
How to implement a modular form?

Martin Rauma

aMPI für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Abstract

We present a model for Fourier expansions of arbitrary modular forms. This
model takes precisions and symmetries of such Fourier expansions into account.
The value of this approach is illustrated by studying a series of examples. An im-
plementation of these ideas is provided by the author. We discuss the technical
background of this implementation, and we explain how to implement arbitrary
Fourier expansions and modular forms. The framework allows us to focus on
the considerations of mathematical nature during this procedure. We conclude
with a list of currently available implementations and a discussion of possible
computational research.

Keywords: modular forms, Fourier expansions, computation

1. Introduction

The purpose of this paper is twofold: First, we develop a new strategy to
compute with Fourier expansions of modular forms. Second, we describe an
implementation of this idea in Sage [34].

Explicit computations with modular forms have led to great discovery and
they form the basis of many applications. Among them are such important
ones like central values of L-series or congruences (see [14, 24]). There are many
theorems which can be proved by almost purely computational approaches. This
comprises the four square theorem, that can be solved with pen and paper (see
[6]), as well as the very advanced considerations in [1]. There the proof of
a long standing conjecture by Andrew and Alders could be completed. This
was mainly done by determining Fourier expansions of a modular form up to
su�cient precision. A list of publications that take similar approaches using
elliptic modular forms would be very long. Magma [4] and Sage both provide
robust implementations of Fourier expansions of such forms.

There is signi�cantly less work that is concerned with higher rank groups.
Outstanding contributions in this area have been made by Poor and Yuen
[20, 21] and Krieg [8, 11]. Nonetheless, the computations performed so far follow

Email address: MRaum@mpim-bonn.mpg.de (Martin Raum)

Preprint submitted to Elsevier June 23, 2011

individual implementations that are optimized speci�c to the type of modular
form (degree, subgroup). Such calculations could bene�t from a uni�ed frame-
work without sacri�cing e�ciency.

A �rst e�ort to make a uni�ed approach was made by the author and his
collaborators in [27]. They suggested an approach to compute with Siegel mod-
ular forms and provided an implementation in Sage. In this paper, we suggest
a far generalization if this idea, that enables us to treat a multitude of di�erent
types of modular forms. Category theory turns out to be the most appropriate
language to formulate our model of Fourier expansions. Indeed, all important,
technical results that we will make use of have already been proved in this area.
This results in a clean and accessible treatment of several issues connected with
models of Fourier expansions of modular forms, including precisions and sym-
metry. Both aspects are directly related to the memory consumption of an
implementation. The latter issue can be addressed by carefully extending the
notion of χ-invariants with respect to a suitable group G. This group G will
in fact account for all symmetry that is inherent to the Fourier expansion of a
modular form. Precisions will be modeled by morphisms of suitable rings, and
the main task consists in relating them cleanly to each other.

This paper is also devoted to an implementation of the above idea that is
provided by the author. It was written in Sage, a common and freely available
system for mathematical computations, thus permitting the whole community
to pro�t. The development takes place in Purple Sage [33], a library based on
Sage that contains code relevant to arithmetic geometry. The idea behind the
framework, as we will call it, is that the programmer should need only provide
mathematical data without considering questions of purely technical nature.
Internally, modular forms will be represented as an abstract element and as a
Fourier expansion at the same time. This allows for faster computations and
application of specialized routines whenever this is appropriate.

The preliminaries of this paper are contained in Section 2. In Section 3, we
explain the mathematical objects which are modeled by our implementation.
We will outline several examples and discuss how they are related to Fourier
expansions of modular forms. Section 4 contains a description of the concepts
that the reader must be familiar with when implementing a new type of modular
forms. In Section 5, we illustrate the usage of the framework starting with two
examples. We will thereafter proceed to a detailed explanation of the most basic
methods that are available for all modular forms. In Section 6, we list types
of modular forms that have been implemented based on the framework that we
present. Section 7 contains a discussion of the framework's future development
and a description of several possible applications.

2. Preliminaries

Let S be a monoid, of which the composition is denoted multiplicatively. We
�x a ring R with unit and an R-left module A. In some cases A will carry an R-
algebra structure. We write R× for the group of units in R. A left R-ideal that is
generated by g1, . . . , gn is denoted by R⟨g1, . . . , gn⟩. We write R⟨x1, . . . , xn⟩ for

2

the free rank n module over R with basis x1, . . . , xn, and we write R{x1, . . . , xn}
for the noncommutative polynomial algebra over R on n variables x1, . . . , xn.
The polynomial algebra with n commuting variables is denoted by R[x1, . . . , xn].
By A[S] =⊕s∈S As we denote the direct sum of copies of A indexed by S. If A
is an algebra this is the monoid algebra of S over A. It is an R[S]-left module
in all cases. In addition to the usual notion of �nite rank modules, we use the
following notion: A module that is isomorphic to a sum of �nitely many copies
of A is said to have �nite rank over A.

We write Mn,m(R) for the set of n ×m matrices with entries in R. We ab-
breviate Mn,n(R) by Mn(R). The submodule of symmetric matrices is denoted
by MT

n (R). The general linear group is denoted by GLn(R) ⊆ Mn(R), and the
symplectic group is denoted by Spn(R) ⊆ M2n(R). The transpose of u ∈ Mn(R)
is denoted by Tu. We set m[u] ∶= Tumu, if m,u ∈ Mn(R).

Let G be a group acting on R, and suppose that χ ∶ G → R× is a character.
We denote the χ-invariants in R by

RGχ ∶= {r ∈ R ∶ gr = χ(g)r for all g ∈ G}.

For a group Gr a Gr-grading of R{x1, . . . , xn} is a partially de�ned homo-
morphism gr ∶ R{x1, . . . , xn}→Gr, such that all gr−1({g}) for g ∈Gr are R-left
submodules of A{x1, . . . , xn} and A{x1, . . . , xn} = ⊕g∈Gr gr−1({g}). A grading
of R⟨x1, . . . , xn⟩ is de�ned analogously, where gr is a map of sets. In this case
it su�ces to assume that Gr is a set.

The reader of Section 3 is required to be familiar with basic constructions in
category theory. In all other sections we avoid this terminology, specializing the
results from Section 3 to a language that readers with a background in modular
forms will feel more comfortable with. For an introduction to category theory
we refer the reader to [18].

For any category Λ we denote by Ob(Λ) the objects of Λ, and we denote by
Λ(a, b) the arrows between a, b ∈ Ob(Λ). Most of the time, we say morphism for
an arrow in categories that we deal with. We agree on denoting all categories by
underlined letters or words and all functors by capital script letters. A category
Λ is said to be a net if #Λ(a, b) ∈ {0,1} for all a, b ∈ Ob(Λ) and if we can always
�nd c ∈ Ob(Λ) such that #Λ(a, c) = #Λ(b, c) = 1. Notice that any functor with
codomain a net is uniquely de�ned by the associated assignment of objects. We
denote the evaluation of a functor F on objects λ ∈ Ob(Λ) and on morphisms
m ∈ Λ(λ,λ′) by F (λ) and F (m). The limit of a functor F is denoted by
limF . For a de�nition of limits the reader is referred to [18, Sec III.4].

The small category with the multiplicatively closed subsets of S as ob-
jects is denoted by Mult(S). Given a, b ∈ Ob(Mult(S)) the set of morphisms
Mult(S)(a, b) contains a unique element if a ⊆ b, and it is empty, otherwise.
In particular, Mult(S) is a net. We now introduce several full subcategories of
Mult(S).

A set S′ ⊆ S is called absorbing if s′s, ss′ ∈ S′ for any s ∈ S and any s′ ∈ S′.
We call a subset S′ ⊆ S co�nite, if S ∖ S′ is �nite. Let Abs(S) be the category
of subsets of S that are absorbing. The category of co�nite, absorbing subsets
of S is denoted by Abscofinite(S).

