1,530 research outputs found

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande

    How to implement a modular form

    Get PDF
    AbstractWe present a model for Fourier expansions of arbitrary modular forms. This model takes precisions and symmetries of such Fourier expansions into account. The value of this approach is illustrated by studying a series of examples. An implementation of these ideas is provided by the author. We discuss the technical background of this implementation, and we explain how to implement arbitrary Fourier expansions and modular forms. The framework allows us to focus on the considerations of a mathematical nature during this procedure. We conclude with a list of currently available implementations and a discussion of possible computational research

    Network Models

    Full text link
    Networks can be combined in various ways, such as overlaying one on top of another or setting two side by side. We introduce "network models" to encode these ways of combining networks. Different network models describe different kinds of networks. We show that each network model gives rise to an operad, whose operations are ways of assembling a network of the given kind from smaller parts. Such operads, and their algebras, can serve as tools for designing networks. Technically, a network model is a lax symmetric monoidal functor from the free symmetric monoidal category on some set to Cat\mathbf{Cat}, and the construction of the corresponding operad proceeds via a symmetric monoidal version of the Grothendieck construction.Comment: 46 page
    • …
    corecore