m̃ modified BFGS update to
H0. After m̃ iteration, BFGS update will be used instead of the modified
BFGS update, the method is then identical to the L-BFGS method proposed
by Nocedal [8]. We shall described the above steps in details:

Step 3. Given an integer m̃ < min{k,m−1} and Let m̂ = min{k,m−1}.
Update H0 for m̂ + 1 times by using the pairs {yj , sj}m̃

j=0, i.e. let

Hk+1 = (V T
k . . . V T

k−m̂)H0(Vk−m̂ . . . Vk)

+ αk−m̂ρk−m̂(V T
k . . . V T

k−m̂+1)sk−m̂sT
k−m̂(Vk−m̂+1 . . . Vk)

+ αk−m̂ρk−m̂+1(V T
k . . . V T

k−m̂+2)sk−m̂+1s
T
k−m̂+1(Vk−m̂+2 . . . Vk)

...
+ αk−m̂+m̃ρk−m̂+m̃(V T

k . . . V T
k−m̂+m̃+1)sk−m̂+m̃(4.3)

× sT
k−m̂+m̃(Vk−m̂+m̃+1 . . . Vk)

+ ρk−m̂+m̃+1(V T
k . . . V T

k−m̂+m̃+2)sk−m̂+m̃+1

× sT
k−m̂+m̃+1(Vk−m̂+m̃+2 . . . Vk)

...
+ ρksks

T
k

6
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with αk = 0.01 if αk ≤ 0.01, and αk = 100 if αk ≥ 100.

5. Computational Results

In this section, we present and discuss some numerical experiments that
were conducted in order to test the performance of limited memory quasi-
Newton methods for unconstrained optimization using the modified BFGS
formulae againt those using BFGS update.

The algorithms used for limited memory methods are from L-BFGS,
which provides the line search strategy for calculating global step. The
line search is based on backtracking, using quadratic and cubic modeling of
f(x) in the direction of search.

Five test functions, with variable dimensions, have been chosen from liter-
ature of optimization. The description of these test problems can be found,
for instance, in Moré et al. [7]. Each function is tested with three different
dimensions, namely n = 8, 200 and 1000. All test functions are tested with
a single standard starting point.

All algorithms are implemented in Fortran77. The runs were performed
with a double precision arithmetic, for which the unit roundoff is approxi-
mately 10−16. In all cases, convergence is assumed if

(5.1) ‖ gk ‖< 10−5max{1, ‖ xk ‖}.

In all tables, nI is the number of iterations and nf is the number of func-
tion/gradient evaluations required by that algorithm in solving each test
problem. The numbers of modification made, m̃ is listed by the interger
numbers in bracket ( ) for Biggs’ and Yuan’s limited memory BFGS meth-
ods. For our case, m̃ varies from 2 to 5.

Numerical results obtained by applying the above algorithms are given in
Tables 1-3.

Comparing the performance of all these algorithms, Tables 1-3 show that
in terms of the total number of iterations, limited memory algorithms using
Yuan’s BFGS update scored the best while Bigg’s BFGS is the second best,
with L-BFGS the last. In terms of the total number of function/gradient
evaluations, Biggs’ BFGS requires the lowest number of function/gradient
calls, Yuan’s BFGS is the second, with again L-BFGS the last. The im-
provements of limited memory Biggs’ BFGS and Yuan’s BFGS methods
are 11% in terms of the numbers of iterations, and saving of 10.7% and
6.4% respectively, in terms of the number of functon/gradient evaluations
over L-BFGS method for m = 5. For m = 10, a savings of 9.4% and 9.3%
respectively, in terms of the number of function/gradient evaluations over L-
BFGS method. Finally, the improvements of limited memory Biggs’ BFGS

7
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182 L. W. JUNE AND M. A. HASSAN

Table 1. Comparative results of limited memory Biggs’
BFGS, Yuan’s BFGS and L-BFGS methods with m = 5

Biggs’ BFGS Yuan’s BFGS L-BFGS
Test Problems nI nf nI nf nI nf

Trigonometric
n = 8 24(3) 28 22(3) 29 24 31
n = 200 39(3) 46 46(4) 52 40 45
n = 1000 46(5) 52 46(5) 54 48 45

Rosenbrook
n = 8 35(3) 47 32(3) 41 38 49
n = 200 34(3) 46 34(2) 46 36 45
n = 1000 34(3) 44 35(3) 51 37 48

Powell
n = 8 31(3) 35 35(3) 38 46 54
n = 200 42(3) 48 34(4) 43 37 46
n = 1000 37(3) 40 33(3) 56 67 78

Beale
n = 8 14(3) 16 14(3) 16 15 17
n = 200 14(3) 16 14(3) 17 15 16
n = 1000 14(2) 17 14(3) 19 15 16

Wood
n = 8 83(3) 103 90(4) 118 91 118
n = 200 81(3) 104 84(2) 108 91 121
n = 1000 94(3) 123 88(3) 114 99 128

Total 622 765 621 802 699 857

and Yuan’s BFGS methods over L-BFGS method are 5.4% and 7.4% re-
spectively, in terms of the number of function/gradient evaluations. On the
other hand, the increments of memory requirement is only of maximum 5
units (m̃ = 5), which is less than 0.5% for n = 200 or 1000.