3

Given a group G that acts on S we denote by AbsG(S) the category of
absorbing subsets of S that are G-invariant. We write AbsG−cofinite(S) for the
category of all G-co�nite subsets of S. A set S′ ⊆ S is called G-co�nite if S ∖S′
is the union of �nitely many G-orbits. Notice that this implies G-invariance.

The category Mod(R) is the category of R-left modules. Its subcategory
SMod(A,R) is the category of R-left submodules of A with arrows given by
inclusions.

There is a covariant functor S (A,S) ∶ Abs(S) → SMod(A[S],R) that as-
signs A[S]⟨As ∶ s ∈ a⟩ to a ∈ Ob(Abs(S)). To every arrow we assign the obvious
inclusion. There is also a functor Q(A[S], S) ∶ SMod(A[S],R) →Mod(R). On
objects it is de�ned by A[S] ⊇ I ↦ A[S]/I. Morphisms are mapped to natural
epimorphisms between quotients of A[S].

In Section 5, the reader is required to know basis commands in Sage [34].
This system for computer supported mathematics is based on Python [36], a
widely spread script language that is easy to learn. For a basic introduction the
reader is referred to [35]. In [39] the reader will �nd a very gentle introduction to
many functionalities of Sage. A basic reference for programming with Python
is provided in [37]. We emphasize that the reader only interested in using
implementations that are already provided will not need read this.

3. The underlying construction

This section contains a description of how Fourier expansions and their con-
nection to modular forms can be modeled for e�cient use in implementations.

The basic tool for modeling Fourier expansions will be monoid power series,
that we introduce in Section 3.1. The Fourier expansion of the major part of
modular forms has symmetries that can be described by the action of a group
on both its Fourier indices and its coe�cients. Equivariant monoid power series
are best suited to describe these symmetries. We de�ne modules of equivariant
monoid power series in Section 3.2. We also discuss under which assumptions
these modules are rings.

Fourier expansions are intimately connected to modular forms, but they do
not capture all aspect an implementation should cover. To describe all impor-
tant properties we introduce a further ring (or module), that we call a ring (or
module) of graded expansions. Even though, mathematically speaking, it is only
a homomorphism; the reader should carefully read Section 3.3. In that section,
we discuss the mathematical aspects of what the user of any implementation
building on the framework that we describe in Section 4 will deal with.

Throughout this section we �x a monoid S and a ring R with units, that is
not necessarily commutative. We write A for a �xed R-left module. In many
cases A will carry an algebra structure, and we will comment on theses cases
separately, whenever it seems appropriate.

3.1. Monoid power series

We �x a small category Λ, and we assume that it is a net. There is a
one-to-one correspondence between functors F ∶ Λ → Abs(S) and �ltrations

4

of S that are indexed by Ob(Λ). The functor F ultimately provides a way
to model truncation of Fourier expansions. The fact that the codomain is the
category of absorbing subsets of S guarantees that truncation and multiplication
of monoid power series are compatible. The functor

FQuot(A) ∶= Q(A[S], S) ○S (A,S) ○F

is covariant.

De�nition 3.1 Let F ∶ Λ → Abs(S) be a covariant functor. The ring (or
module) of monoid power series over A with respect to F is

A⟦F ⟧ ∶= limFQuot(A).

Remarks 3.2

1. If the codomain of F is the category of co�nite subsets of S and if A is
an algebra, the module A⟦F ⟧ will be an algebra.

2. Notice that A⟦F ⟧ is not a useful object in all cases. The most striking
example is F ∶ λ↦ S for all λ ∈ Ob(Λ). Then A⟦F ⟧ is the ring with one
element.

3. Because F maps into the category of absorbing subsets of S, we may write

∑s∈S ass with as ∈ A for elements in A⟦F ⟧.

Example 3.3 (Multivariat power series) Set S = (Nm, +), and the objects
in Λ will be Ob(Λ) = N ∪ {∞}. The category Λ is equipped with arrows a → b
that correspond to the relations a ≤ b. The functor F is de�ned by means of
a ↦ {(n1, . . . , nm) ∶ ∑ni ≥ a}. Since Abs(S) is a net, it is uniquely de�ned by
this assignment. If A is an algebra, we obtain the classical power series ring in
multiple variables A⟦F ⟧ = A⟦x1, . . . , xm⟧.

Example 3.4 (Siegel modular forms) Set R = A = Q and let S ⊆ MT
n (Q) be

the set of all semi-positive de�nite, even, symmetric n×n matrices. We denote
the trace of s ∈ S by tr(s). Set Ob(Λ) = N ∪ {∞} as above. We de�ne F by
a ↦ {s ∈ S ∶ tr(s) ≥ a}. The ring Q⟦F ⟧ models the ring of Fourier expansions
of Siegel modular forms of degree n. More precisely, let

AΓ(Q) ∶=⊕
k∈Z

[Γ,det k]Q

be the graded ring of Siegel modular forms for a �nite index subgroup Γ ⊆ Spn(Z)
that are de�ned over Q. Assume that MT

n (Z) ⊆ Γ is realized as matrices (In T
In

).
Then there is an injective homomorphism AΓ(Q)↪ Q⟦F ⟧ given by the Fourier
expansion of a modular form.

We will now show that A⟦F ⟧ only depends on F up to a certain equivalence,
if F ∶ Λ→ Abscofinite(S).

5

Proposition 3.5 Assume that two functors

F ∶ Λ→ Abscofinite(S) and F ′ ∶ Λ′ → Abscofinite(S)

satisfy limF = limF ′. Then A⟦F ⟧ ≅ A⟦F ′⟧.
Proof It su�ces to construct a homomorphism A⟦F ⟧ → A⟦F ′⟧. It will be
clear that the same construction with F and F ′ interchanged yields its inverse.

Fix λ′ ∈ Ob(Λ). Since F ′(λ′) is co�nite and F ′(λ′) ⊇ limF = ⋂λF (λ),
we can �nd λ such that F (λ) ⊆ F ′(λ′). Consequently, for all µ → λ there is a
well-de�ned epimorphism

A⟦F ⟧→FQuot(A)(µ)→F ′Quot(A)(λ′).

These morphisms are compatible with the structure of Λ, and by the universal
property of A⟦F ′⟧, we obtain a morphism A⟦F ⟧→ A⟦F ′⟧. This completes the
proof. ◻

The assumptions on F are chosen such that in addition to A⟦F ⟧ we can
obtain morphisms to modules that have �nite rank over A. We can use these
to store information about A⟦F ⟧ and its elements.

De�nition 3.6 Suppose that F ∶ Λ→ Abscofinite(S) is a covariant functor. The
ring (or module) of monoid power series with epimorphisms over A attached to
F is a pair (A⟦F ⟧, (ελ)λ∈Ob(Λ)) of a ring (or module) of monoid power series

and the natural epimorphisms A⟦F ⟧→FQuot(A)(λ) indexed by Ob(Λ).
Remark 3.7 As we will see below, for typical choices of F , the algebra (or
module) A⟦F ⟧ has in�nite rank over A. Since F ∶ Λ → Abscofinite(S), the
algebras (or modules) FQuot(S)(λ) have �nite rank over A. We may use them
to store approximations of elements of A⟦F ⟧.

Example 3.8 (Multivariate power series) De�ne S and Λ be as in Exam-
ple 3.3. We consider two functors F and F ′. The former is de�ned by
the assignment a ↦ {(n1, . . . , nm) ∶ ∑ni ≥ a}, and the latter is de�ned by
a ↦ {(n1, . . . , nm) ∶ ni ≥ a for some i}. Using Proposition 3.5, we see that
A⟦F ⟧ ≅ A⟦F ′⟧. But the attached rings (or modules) of monoid power series
with epimorphisms di�er. Using the morphisms ελ associated to F it will be
more expensive to store an exact version of x50

1 + x50
1 x

50
2 than to store an ex-

act version of x80
1 + x20

1 x
60
2 . The former polynomial is more e�ciently stored

applying the epimorphisms associated to F ′.

