12,281 research outputs found

    The design and simulation of routing protocols for mobile ad hoc networks.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 2000.This thesis addresses a novel type of network known as a mobile ad hoc network. A mobile ad hoc network is a collection of entirely mobile nodes that can establish communication in the absence of any fixed infrastructure. Envisioned applications of these networks include virtual classrooms, emergency relief operations, military tactical communications, sensor networks and community networking. Mobile ad hoc networking poses several new challenges in the design of network protocols. This thesis focuses on the routing problem. The main challenges in the design of a routing protocol for mobile ad hoc networks result from them having limited resources and there being frequent topological changes that occur unpredictably. Moreover, there is no fixed infrastructure that supports routing. The conventional routing protocols are not generally suitable for mobile ad hoc networks, as they cannot react quickly to the changing network topology, cause excessive communication and computation, or converge very slowly creating routing loops. In this thesis we propose two classes of routing schemes for mobile ad hoc networks. The first class is known as Limited Flooding Protocol. The protocol is fully reactive and does not require the computation of routing tables. It uses some basic principles of flooding, but reduces the communication overhead by restricting packet propagation through the network. Several variations of limited flooding are considered including deterministic, randomised and priority-based mechanisms. The main advantage of this protocol is that it can be used in networks with unpredictable topological changes and highly mobile nodes, since maintaining routing table at the intermediate nodes is not required. The second class of routing protocols is based on hierarchical clustering architecture and is intended for use in a relatively low mobility environment. The basic idea of this protocol is to partition the entire network into smaller units known as clusters and define routing mechanisms both within and between clusters using a hierarchical architecture. The main advantage of this architecture is reduction of storage requirements of routing information, communication overhead and computational overhead at each node. Discrete-event simulation is used for modelling and performance evaluation. Various options and variations of the protocols are examined in the…[Page 2 of abstract is missing.]Page 2 of abstract is missing

    An Effective Approach for Mobile ad hoc Network via I-Watchdog Protocol

    Get PDF
    Mobile ad hoc network (MANET) is now days become very famous due to their fixed infrastructure-less quality and dynamic nature. They contain a large number of nodes which are connected and communicated to each other in wireless nature. Mobile ad hoc network is a wireless technology that contains high mobility of nodes and does not depend on the background administrator for central authority, because they do not contain any infrastructure. Nodes of the MANET use radio wave for communication and having limited resources and limited computational power. The Topology of this network is changing very frequently because they are distributed in nature and self-configurable. Due to its wireless nature and lack of any central authority in the background, Mobile ad hoc networks are always vulnerable to some security issues and performance issues. The security imposes a huge impact on the performance of any network. Some of the security issues are black hole attack, flooding, wormhole attack etc. In this paper, we will discuss issues regarding low performance of Watchdog protocol used in the MANET and proposed an improved Watchdog mechanism, which is called by I-Watchdog protocol that overcomes the limitations of Watchdog protocol and gives high performance in terms of throughput, delay

    An Effective Approach for Mobile ad hoc Network via I-Watchdog Protocol

    Full text link
    Mobile ad hoc network (MANET) is now days become very famous due to their fixed infrastructure-less quality and dynamic nature. They contain a large number of nodes which are connected and communicated to each other in wireless nature. Mobile ad hoc network is a wireless technology that contains high mobility of nodes and does not depend on the background administrator for central authority, because they do not contain any infrastructure. Nodes of the MANET use radio wave for communication and having limited resources and limited computational power. The Topology of this network is changing very frequently because they are distributed in nature and self-configurable. Due to its wireless nature and lack of any central authority in the background, Mobile ad hoc networks are always vulnerable to some security issues and performance issues. The security imposes a huge impact on the performance of any network. Some of the security issues are black hole attack, flooding, wormhole attack etc. In this paper, we will discuss issues regarding low performance of Watchdog protocol used in the MANET and proposed an improved Watchdog mechanism, which is called by I-Watchdog protocol that overcomes the limitations of Watchdog protocol and gives high performance in terms of throughput, delay

    Multicast Routing in Mobile Adhoc Networks using Source Grouped Flooding

    Get PDF
    Ad hoc networks are peer to peer, autonomous networks comprised of wireless mobile devices. The ease and speed of deployment of these networks makes them ideal for battlefield communications, disaster recovery and other such applications where fixed infrastructure is not readily available. Limited bandwidth, energy constraints and unpredictable network topologies pose difficult problems for the design of applications for these networks. The last couple of years has seen renewed research in this field. Specifically in unicast and multicast routing and security issues.In this thesis, we address the multicast routing problem for ad hoc networks. We present a novel multicast routing protocol called the source grouped flooding protocol. The protocol creates multicast routes between the source and group members based on hop count distance constraints. We also propose a probabilistic data forwarding mechanism to achieve efficient data dissemination. We present simulation results that capture the performance of our protocol against parameters that characterize an ad hoc network. We find that the protocol is robust against topology changes and achieves efficient data distribution

    A probabilistic approach to reduce the route establishment overhead in AODV algorithm for manet

    Full text link
    Mobile Ad-hoc Networks (MANETS) is a collection of wireless nodes without any infrastructure support. The nodes in MANET can act as either router or source and the control of the network is distributed among nodes. The nodes in MANETS are highly mobile and it maintains dynamic interconnection between those mobile nodes. MANTEs have been considered as isolated stand-alone network. This can turn the dream of networking "at any time and at any where" into reality. The main purpose of this paper is to study the issues in route discovery process in AODV protocol for MANET. Flooding of route request message imposes major concern in route establishment. This paper suggests a new approach to reduce the routing overhead during the route discovery phase. By considering the previous behaviour of the network, the new protocol reduces the unwanted searches during route establishment processComment: International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 201

    Evaluation of network coding techniques for a sniper detection application

    Get PDF
    This paper experimentally studies the reliability and delay of flooding based multicast protocols for a sniper detection application. In particular using an emulator it studies under which conditions protocols based on network coding deliver performance improvements compared to classic flooding. It then presents an implementation of such protocols on mobile phones

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis

    Performance evaluation of an efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model

    Get PDF
    Flooding is the simplest and commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision in the network, a phenomenon referred to as broadcast storm problem. Several probabilistic broadcast schemes have been proposed to mitigate this problem inherent with flooding. Recently, we have proposed a hybrid-based scheme as one of the probabilistic scheme, which combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Despite these considerable numbers of proposed broadcast schemes, majority of these schemes’ performance evaluation was based on random waypoint model. In this paper, we evaluate the performance of our broadcast scheme using a community based mobility model which is based on social network theory and compare it against widely used random waypoint mobility model. Simulation results have shown that using unrealistic movement pattern does not truly reflect on the actual performance of the scheme in terms of saved-rebroadcast, reachability and end to end delay

    Improvement to efficient counter-based broadcast scheme through random assessment delay adaptation for MANETs

    Get PDF
    Flooding, the process in which each node retransmits every uniquely received packet exactly once is the simplest and most commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision, a phenomenon collectively referred to as broadcast storm problem. To mitigate this problem, several broadcast schemes have been proposed which are commonly divided into two categories; deterministic schemes and probabilistic schemes. Probabilistic methods are quite promising because they can reduce the number of redundant rebroadcast without any control overhead. In this paper, we investigate the performance of our earlier proposed efficient counter-based broadcast scheme by adapting its random assessment delay (RAD) mechanism to network congestion. Simulation results revealed that this simple adaptation achieves superior performance in terms of saved rebroadcast, end-to-end delay and reachability
    • …
    corecore