6. Analysis of Convergence

Consider methods with an update of the form

(6.1) Hk+1 = δkP
T
k H0Qk +

k∑
i=1

wikz
T
ik.

Here,

(1) H0 is an n×n symmetric positive definite matrix that remains con-
stant for all k, and δk is a nonzero scalar that can be thought of as
an iterative rescaling of H0;

8
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MODIFICATIONS OF THE LIMITED MEMORY BFGS ALGORITHM 183

Table 2. Comparative results of limited memory Biggs’
BFGS, Yuan’s BFGS and L-BFGS methods with m = 10

Biggs’ BFGS Yuan’s BFGS L-BFGS
Test Problems nI nf nI nf nI nf

Trigonometric
n = 8 21(3) 25 22(3) 27 24 29
n = 200 37(3) 42 45(5) 52 48 55
n = 1000 45(3) 52 44(3) 52 50 61

Rosenbrook
n = 8 33(3) 42 32(3) 40 37 44
n = 200 34(3) 48 35(3) 49 37 49
n = 1000 34(3) 41 35(3) 47 35 44

Powell
n = 8 32(3) 37 35(3) 39 38 43
n = 200 43(2) 48 34(4) 46 31 33
n = 1000 39(3) 45 33(3) 39 51 58

Beale
n = 8 14(3) 16 14(3) 16 14 16
n = 200 13(3) 15 14(3) 17 16 17
n = 1000 15(5) 17 14(3) 19 15 16

Wood
n = 8 80(3) 99 79(3) 95 89 118
n = 200 86(3) 108 81(3) 101 89 118
n = 1000 73(3) 91 82(3) 98 86 117

Total 598 726 599 737 690 818

(2) Pk is an n × n matrix that is the product of projection matrices of
the form

(6.2) I − uvT

uT v
,

where u ∈ span{y0, . . . , yk} and v ∈ span{s0, . . . , sk+1}1, and Qk is
an n × n matrix that is the product of projection matrices of the
same form where u is any n−vector and v ∈ span{s0, . . . , sk};

(3) mk is a nonnegative integer, wik (i = 1, . . . , k) is any n−vector, and
zik (i = 1, . . . , k) is any vector in span{s0, . . . , sk}.

This form of updates is discussed by Kolda et al. [5], and is referred as
the general form. The general form fits many known methods, including the
L-BFGS method and the proposed limited memory modified BFGS. The
limited memory modified update with limited memory constant m can be

1The vector sk+1 has not yet been explicitly calculated but is needed here only for the
theoretical framework, not for the computational algorithms.

9
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184 L. W. JUNE AND M. A. HASSAN

Table 3. Comparative results of limited memory Biggs’
BFGS, Yuan’s BFGS and L-BFGS methods with m = 30

Biggs’ BFGS Yuan’s BFGS L-BFGS
Test Problems nI nf nI nf nI nf

Trigonometric
n = 8 20(3) 25 21(3) 26 23 28
n = 200 43(3) 52 43(5) 49 46 55
n = 1000 44(5) 52 43(5) 51 45 53

Rosenbrook
n = 8 32(3) 42 32(3) 40 37 44
n = 200 34(3) 48 34(2) 45 37 49
n = 1000 34(3) 41 34(2) 45 35 44

Powell
n = 8 31(3) 33 32(3) 33 36 39
n = 200 43(3) 46 30(3) 31 45 46
n = 1000 37(5) 46 36(2) 41 36 41

Beale
n = 8 14(3) 16 14(3) 16 14 16
n = 200 13(3) 15 14(3) 17 16 17
n = 1000 14(5) 17 14(3) 19 15 16

Wood
n = 8 86(5) 99 82(5) 98 87 113
n = 200 85(5) 98 85(5) 106 87 115
n = 1000 79(3) 95 82(3) 102 85 114

Total 609 724 596 719 644 780

witten as

(6.3) Hk+1 = V T
k−mk+1,kH0Vk−mk+1,k +

k∑
i=k−mk+1

V T
i+1,k

sT
i si

tisT
i yi

Vi+1,k

where mk = min{k + 1,m}.
The above method fits the general form (6.1) if at iteration k we choose

δk = 1(without scaling),mk = min{k + 1,m},

Pk = Qk = V T
k−mk+1,k, and

wik = zik =
V T

k−mk+i+1,ksk−mk+i√
tk−mk+is

T
k−mk+iyk−mk+i

.

We show that methods fitting the general form (6.1) produce conju-
gate search directions (see Theorem 6.1) and terminate in n iterations (see
Corollary 6.2) if and only if Pk maps the vector y0 through yk into span
{y0, . . . , yk−1} for each k = 1, 2, . . . , n.