The next proposition shows that our new construction only yields additional
structure if Λ has no initial object.

Proposition 3.9 If Λ has an initial object λin, then A⟦F ⟧ ≅ FQuot(A)(λin).
Proof This follows from the universal properties of lim. ◻

Corollary 3.10 Suppose limF is co�nite. Then A⟦F ⟧ ≅ FQuot(A)(λ) for a
suitable λ ∈ Ob(Λ).

Proof Choose λ such that F (λ) = limF . ◻

6

3.2. Equivariant monoid power series

Example 3.4 illustrates that monoid power series are not best suited to store
Fourier expansions of modular forms: The group GLn(Z)↪ Spn(Z) acts on the
Fourier expansion of Siegel modular forms for the full modular group Spn(Z).
This results in the symmetry as = ±as′ if s′ = s[u] for some u ∈ GLn(Z).

For the rest of this section we �x a group G acting on S and A respecting
the structure of both, and we �x a character χ ∶ G → R×. It is immediate
that A⟦F ⟧ admits a G-action that respects the R-module structure, whenever
F ∶ Λ→ Abs(S)G−cofinite.

De�nition 3.11 Assume that F ∶ Λ→ Abs(S)G−cofinite is a covariant functor.
The module of equivariant monoid power series attached to F , G and χ is

A⟦F ⟧Gχ ∶= {r =∑ass ∈ A⟦F ⟧ ∶ χ(g)∑(gas)(gs) = r for all g ∈ G}.

Loosely speaking, A⟦F ⟧Gχ is the module of χ-invariants in A⟦F ⟧ (see [32] for a
de�nition of χ-invariants). If χ = 1 is the trivial character we write A⟦F ⟧G for
A⟦F ⟧Gχ .

For any F ∶ Λ→ Abs(S) we may de�ne FG ∶ Λ→ AbsG(S) with assignment
Ob(Λ) ∋ λ↦ S ∖(G(S ∖F (λ))). Notice that FG = F if F ∶ Λ→ AbsG(S). By
abuse of notation we write A⟦F ⟧Gχ for A⟦FG⟧Gχ .

In analogy to what we have done in Section 3.1, we de�ne equivariant monoid
power series with epimorphisms attached to them.

De�nition 3.12 Assume that F ∶ Λ→ Abs(S)G−cofinite is a covariant functor.
By a module of equivariant monoid power series with epimorphisms we mean
a pair (A⟦F ⟧Gχ , (ελ)λ∈Ob(Λ)), where ελ is the family of natural epimorphisms

A⟦F ⟧Gχ →FQuot(A)(λ) indexed by Ob(Λ).

Remarks 3.13

1. Notice that the modules of χ-invariants FQuot(A)(λ)Gχ have �nite rank
over A. We hence may use the epimorphisms ελ to store information
about elements of A⟦F ⟧Gχ .

2. The analogs of Proposition 3.5 and 3.9 and Corollary 3.10 hold true for
modules of equivariant monoid power series.

3. Passing from F to FG can be done transparently by the implementa-
tion that we discuss in the next section. There is no need to consider
G-invariance directly as a user of the framework.

In this section we consider functors F ∶ Λ → Abs(S)G−cofinite. For that
reason, A⟦F ⟧ does not always carry an algebra structure, even if A is an alge-
bra. We investigate under which circumstances a module of equivariant monoid
power series carries a natural algebra structure.

7

De�nition 3.14 A monoid S is called decomposition �nite, if for all s ∈ S,
there are only �nitely many pairwise distinct pairs (s1, s2) ∈ S × S that satisfy
s1s2 = s.

Proposition 3.15 Suppose that A is an R-left algebra, and suppose that S is
decomposition �nite.

1. Then A⟦F ⟧G is an algebra, and

2. if A′ is an A-left module, A′⟦F ⟧G is an A⟦F ⟧G-module.

Proof The multiplication in A⟦F ⟧ is given by

(∑ass)(∑ bss) =∑(∑
s1s2=s

as1bs2)s.

The module structure on A′⟦F ⟧ can be de�ned analogously. ◻

Let C be a monoid. For χ̂ ∶ C → Hom(G,R×) we can consider the direct sum
of modules A⟦F ⟧Gχ̂ ∶=⊕c∈C A⟦F ⟧Gχ̂(c). It will cause no confusion if we also call
this module a module of equivariant monoid power series. The next proposition
tells us under which conditions it carries a multiplicative structure.

Proposition 3.16 Suppose that A is an R-left algebra, and suppose that S is
decomposition �nite.

1. Then A⟦F ⟧Gχ̂ is an algebra, and

2. if A′ is an A-left module, A′⟦F ⟧Gχ̂ is an A⟦F ⟧Gχ̂ -module.

Proof The multiplication can be de�ned as in the proof of Proposition 3.15.◻

We now give several examples to illustrate how to apply our construction to
modular forms.

Example 3.17 (Siegel modular forms with characters) Set R = A = Q,
and we de�ne S as in Example 3.4. By the block diagonal embedding of GLn(Z)
into Spn(Z) we mean the morphism u ↦ diag(u,Tu−1). We denote the image
of this embedding by GLd

n(Z). We �x a congruence subgroup Γ ⊆ Spn(Z) subject
to the same assumption as in Example 3.4. Characters (with values in Q

×
) of

Γ give rise to characters of GLd
n(Z)∩Γ. The set C of characters of GLd

n(Z)∩Γ
is �nite.

Set S′ ∶= S × (GLd
n(Z) /(Γ ∩GLd

n(Z))). The functor

E ∶ Mult(S)→Mult(S′), Ob(Mult(S)) ∋ a↦ {(s, g) ∶ s ∈ a}

is faithful. Using the functor F from Example 3.4, we set F ′ = E ○F . In the

sense of Example 3.4 the elements of Q⟦F ′⟧GLd
n(Z)

C model the Fourier expansions
of Siegel modular forms for Γ with character.

The same construction applies to paramodular forms, that Siegel modular
forms fom a particular case of.

8

Example 3.18 (Vector-valued elliptic modular forms) Vector-valued el-
liptic modular forms can be considered maps H1 → C[L /̌L] for a given inte-
gral, even lattice L. Here Lˇ is the dual of L. The action of SL2(Z) on the
right hand side is given by the Weil representation, that factors over a suitable
congruence subgroup Γ [3]. In particular, we can consider any such modular
form a tuple of scalar-valued elliptic modular forms for this group Γ. The level
N of Γ is at most twice the level of L. Consequently, we choose S = (1

2N
N,+)

and R = Q, A = Q[L /̌L]. In analogy to Example 3.3, we choose F the functor
from Λ with Ob(Λ) = N ∪ {∞} to S. Then A⟦F ⟧ models the module of Fourier
expansions of vector-valued elliptic modular forms.

The action of scalar-valued modular forms on this module can be modeled by
repeating the construction with L = (1) (that is not even but still works). The
resulting ring Q⟦F ⟧ acts on A⟦F ⟧, since Q acts on Q[L /̌L].

Example 3.19 (Vector-valued Siegel modular forms) We adopt the no-
tation and the de�nitions from Example 3.17, and we �x n = 2. We set R = Q
and A = Q[x, y]l, the space of homogeneous polynomials in x and y of degree l.
The action of GL2(Z) on A is given by A ∋ (g, p)↦ p ○ g. Notice that A is iso-
morphic to the symmetric power Syml(Q2) as a GL2(Q)-module. The Fourier
expansions of vector-valued Siegel modular forms [6] for Sp2(Z) are modeled by

elements of A⟦F ⟧GLd
2(Z).

Remark 3.20 Obviously, Example 3.17 and 3.19 can be combined. The result-
ing construction makes use of all important features of De�nition 3.12.

Finally, we consider the following generalization of modules of equivariant
monoid power series: We drop the assumption that the action of G respects the
monoid structure of S. Obviously, in this case A⟦F ⟧G is not an algebra. In
particular, Proposition 3.15 does not generalize to this case.

