37 research outputs found

    Non-systemic transmission of tick-borne diseases: a network approach

    Get PDF
    Tick-Borne diseases can be transmitted via non-systemic (NS) transmission. This occurs when tick gets the infection by co-feeding with infected ticks on the same host resulting in a direct pathogen transmission between the vectors, without infecting the host. This transmission is peculiar, as it does not require any systemic infection of the host. The NS transmission is the main efficient transmission for the persistence of the Tick-Borne Encephalitis virus in nature. By describing the heterogeneous ticks aggregation on hosts through a \hyphenation{dynamical} bipartite graphs representation, we are able to mathematically define the NS transmission and to depict the epidemiological conditions for the pathogen persistence. Despite the fact that the underlying network is largely fragmented, analytical and computational results show that the larger is the variability of the aggregation, and the easier is for the pathogen to persist in the population.Comment: 15 pages, 4 figures, to be published in Communications in Nonlinear Science and Numerical Simulatio

    Making big data work: smart, sustainable, and safe cities

    Get PDF
    The goal of the present thematic series is to showcase some of the most relevant contributions submitted to the ‘Telecom Italia Big Data Challenge 2014’ and to provide a discussion venue about recent advances in the appplication of mobile phone and social media data to the study of individual and collective behaviors. Particular attention is devoted to data-driven studies aimed at understanding city dynamics. These studies include: modeling individual and collective traffic patterns and automatically identifying areas with traffic congestion, creating high-resolution population estimates for Milan inhabitants, clustering urban dynamics of migrants and visitors traveling to a city for business or tourism, and investigating the relationship between urban communication and urban happiness

    Two Types of Social Grooming Methods depending on the Trade-off between the Number and Strength of Social Relationships

    Full text link
    Humans use various social bonding methods known as social grooming, e.g. face to face communication, greetings, phone, and social networking sites (SNS). SNS have drastically decreased time and distance constraints of social grooming. In this paper, I show that two types of social grooming (elaborate social grooming and lightweight social grooming) were discovered in a model constructed by thirteen communication data-sets including face to face, SNS, and Chacma baboons. The separation of social grooming methods is caused by a difference in the trade-off between the number and strength of social relationships. The trade-off of elaborate social grooming is weaker than the trade-off of lightweight social grooming. On the other hand, the time and effort of elaborate methods are higher than lightweight methods. Additionally, my model connects social grooming behaviour and social relationship forms with these trade-offs. By analyzing the model, I show that individuals tend to use elaborate social grooming to reinforce a few close relationships (e.g. face to face and Chacma baboons). In contrast, people tend to use lightweight social grooming to maintain many weak relationships (e.g. SNS). Humans with lightweight methods who live in significantly complex societies use various social grooming to effectively construct social relationships.Comment: Accepted by Royal Society Open Scienc

    Quantifying Information Overload in Social Media and its Impact on Social Contagions

    Full text link
    Information overload has become an ubiquitous problem in modern society. Social media users and microbloggers receive an endless flow of information, often at a rate far higher than their cognitive abilities to process the information. In this paper, we conduct a large scale quantitative study of information overload and evaluate its impact on information dissemination in the Twitter social media site. We model social media users as information processing systems that queue incoming information according to some policies, process information from the queue at some unknown rates and decide to forward some of the incoming information to other users. We show how timestamped data about tweets received and forwarded by users can be used to uncover key properties of their queueing policies and estimate their information processing rates and limits. Such an understanding of users' information processing behaviors allows us to infer whether and to what extent users suffer from information overload. Our analysis provides empirical evidence of information processing limits for social media users and the prevalence of information overloading. The most active and popular social media users are often the ones that are overloaded. Moreover, we find that the rate at which users receive information impacts their processing behavior, including how they prioritize information from different sources, how much information they process, and how quickly they process information. Finally, the susceptibility of a social media user to social contagions depends crucially on the rate at which she receives information. An exposure to a piece of information, be it an idea, a convention or a product, is much less effective for users that receive information at higher rates, meaning they need more exposures to adopt a particular contagion.Comment: To appear at ICSWM '1

    The Role of Gender in Social Network Organization

    Get PDF
    The digital traces we leave behind when engaging with the modern world offer an interesting lens through which we study behavioral patterns as expression of gender. Although gender differentiation has been observed in a number of settings, the majority of studies focus on a single data stream in isolation. Here we use a dataset of high resolution data collected using mobile phones, as well as detailed questionnaires, to study gender differences in a large cohort. We consider mobility behavior and individual personality traits among a group of more than 800800 university students. We also investigate interactions among them expressed via person-to-person contacts, interactions on online social networks, and telecommunication. Thus, we are able to study the differences between male and female behavior captured through a multitude of channels for a single cohort. We find that while the two genders are similar in a number of aspects, there are robust deviations that include multiple facets of social interactions, suggesting the existence of inherent behavioral differences. Finally, we quantify how aspects of an individual's characteristics and social behavior reveals their gender by posing it as a classification problem. We ask: How well can we distinguish between male and female study participants based on behavior alone? Which behavioral features are most predictive
    corecore