40,989 research outputs found

    Cascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS

    Full text link
    There are increasing real-time live applications in virtual reality, where it plays an important role in capturing and retargetting 3D human pose. But it is still challenging to estimate accurate 3D pose from consumer imaging devices such as depth camera. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capture database. By incorporating hierarchical kinematics model of human pose into the learning procedure, we can directly estimate accurate 3D joint angles instead of joint positions. The biggest advantage of this model is that the bone length can be preserved during the whole 3D pose estimation procedure, which leads to more effective features and higher pose estimation accuracy. Our method can be used as an initialization procedure when combining with tracking methods. We demonstrate the power of our method on a wide range of synthesized human motion data from CMU mocap database, Human3.6M dataset and real human movements data captured in real time. In our comparison against previous 3D pose estimation methods and commercial system such as Kinect 2017, we achieve the state-of-the-art accuracy

    Motion analysis report

    Get PDF
    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations

    Gait Recognition By Walking and Running: A Model-Based Approach

    No full text
    Gait is an emerging biometric for which some techniques, mainly holistic, have been developed to recognise people by their walking patterns. However, the possibility of recognising people by the way they run remains largely unexplored. The new analytical model presented in this paper is based on the biomechanics of walking and running, and will serve as the foundation of an automatic person recognition system that is invariant to these distinct gaits. A bilateral and dynamically coupled oscillator is the key concept underlying this work. Analysis shows that this new model can be used to automatically describe walking and running subjects without parameter selection. Temporal template matching that takes into account the whole sequence of a gait cycle is applied to extract the angles of thigh and lower leg rotation. The phase-weighted magnitudes of the lower order Fourier components of these rotations form the gait signature. Classification of walking and running subjects is performed using the k-nearest-neighbour classifier. Recognition rates are similar to that achieved by other techniques with a similarly sized database. Future work will investigate feature set selection to improve the recognition rate and will determine the invariance attributes, for inter- and intra- class, of both walking and running

    Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters?

    Get PDF
    The extinct \u27sthenurine\u27 family of giant Kangaroos, up to three times larger than living Kangaroos, were able to walk on two feet, according to new research. Abstract Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the “normal” allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion

    Gait Analysis of Horses for Lameness Detection with Radar Sensors

    Get PDF
    This paper presents the preliminary investigation of the use of radar signatures to detect and assess lameness of horses and its severity. Radar sensors in this context can provide attractive contactless sensing capabilities, as a complementary or alternative technology to the current techniques for lameness assessment using video-graphics and inertial sensors attached to the horses' body. The paper presents several examples of experimental data collected at the Weipers Centre Equine Hospital at the University of Glasgow, showing the micro- Doppler signatures of horses and preliminary results of their analysis

    Transverse rotation and longitudinal translation during prosthetic gait - a literature review

    Get PDF
    Improved technology allows for more accurate gait analysis to increase awareness of nonoptimized prosthetic gait patterns and for the manufacture of sophisticated prosthetic components to improve nonoptimized gait patterns. However, prescriptions are often based on intuition rather than rigorous research findings for evidence-based practice. The number of studies found in the literature that are based on prosthetic research regarding transverse rotation and longitudinal translation is small when compared to topics regarding other types of movements. Some design criteria for prosthetic components described in those studies that permit transverse rotation and longitudinal translation can be found in current designs. However, little research has been conducted to establish their effectiveness on the gait parameters and residual limb. This literature review is an investigation into these motions between the socket and the prosthetic foot, with particular reference to gait characteristics and prosthetic design criteria
    corecore