We assume that G = G′ ×H for two groups G′ and H, and we �x S′ ⊆ S.
We suppose that H acts trivially on S′ and that (g, h)(s′s) = (gs′)((g, h)s) for
all (g, h) ∈ G, s′ ∈ S′ and s ∈ S. We consider a functor F ′ ∶ Λ → Mult(S′).
The R-module A⟦F ⟧G will also carry an R⟦F ′⟧G

′

-algebra structure. The next
example illustrates this generalization, that is currently only partially covered
by the author's framework.

Example 3.21 (Jacobi forms) We consider Jacobi forms of index m > 0.
Let R = A = Q and S = {(n, r) ∶ 4nm ≥ r2} ⊆ (Z2,+). The full Jacobi group,
de�ned as ΓJ ∶= SL2(Z) ⋉ Z2, contains Z ⊆ Z2, that acts on S via the map
S ×Z2 → S (1, (n, r))↦ (n−r+m,r−2m). We may choose H = Z, G′ = {1} and
S′ = (N,+). With Ob(Λ) = N ∪ {∞} and F given on objects by the assignment
a↦ {(n, r) ∶ n ≥ a} and F ′ by a↦ {n ∶ n ≥ a} we obtain the Fourier expansions

Q⟦F ′⟧G
′

= Q⟦F ′⟧ of elliptic modular forms, that act on the Fourier expansions
Q⟦F ⟧G of Jacobi forms.

We can avoid using the generalized module of equivariant monoid power
series as follows:

9

Example 3.22 (Jacobi forms; an alternative construction) The full Ja-
cobi group can be embedded into Sp2(Z). We modify the construction given in
Example 3.4. The group G = Z ⊂ GL2(Z) realized as upper triangular, unipo-
tent matrices embeds into GLd

2(Z). The de�nition of GLd
2(Z) is taken from

Example 3.17. The functor F from Example 3.4 now can be used to obtain an
alternative ring Q⟦F ⟧G of Fourier expansions of Jacobi forms with an arbitrary
index m > 0. The Fourier expansion of a Jacobi form of index m is indexed by

{(n r /2
r /2 m) ∶ n, r ∈ Z} ⊆ MT

2 (Z).

3.3. Graded expansions

We want to treat modular forms as abstract elements. This usually happens
for one of two reasons. Our ultimate goal might be computing the Fourier
expansion of modular forms. Calculating abstractly with modular forms and
obtaining their Fourier expansions by means of specialized methods yields a
much better performance, although it depends on a detailed understanding of
special subspaces. Examples are provided by Maaÿ lifts in the case of Siegel
modular forms. In various other cases, we know the algebraic structure of a
module or ring of modular forms, even though we cannot compute the Fourier
coe�cients of arbitrary elements without expressing them in terms of these
generators. Orthogonal modular forms for signature (2, n), n ≥ 4 provide typical
examples of this situation. If we understand modular symbols we can avoid these
intermediate considerations. But to the author's knowledge a theory of modular
symbols is only available for elliptic and Hilbert modular forms.

We conclude that a software layer that encodes modular forms as abstract
elements is an essential feature of any implementation dealing with their Fourier
expansions. For this reason, we introduce graded rings (or modules) of expan-
sions.

De�nition 3.23 Fix a Gr-grading of A{x1, . . . , xn} or A⟨x1, . . . , xn⟩.
A graded ring of expansions is a morphism

φ ∶ A{x1, . . . , xn}→ A⟦F ⟧GC ,

such that kerφ ⊆ gr−1({1}).
A graded module of expansions is a morphism

φ ∶ A⟨x1, . . . , xn⟩→ A⟦F ⟧GC ,

such that kerφ ⊆ gr−1({1}).

We call the image of an element under the morphism of the preceding de�nition
its (Fourier) expansion.

Usually, rings or modules of modular forms for a �xed group do not have
�nite rank over their base ring R. Only if we �x a cocycle, that is, if we �x
a weight, the according module will have �nite rank. Scalar cocycles form a
group and noncommutative cocycles are acted on by them. In most cases the
grading that we impose will coincide with either the group of scalar cocycles or

10

the set of all cocycles. Besides the theoretical meaning of cocycles, the modules
of modular forms of �xed weight have �nite rank. This allows for comparison
of modular forms by checking �nitely many Fourier coe�cients; this is a key
feature of modular forms, that plays an important role in many applications.

4. The framework

In this section we brie�y outline the framework that implements the ideas
presented in Section 3. This framework is available on the author's homepage,
where the reader will also �nd instructions for installing it. The documentation
contained in the implementation's docstrings, that can be found in the folder
fourier_expansion_framework gives more detailed information about its be-
havior. An example implementation, illustrating how to implement the most
important methods, is provided in the folder algebraicpowerseries. This ex-
ample comes with documentation that instructs the reader how to implement
his own rings of Fourier expansions.

We adapt the notation from the preceding section. For (nonequivariant)
monoid powers series we assume that F ∶ Λ → Abscofinite(S) maps to the cate-
gory of co�nite subsets of S.

4.1. Multiplication of monoid power series

Multiplication of monoid power series is implemented naively. Many monoids
occurring in applications can be embedded into Nn for some n. Consequently,
fast multiplication using Karatsuba multiplication (see [12, 30]) is available.
In practice, though, the increased memory consumption makes this approach
useless for equivariant monoid power series. Nevertheless, we can improve the
naive multiplication for equivariant monoid power series. For every G-orbit
Gs ⊆ S we only have to calculate the sum ∑s1s2=s as1bs2 for one representative s.
Implementing multiplication in A⟦F ⟧ over a monoid S requires the programmer
only provide a function computing {(s1, s2) ∶ s1s2 = s} ⊂ S2 for any given
s ∈ S. Alternatively, a function computing these coe�cients given s and {(s, as)}
and {(s, bs)} can be provided. The latter approach can be taken, when it is
particularly important to have fast multiplication available.

4.2. Reduction of indices

We will call s ∈ S an index of the expansion ∑ass ∈ A⟦F ⟧G. The imple-
mentation will store coe�cients only for special elements in each G-orbit. We
call these elements reduced indices. We do not require that every orbit contains
only a single reduced index. The more indices are considered reduced, the more
memory an equivariant monoid power series will consume. The programmer is
required to provide a function that associates to each index a reduced index in
the same orbit.

Recall that the transition from F to FG is performed automatically. This
results in the following restriction on reduced indices s: For every λ ∈ Ob(Λ)
with s ∈ F (λ) we require s ∈ FG(λ). In other words, the G-symmetrization
FG(λ) of F (λ) must contain all reduced indices contained in F (λ).

11

4.3. Filters and precisions of monoid power series

The epimorphisms ελ attached to F are implemented using the notion of
�lters. Within the framework, λ ∈ Ob(Λ) corresponds to a �lter fλ ⊆ S. By
de�nition, s ∈ fλ if and all if s ∉ F (λ). We agree on this to conform to the
user's intuition and well established conventions in Sage.

An element a ∈ A⟦F ⟧G that is approximated by ελ(a) ∈ FQuot(A)(λ) is
said to have precision λ or fλ. Such an equivariant monoid power series will
be stored by saving the set {(s, as)} where s runs through the set of reduced
indices contained in fλ.

In addition to �lters fλ, that stem from G-co�nite sets F (λ), there are
also �lters implemented that are the union of in�nitely many distinct G-orbits.
Obviously, the computer cannot store in�nitely many coe�cients. Instead, an
element of A⟦F ⟧G with such a precision f attached to is understood to have
almost only vanishing coe�cients for indices in f . Every implementation must
provide a �lter fS = S, that is used to store elements of A.

4.4. Types of modular forms

In Section 3 we have discussed rings of Fourier expansions and rings that
wrap them, that we called rings of graded expansions. The relation between
both is encoded in types of modular forms:

types of modular forms

³¹¹¹·¹¹µ
equivariant monoid power series

conversion⇠⇢ graded expansions .