10
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MODIFICATIONS OF THE LIMITED MEMORY BFGS ALGORITHM 185

Theorem 6.1. Suppose that we apply a quasi-Newton (QN) method with
an update of the form (2.11) to minimize an n-dimensional strictly convex
quadratic function. Then for each k before ternmination (i.e., gk+1 6= 0),

gT
k+1sj = 0, for all j = 0, 1, . . . , k,

sT
k+1Asj = 0, for all j = 0, 1, . . . , k, and

span{s0, . . . , sk+1} = span{H0g0, . . . ,H0gk+1},
if and only if

(6.4) Pjyi ∈ span{y0, . . . , yk+1} for all i = 0, 1, . . . , k, j = 0, 1, . . . , k.

Proof. See Theorem 2.2 in Kolda et al. [5]. ¤

When a method produces conjugate search directions, we can say some-
thing about termination.

Corollary 6.2. Suppose we have a method of the type described in Theorem
6.1 satisfying (2.11). Suppose further that Hkgk 6= 0 whenever gk 6= 0. Then
the scheme reproduces the iterates from the conjugate gradient method with
preconditioner H0 and terminates in no more than n iteration.

Proof. See Corollary 2.3 in Kolda et al. [5]. ¤

Note that we require that Hkgk be nonzero whenever gk is nonzero; this
requirement is equivalent to positive definite updates and is necessary since
not all methods produce positive definite updates. It is possible to construct
an update that maps gk to zero even it is not positive definite. If this were
to happen, we would have a breakdown in the method. In our case, positive
definiteness is trivial if tk > 0.

The next corollary gives some ideas for methods that relate to L-BFGS
and also will terminate in at most n iterations on strictly convex quadratics.

Corollary 6.3. The L-BFGS method with exact line search will terminate
in n iteration on an n−dimensional strictly convex quadratic function even
if any of the following modification is made to the update:

(1) Every BFGS updates in (3.5) are replaced by (4.1).
(2) Any m BFGS updates before the method is restarted are replaced by

(4.1).
(3) Replacing any m̂ ≤ min{m, k +1} BFGS updates by (4.1) before the

method is restarted.

Proof. For each variant, we show that the method fits the general form
in (6.1), satisfies condition (6.4) of Theorem 6.1, and hence terminates by
Corollary 6.2.
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(1) Let m > 0 be any integer, which is preset by users or may change
from iteration, and define

Vik =
k∏

j=i

(
I −

yjs
T
j

sT
j yj

)
.

Choose

δk = 1,mk = min{k + 1,m},

Pk = Qk = V T
k−mk+1,k, and

wik = zik =
V T

k−mk+i+1,ksk−mk+i√
tk−mk+is

T
k−mk+iyk−mk+i

with all tk > 0.

These choices clearly fit the general form. Furthermore,

Pkyi =

{
0, if j = k − mk, k − mk + 1, . . . , k

yj , if j = 0, 1, . . . , k − mk − 1
,

so this variation satisfies condition (6.1) of Theorem 6.1.
(2) This is a special case of the first variant. Note that the BFGS update

is equals to tk = 1.
(3) This is a special case of the second variant with the choices:

δk = 1, m̂ = min{k + 1,mk},

Pk = Qk = V T
k−m̂k+1,k, and

wik = zik =
V T

k−m̂k+i+1,ksk−m̂k+i√
tk−m̂k+is

T
k−m̂k+iyk−m̂k+i

with all tk > 0.

These choices will also fit the general form. Moreover,

Pkyi =

{
0, if j = k − m̂k, k − m̂k + 1, . . . , k

yj , if j = 0, 1, . . . , k − m̂k − 1
.

After m̂ iterations, choose m̂ =min{k + 1,m} and ti = 1 for i =
m̂, m̂ + 1, . . . ,mk.

¤

Note that the considered cases in Corollary 6.3 cover both limited memory
methods with full of partially modified BFGS updates.
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7. Conclusions

We have attempted, in this paper, to develop two numerical methods for
large-scale unconstrained optimization that are based on different technique
of approximating the objective function. We applied both the Biggs’ and
Yuan’s BFGS updates partially in the limited memory scheme replacing the
standard BFGS update.

We tested these methods on a set of standard test functions from Moré
et al. [7]. Our test results show that on the set of problems we tried,
our partially modified L-BFGS methods require fewer iterations and func-
tion/gradient evaluations than L-BFGS by Nocedal [8]. Numerical tests also
suggest that these partially modified L-BFGS methods are more superior
than the standard L-BFGS method.

Thus for large problems where space limitations do not preclude using
the full quasi-Newton updates, these methods are recommended.
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[3] Dennis, J.E.Jr. and Moré, J.J. Quasi-Newton method, motivation and theory. SIAM
Review, 19:46-89, 1977.

[4] Dennis, J.E.Jr. and Schnabel, R.B. Numerical Methods for Nonlinear Equations and
Unconstrained Optimization. Prentice-Hall, New Jersey, 1983.

[5] Kolda, T.G., Dianne, P.O. and Nazareth, L. BFGS with update skipping and varying
memory. SIAM Journal on Optimization, 8/4: 1060-1083, 1998.

[6] Liu, D.C. and Nocedal, J. On the limited memory BFGS method for large-scale opti-
mization. Mathematical Programming, 45:503-528, 1989.
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