The programmer must provide types of modular forms, that the framework
will use to automatically initialize all other classes. We content ourselves with
giving a list of supported features:

� Generators with Fourier expansion and weight,

� relation between generators,

� transparent and algebraically correct base changes,

� attached Hecke operators and

� associated notions of vector-valued and scalar-valued modular forms.

For a detailed and guiding documentation, the reader is referred to the �le
howtoimplementamodularform \example_type.py.

5. Usage

In this section, we illustrate how to use the framework that we have described
in the preceding section. It is based on an implementation of Siegel modular
forms. This implementation was initiated by N. Ryan and N. Skoruppa and

12

later continued by a larger group, of which the author is member [26]. It was
then ported to this framework by the author, resulting in higher performance
and greater �exibility. Whenever we refer to �this implementation� we mean the
implementation [23], that is available on the author homepage.

To make the reader familiar with the basic commands and ideas of the im-
plementation we choose a twofold approach. Section 5.1 and 5.2 contain two
examples, that illustrate how quick and easy calculations can be using the im-
plementation. In Section 5.3 and 5.4 we give more systematic and more detailed
instructions for the user.

Notice that neither of the examples in the �rst two sections is new. We
have chosen them, because they do not require deep knowledge about Siegel
modular forms and because they can be run on every laptop. The code for
all examples presented in this section, with many comments included, can be
found in the folder howtoimplementamodularform. The reader is encouraged
to carefully inspect the code and to get familiar with basic operations of the
implementation and, if necessary, of Sage by performing similar calculations.
All code was written assuming that the framework has been installed according
to the instructions in README.

5.1. Siegel modular forms and Hecke actions

We will demonstrate that the space of weight 50 Siegel modular forms of
degree 2 decomposes into 4 irreducible, simple Hecke modules over Q. This
kind of computation was �rst done in [31] almost 20 years ago. But it has not
been pursued since. Only recently, the author studied the rational Hecke action
on spaces of Siegel modular forms up to weight 150 using this implementation
(see [24]).

Comments, that are not given in the following listing, can be found in the
sage-�les.

from paramodularforms import *

SR = SiegelModularFormsG2 (QQ,
SiegelModularFormG2_Classical_Gamma () , 400)

sm = SR. graded_submodule (50)
sm . _check_precis ion () ## Result : True
sm . rank () ## Result : 31

hecke_hom = sm . hecke_homomorphism (2)
minpol = hecke_hom . minpoly ()
minpol_fac = minpol . f a c t o r ()
[(p . degree () , e) f o r (p , e) in minpol_fac]
Result : [(1 , 1) , (3 , 1) , (7 , 1) , (20 , 1)]

Since the degrees of all Hecke components with respect to 2 sum up to the rank
of the module 1 + 3 + 7 + 20 = 31, the claim is proved.

Let us say a few words about the code. First of all, we need to import the
Python module that provides the implementation of Siegel modular forms. It is

13

called paramodularforms, since it also contains an implementation of paramod-
ular forms, that Siegel modular forms form a special case of.

Notice that in this implementation the symmetric matrices s = (a b /2
b /2 c)

that we used in Example 3.4 correspond to triples (a, b, c).
The precision of a Fourier expansion for Siegel modular forms of degree 2 is

expressed in terms of discriminant �lters by default. That is, a positive de�nite
index (a, b, c) is contained in a �lter with index D if and only if 4ac − b2 <D.

To compute the matrix of the Hecke operator T (2) with respect to a �xed
basis of Siegel modular forms it is applied to the Fourier expansions of these
forms. Then the framework will try to express the resulting Fourier expansions
uniquely in terms of the Fourier expansions of the basis. Care must be taken
of the precision. Applying the Hecke operator T (n) to a Siegel modular form
of degree 2 will reduce its precision by a factor n−2. Consequently, although all
Siegel modular forms of weight 50 are uniquely determined by their expansion
with precision 100, we initialize the ring with precision 400.

5.2. An extremal lattice and the attached Siegel theta series

We compute the Fourier expansion of the Siegel modular theta series at-
tached to the extremal, unimodular lattice of dimension 72 that was constructed
in [19]. In particular, we check the number of minimal vector in this lattice.
More precisely, we check, assuming that there is an even, unimodular lattice L
of dimension 72, that the minimal length of L is 8 and the number of minimal
vectors in L is 6218175600. Both claims have been proved recently in [19].

from paramodularforms import *

SR = SiegelModularFormsG2 (QQ,
SiegelModularFormG2_Classical_Gamma () , 100)

sm = SR. graded_submodule (36)
sm . _check_precis ion () # Result : True
sm . rank () # Result : 17

f e_ ind i c e s = f i l t e r (lambda (a , b , c) : a < 4 and c < 4 ,
SR. four i e r_expans ion_prec i s i on ())

f e_ ind i c e s . remove ((0 , 0 , 0))
f e_bas i s = [b . four i e r_expans ion () f o r b in sm . ba s i s ()]
r e l a t i o n s = matrix (QQ, [[b [i] f o r i in f e_ ind i c e s]

f o r b in f e_bas i s])
ker = r e l a t i o n s . l e f t_ke rn e l ()
ker . rank () # Result : 1
extremal_form = SR(sum([b * c

f o r (b , c) in z ip (sm . ba s i s () , ker . b a s i s () [0])]))
extremal_form = extremal_form \

* extremal_form . four i e r_expans ion () [(0 , 0 , 0)]** −1

extremal_count = \

14

sum(extremal_form . four i e r_expans ion () [(4 , b , 4)]
f o r b in range (−8 , 9))

s q r t (extremal_count) # Result : 6218175600

This proves the claim, since all pairs (v1, v2) of minimal vectors in L result in
a Fourier index [4, b,4] for some b. We remark that the interested reader may
check whether the Fourier coe�cients of extremal_form are indeed integral and
positive.

All comments on this piece of code, that are quite technical, can be found
within the code.

5.3. A brief tour of Fourier expansions

5.3.1. Precisions and basic arithmetic

This section contains a description of the most basic methods of (Fourier)
expansions provided by the framework. To keep everything as simple as possible
we use power series, that we have described in Example 3.3. In particular, we will
be concerned with nonequivariant monoid power series. Notice that all methods
that we introduce are also provided for equivariant monoid power series.

We start with importing the power series module. Again we assume that
the framework has been installed according to the instructions in README.

sage : from a l g eb r a i c p owe r s e r i e s import *

With this module imported we can create a ring of power series and de�ne
some elements:

sage : R = PowerSeriesRing_mult (ZZ , 3)
sage : x , y , z = R. gens ()
sage : f = x + y + z
sage : g = x + y
sage : h = x**10

The coe�cients of monoid power are usually not printed, since in most situ-
ations there are too many. Normally, the user wants to access single coe�cients.
This can be done using the usual bracket notation:

sage : g [(0 , 1 , 0)] # c o e f f i c i e n t o f y
1
sage : g [(0 , 1 , 2)] # c o e f f i c i e n t o f y z^2
0

A dictionary with all nonvanishing coe�cients (and possibly more) can be
obtained as follows:

sage : g . c o e f f i c i e n t s ()
{(1 , 0 , 0) : 1 , (0 , 1 , 0) : 1}
sage : h . c o e f f i c i e n t s ()
{(10 , 0 , 0) : 1}

Arithmetic operations are performed as usual.

15

sage : (h + g) [(1 0 , 0 , 0)]
1
sage : (h * h) . c o e f f i c i e n t s ()
{(20 , 0 , 0) : 1}

Note that f, g and h have in�nite precision. This makes them no di�erent
from multivariate polynomials, that are already provided in Sage with vastly
faster multiplication. The next step is hence to discuss �lters. Filters for mul-
tivariate power series are implemented in the class NNnFilter. The user may
assign them to h as follows:

sage : f . p r e c i s i o n ()
F i l t e r e d NN^3 up to (+ In f i n i t y , +I n f i n i t y , +I n f i n i t y)
sage : ht = h . t runcate (NNnFilter ((3 , 3 , 3)))
sage : ht . p r e c i s i o n ()
F i l t e r e d NN^3 up to (3 , 3 , 3)

The �ler (3,3,3), that we have attached to ht, means that only monomials
xexyeyzez with ex, ey, ez < 3 have known coe�cients. Consequently, it is not
possible to query the following coe�cient:

sage : ht [(1 0 , 0 , 0)]
ValueError : (10 , 0 , 0) out o f bound

5.3.2. Modules spanned by expansions

The arithmetic of monoid power series is rather restricted, since they are
quite general objects, but linear operations are fully supported. Modules spanned
by expansions are the most important tool when computing with modular forms.
A special implementation may be initialized as follows:

sage : from fourier_expansion_framework import *

sage : em = ExpansionModule ([f , g])
sage : em . dimension ()
2

Expansion modules have an abstract basis attached to, but their purpose is to
provide access to the underlying expansions. The next statement checks whether
the basis's expansions are linearly dependent and whether these expansions
truncated to xyz, which corresponds to applying the �lter (1,1,1), are linearly
independent.

sage : em . _check_precis ion ()
True
sage : em . _check_precis ion (NNnFilter ((1 , 1 , 1)))
Fa l se

This is the case for the �rst example, because f and g, that are linearly indepen-
dent, have in�nite precision. But truncating them to xyz yields zero for both
of them, resulting in a linear dependence. We remark that if the basis elements

16

have di�erent precisions attached to, the minimum of all of them is used when
comparing the basis elements. Recall from Section 4 that Λ is a net. Hence,
such a �lter always exists.

To understand what a basis or rather abstract basis is to an expansion module
we have a look at the following lines of code.

sage : em = ExpansionModule ([f , f , g])
sage : em . dimension ()
3
sage : em . _check_precis ion ()
Fa l se

The �rst and second copy of f are considered di�erent elements of the (abstract)
basis. But they have the same expansions attached to, and hence they are
linearly depended even though they have in�nite precision. Nevertheless, by
choosing an appropriate set of elements, we can span a submodule every element
of which has an expansion attached to that is a unique linear combination of
the basis's expansions. To obtain a minimal subset of generators that spans the
space of attached expansions the user may call the following method:

sage : em . pivot_elements ()
[(1 , 0 , 0) , (0 , 0 , 1)]

The main application of this method is to analyze spaces of Fourier expansions
of modular forms that have insu�cient precision.

It is often useful to consider an expansion module as a homomorphism from
the free module over the abstract basis to another free module over the base
ring. This homomorphism can be obtained as follows:

sage : em = ExpansionModule ([f , g])
sage : em . fourier_expansion_homomorphism ()
Free module morphism de f ined by the matrix
(not p r i n t i n g 2 x 8 matrix)
Domain : Module o f Four i e r expans ions in . . .
Codomain : Ambient f r e e module o f rank 8 over . . .

This homomorphism � call it φ � provides us with a possibility to describe the
pivot elements in more detail. They form a set of representatives of a basis of
the coimage of φ. To get hands on it, we compute the kernel of φ:

sage : em . four i e r_expans ion_kerne l ()
Free module o f degree 2 and rank 0 over In t eg e r Ring
. . .
sage : em = ExpansionModule ([f , f , g])
sage : em . four i e r_expans ion_kerne l ()
Free module o f degree 3 and rank 1 over In t eg e r Ring
Echelon ba s i s matrix :
[1 −1 0]

17

5.3.3. Converting abstract elements and expansions back and forth

It is easy to obtain the expansion attached to any element of an expansion
module:

sage : em . ba s i s () [0] . f our i e r_expans ion ()
Monoid power s e r i e s in Ring o f monoid power s e r i e s . . .

It is more involved to express an expansion in terms of the basis elements.
Recall that f occurs twice in the basis of em.

sage : em . coo rd ina t e s (2 * g + f)
ValueError : I n s u f f i c i e n t p r e c i s i o n o f submodule . . .
sage : em . coo rd ina t e s (2 * g + f , force_ambiguous = True)
[1 , 0 , 2]

The �rst try to obtain coordinates fails, since 2g + f cannot be expressed un-
ambiguously. The additional keyword in the second command instructs the
framework to ignore this issue.

Notice that the error raised by the framework indicates that the expansion
module does not have su�cient precision. The next example illustrates the case
when the module has su�cient precision, but the expansion that we intend to
convert does not.

sage : em = ExpansionModule ([f , g])
sage : em . coo rd ina t e s (f . t runcate (NNnFilter ((1 , 1 , 1))))
ValueError : No unambiguous coo rd ina t e s a v a i l a b l e

Every expansion module has a base ring attached to it. In general, it will be
the minimal ring that contains all base rings of the basis's expansions. The base
ring being �xed can result in issues, if a potential result is only contained in a
base extension. We give two examples of this problem. The �rst requires a base
change from Z to Q, and the second requires a base change to the cyclotomic
�eld Q(ζ3).

sage : em . base_ring ()
In t eg e r Ring
sage : em . coo rd ina t e s (g / 2 + f)
Ar i thmet icError : No coo rd ina t e s . . .
sage : em . coo rd ina t e s (g / 2 + f , in_base_ring = False)
(1 , 1/2)
sage : K.<rho> = CyclotomicFie ld (3)
sage : em . coo rd ina t e s (g * rho , in_base_ring = False)
(0 , rho)

5.4. A brief tour of rings of modular forms

In this section we revisit the ring of Siegel modular forms, that we have
used in Section 5.1 and Section 5.2. The aim of this section is to give a more
complete overview of the provided features. We start with initializing the ring
of modular forms as before.

18

The function ModularFormsAmbient may be used to initialize any kind of
module or ring of modular forms. The syntax is as follows: The �rst argument
is the base ring and the second argument is a type of modular forms, that we
have described in Section 4.4. The third argument is a �lter or any value that
can be converted to a �lter by the type. Usually, this will result in a canonical
�lter. In our case the third argument is the integer 64, resulting in a �lter that
contains all quadratic forms with negative discriminant less than 64.

sage : from fourier_expansion_framework import *

sage : from paramodularforms import *

sage : SR = ModularFormsAmbient (QQ,
SiegelModularFormG2_Classical_Gamma () , 64)

The generators of Siegel modular forms were given by Igusa [13]. They are
called I4, I6, I10 and I12. The Fourier expansion of the generators will be
equivariant power series. Recall from Section 5.2 that the indices are triples

(a, b, c), that correspond to symmetric matrices (a b /2
b /2 c).

sage : f e = SR . 3 . four i e r_expans ion ()
sage : f e [(1 , 0 , 3)]
736

The precision of the Fourier expansion of generic elements is 64, as we expect.
The precision of constants is nonetheless in�nite:

sage : f e . p r e c i s i o n ()
Discr iminant f i l t e r (64)
sage : f e . parent () . ze ro () . p r e c i s i o n ()
Discr iminant f i l t e r (+ I n f i n i t y)

We calculate the eigenforms with respect to the Hecke operator T (2). Notice
that for each Galois orbit of eigenforms over the base ring Q the framework
returns exactly one representative.

sage : sm = SR. graded_submodule (26)
sage : h e f s = sm . hecke_eigenforms (2)
sage : l en (he f s)
5
sage : map(lambda f : f . is_cusp_form () , h e f s)
[False , True , True , False , True]

Next, we consider the Maaÿ spezialschar in sm. Its rank is 4, and exactly
one basis element is not a cusp form.

sage : mm = sm . maass_space ()
sage : mm. rank ()
4
sage : mm. ambient_module () == sm
True
sage : mm.0

19

(1/1728 , 0 , 33125/84873096 , 0 , 0 , . . .
sage : SR(mm. 0) . is_maass_form ()
True
sage : SR(mm. 0) . is_cusp_form ()
Fa l se
sage : SR(mm. 1) . is_cusp_form ()
True
sage : (SR.1*SR. 2^2) . is_maass_form ()
Fa l se

The framework allows for adding forms with distinct weights. The result will
not have any invariance with respect to the modular group, but we are able to
extract the homogeneous components. Notice, that only homogeneous element
can be Maaÿ forms. In particular, sums of Maaÿ forms with distinct weights
are not considered Maaÿ forms.

sage : a = SR.0 + SR.1
sage : a . homogeneous_components ()
{4 : I4 , 6 : I6 }
sage : a . is_maass_form ()
Fa l se

6. Available packages

This section contains a brief list of packages that come with the framework.
We do not give many details, but rather restrict to outlining features that are
currently implemented. The usage is the same as for the Siegel modular forms
implementation, that we used in the preceding section. For details we refer the
interested reader to the source code and its documentation.

A) Scalar-valued Siegel modular forms Included in the Python module
paramodularforms

The implementation of Siegel modular forms currently provides generators
for the ring of even weight forms for the full modular group. The Maaÿ
spezialschar is implemented. The user can construct arbitrary Maaÿ lifts
from a pair of elliptic modular forms in Mk × Sk+2. In contrast, it is not
possible to use Jacobi forms as input. The user can test whether forms are
cuspidal or not. The multiplication of forms is implemented in Cython and
is thus fast.

There is also a special method for spanning spaces of �xed weight by prod-
ucts of at most two elements of the Maaÿ spezialschar. Moreover, all Hecke
operators are available.

B) Vector-valued Siegel modular forms Included in the Python module
paramodularforms

20

Satoh brackets (see [28]) are available for arbitrary scalar-valued Siegel mod-
ular forms. Generators for the space of vector-valued weight 2 forms as a
module over the ring of scalar-valued forms are provided.

C) Paramodular forms Included in the Python module paramodularforms

All spaces of paramodular forms of prime level which are spanned by prod-
ucts of Gritsenko lifts for the full paramodular group and by symmetriza-
tions of Siegel modular forms can be obtained. Notice that there are spaces
which are not spanned by such forms (see [21]), but the �rst known exam-
ples appear for large p. The user can construct Gritsenko lifts using Jacobi
forms. Also symmetrizations of Siegel modular forms for the full modular
group are available.

Hecke operators are available over all good primes. Moreover, Schmidt's
operator T5 and the Atkin-Lehner involution (see [29]) can be computed
numerically.

D) Hermitian modular forms Included in the Python module hermitianmod-
ularforms

The ring of symmetric modular forms of even weight for the full modular
group over Q(

√
−3) is implemented using generators that can be found in

[8]. This implementation was a project joint with Dominic Gehre. The
generators are computed using Borcherd's additive lift (see [3]). Comput-
ing their Fourier expansion involves the computation of elliptic Eisenstein
series for Γ1(36). This can result in performance issues depending on Sage's
performance for elliptic modular forms.

The user can compute the additive lift over the Hermitian modular group
Γ(2)(OQ(√−3)) for arbitrary input. There is ongoing work to implement a
new and fast algorithm for computing the multiplicative lift.

E) Quaternion modular forms Currently not included

There is an ongoing student project supervised by the author that aims at
implementing quaternion modular forms over the Hurwitz order (see [16]).

F) Jacobi forms Included in the Python module jacobiforms

Jacobi forms of even weight and prime index for the full Jacobi modular
group are implemented. They mostly serve as input for Gritsenko lifts,
and thus have very limited functionality. The theta decomposition and
the Taylor expansion are used to compute the coe�cients. This allows for
computing expansions up to very high precisions. This results in a drawback
of performance when computing Jacobi forms of moderate or high index.

G) Multivariate algebraic power series Included in the Python module al-
gebraicpowerseries

Algebraic power series are implemented with naive multiplication for the
purpose of demonstration.

21

7. Perspectives and related open problems

7.1. Tasks to be taken to improve the framework

In Section 6, we have seen that there is already a multitude of modular
forms implemented using this framework. Needless to say that there remains
a lot of work to be done. In particular, Hecke operators are implemented only
for scalar-valued paramodular forms. This, by far, does not correspond to their
signi�cance.

Certainly, most work can be done by providing further implementations.
The implementation of Siegel modular forms demonstrates to what great extent
a generic implementation can be useful. In Section 6, we have seen for which
types of modular forms initial work has been done. Each of them, though,
suggests various improvements, ranging from congruence subgroups, that may
be implemented, to Hecke operators and the attached L-series, that have only
been considered in view cases.

The framework in general, we conclude, is in good shape, and it is ready for
future extensions. It is unsatisfactory, however, that only naive multiplication is
currently used throughout the framework. A Karatsuba type multiplication for
equivariant monoid power series is not in sight. Research in this direction will
focus on speci�c monoids that we understand particularly well. Siegel modular
forms of degree 2 can pro�t from this, and the framework is ready to support
new multiplication algorithms as soon as they are available.

7.2. Potential research applications based on the framework

There are many applications of elliptic modular forms relating their coe�-
cients to interesting quantities, examples of which are Hurwitz class numbers
(see [6]), partitions (see [2]) and traces of singular moduli (see [38]). In contrast,
relatively few applications of coe�cients of higher degree modular forms have
been found until today. In this section we suggest three applications, that can
be treated by means of this framework.

A) Fix N ∈ N. Denote the space of Gritsenko lifts to weight k and level N

paramodular forms by G
[N]
k . We write Symk for the symmetrization of

Siegel modular forms of weight k for the full Siegel modular group to the
full paramodular group of level N . The space of weight k and level N

paramodular forms is denoted by M[N]
k . In [24] the author proved that for

k ≤ 172

M[1]
k = ⊕

k′≤k
G

[1]
k′ G

[1]
k−k′ .

He also conjectured that the equality above holds for all k. A similar result
possibly holds for paramodular forms, if k is su�ciently large:

M[N]
k = ⊕

k′≤k
G

[N]
k′ G

[N]
k−k′ ⊕ ⊕

N ′∣N
SymN

k M[N ′]
k .

22

This has only been checked in few cases. We remark that for su�ciently
high level N there are weight 2 forms that are not Gritsenko lifts (see [21]).
Consequently, the conjecture cannot possibly hold for all k. Gritsenko sug-
gested that lifts of weight 1 Jacobi forms with character might close this
gap, but no e�ort has been made to study these lifts in the context of this
conjecture.

There is a deep motivation behind this question: It is a classical theorem
that products of at most two Eisenstein series span the space of elliptic
modular forms. Even the (linear) relations can be described. The proof
is outlined in [15], and it is based on periods. Presumably, a proof of the
conjecture above will lead to new insight into the theory of periods of special
Siegel modular forms.

B) The vanishing cone for paramodular forms was investigated in [21, Sec 5].
It is directly related to pivot sets, that have recently been investigated by
the author in [24, Sec 4]. One is interested in certain maps φ from the set
of Fourier indices of Siegel modular forms, that is, even quadratic forms, to
R+. Fix a weight k form f . The support of f , that is, the set of indices with
nonvanishing coe�cients, is denoted by supp(f). We aim at proving Sturm
bound like statements

φ(supp(f)) ⊆ [c,∞)⇒ f = 0

with optimal c = canalk. In [24] the author conjectured that for the choice

φ(t) =
√

∣disc t∣ the constant c given in [21] can be improved asymptotically.
Evidence was provided based on computations, that were done with this
framework. Analogously, considerations for φ the dyadic trace or the trace
can be done. Investigating the vanishing cone itself would be of greatest use
for future applications.

A related, more re�ned question focuses on arithmetic vanishing. For an
integral Siegel modular form we denote by suppp(f) the set of indices with
coe�cients not divisible by a prime p. We aim at �nding minimal c = carithk
such that

∀p prime ∶ (φ(suppp(f)) ⊆ [c,∞)⇒ f ≡ 0 (modp)).

This kind of statement can be considered an arithmetic analog of the ana-
lytic statements above. The author proved that for all weights k ≤ 80 the
arithmetic and analytic vanishing bounds carith and canal for φ(t) =

√
∣disc t∣

coincide. This answers a question raised by Poor and Yuen in private cor-
respondence. Notice that for elliptic modular forms for the full modular
group the Victor-Miller basis implies the equality of arithmetic and analytic
vanishing bounds.

Until now considerations focused on φ(t) =
√

∣disc t∣, although the question
can be formulated for a whole class of functions φ. In particular, it is not
clear whether arithmetic and analytic vanishing bounds will di�er for any
φ.

23

C) Expressing particular modular forms in terms of theta series or Maaÿ lifts
is an interesting challenge. Progress in this area can reveal deep properties
of modular forms such as positivity of Fourier coe�cients.

Let ∆30 be the Siegel modular form of weight 30 for the full Siegel modular
group with character, that is unique up to scalar multiplicities. The weight
30 Hermitian modular form φ30 for the full Hermitian modular group over
Q(

√
−1) is also unique up to scalar multiplicities (see [8]). In [11] Gehre and

Krieg gave the following result: Let Θ1, . . . ,Θ6 be the six quaternion theta
series de�ned in [9]. We denote the restriction to the Siegel upper half space
and the Hermitian upper half space by ⋅∣HS

and ⋅∣HH
. With this notation we

have

∆30 = F ∣HS
and φ30 = F ∣HH

,

where

F ∶= (Θ5 +Θ6)(Θ2
2 −Θ2

3)(Θ2
2 −Θ2

4)(Θ2
3 −Θ2

4)

∏
(ε1,...,ε4)∈{±1}4
ε1,⋯,ε4=−1

(ε1Θ1 + ε2Θ2 + ε3Θ3 + ε4Θ4 +Θ5 +Θ6)

These results were proved in a purely computational way, and it is likely
that further useful results can be obtained using the author's framework.

References

[1] Alfes, C., Jameson, M., Oliver, R. L., 2011. Proof of the Andrews-Alder
Conjecture. Proc. of the Amer. Math. Soc. 139 (1), 63�78.

[2] Andrews, G. E., 1976. The theory of partitions. Addison-Wesley Publish-
ing Co., Reading, Mass.-London-Amsterdam, encyclopedia of Mathematics
and its Applications, Vol. 2.

[3] Borcherds, R. E., 1998. Automorphic forms with singularities on Grass-
mannians. Invent. Math. 132 (3), 491�562.

[4] Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system.
I. The user language. J. Symbolic Comput. 24 (3-4), 235�265.

[5] Bringmann, K., Richter, O., Raum, M., 2011. Kohnen's limit process. In
preparation.

[6] Bruinier, J. H., van der Geer, G., Harder, G., Zagier, D., 2008. The 1-2-3
of modular forms. Universitext. Springer-Verlag, Berlin.

[7] Conley, C., Raum, M., 2010. Harmonic maaÿ-jacobi forms of degree 1 with
higher rank indices. arXiv:1012.2897 [math.NT].

24

[8] Dern, T., Krieg, A., 2003. Graded rings of Hermitian modular forms of
degree 2. Manuscripta Math. 110 (2), 251�272.

[9] Freitag, E., Hermann, C. F., 2000. Some modular varieties of low dimension.
Adv. Math. 152 (2), 203�287.

[10] Gehre, D., Kreuzer, J., Raum, M., 2011. Hermitian borcherds products. In
preparation.

[11] Gehre, D., Krieg, A., 2010. Quaternionic theta constants. Arch. Math. 94,
59�66.

[12] Hart, B., et al., 2010. Fast Library for Number Theory 1.5.2.
http://www.flintlib.org.

[13] Igusa, J.-i., 1962. On Siegel modular forms of genus two. Amer. J. Math.
84, 175�200.

[14] Kohnen, W., Kuÿ, M., 2002. Some numerical computations concerning
spinor zeta functions in genus 2 at the central point. Math. Comp. 71 (240),
1597�1607.

[15] Kohnen, W., Zagier, D., 1984. Modular forms with rational periods. In:
Modular forms (Durham, 1983). Ellis Horwood Ser. Math. Appl.: Statist.
Oper. Res. Horwood, Chichester, pp. 197�249.

[16] Krieg, A., 1985. Modular forms on half-spaces of quaternions. Vol. 1143 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin.

[17] Krieg, A., Raum, M., 2009. The functional equation for the twisted spinor-
l-function of genus 2. arXiv:0907.2767 [math.NT].

[18] Mac Lane, S., 1998. Categories for the working mathematician, 2nd Edition.
Vol. 5 of Graduate Texts in Mathematics. Springer-Verlag, New York.

[19] Nebe, G., 2010. An even unimodular 72-dimensional lattice of minimum 8.
arXiv:1008.2862v3 [math.NT].

[20] Poor, C., Yuen, D. S., 2007. Computations of spaces of Siegel modular cusp
forms. J. Math. Soc. Japan 59 (1), 185�222.

[21] Poor, C., Yuen, D. S., 2009. Paramodular cups forms. arXiv:0912.0049v1
[math.NT].

[22] Raum, M., 2009. Elementary divisor theory for the modular group over
quadratic �eld extensions and quaternion algebras. Submitted for publica-
tion.

[23] Raum, M., 2010. Modular forms framework,
http://people.mpim-bonn.mpg.de/mraum/en/downloads.xml.

25

[24] Raum, M., 2011. E�ciently generated spaces of classical Siegel modular
forms and the Böcherer conjecture. to appear in J. Aust. Math. Soc.

[25] Raum, M., 2011. Hecke algebras related to the unimodular and modular
groups over quadratic �eld extensions and quaternion algebras. Proc. Amer.
Math. Soc. 139, 1321�1331.

[26] Raum, M., Ryan, N. C., Skoruppa, N.-P., Tornaría, G., 2009. Siegel mod-
ular forms package, http://hg.countnumber.de.

[27] Raum, M., Ryan, N. C., Skoruppa, N.-P., Tornaría, G., 2011. Theoretical
and Algorithmic Aspects of an Implementation of Siegel Modular Forms.
In preparation.

[28] Satoh, T., 1986. On certain vector valued Siegel modular forms of degree
two. Math. Ann. 274 (2), 335�352.

[29] Schmidt, R., 2005. Iwahori-spherical representations of GSp(4) and Siegel
modular forms of degree 2 with square-free level. J. Math. Soc. Japan 57 (1),
259�293.

[30] Shoup, V., et al., 2010. Number Theory Library 5.5.2.
http://www.shoup.net/ntl/.

[31] Skoruppa, N.-P., 1992. Computations of Siegel modular forms of genus two.
Math. Comp. 58 (197), 381�398.

[32] Springer, T. A., 1977. Invariant theory. Lecture Notes in Mathematics, vol.
585. Springer-Verlag, Berlin.

[33] Stein, W. A., et al., 2011. Purple sage. ttp://purple.sagemath.org/.

[34] Stein, W. A., et al., 2011. Sage Mathematics Software (Version 4.6.1). The
Sage Development Team, http://www.sagemath.org.

[35] Stein, W. A., et al., 2011. Sage Tutorial.
http://www.sagemath.org/doc/tutorial/.

[36] van Rossum, G., 1995. Python tutorial. Tech. Rep. CS-R9526, Centrum
voor Wiskunde en Informatica, Amsterdam.

[37] van Rossum, G., et al., 2011. Python documentation.
http://docs.python.org/.

[38] Zagier, D., 2002. Traces of singular moduli. In: Motives, polylogarithms
and Hodge theory, Part I (Irvine, CA, 1998). Vol. 3 of Int. Press Lect. Ser.
Int. Press, Somerville, MA, pp. 211�244.

[39] Zimmermann, P., et al., 2010. Calcul mathématique avec Sage.
http://sagebook.gforge.inria.fr/.

26

