42 research outputs found

    Lightweight AEAD and Hashing using the Sparkle Permutation Family

    Get PDF
    We introduce the Sparkle family of permutations operating on 256, 384 and 512 bits. These are combined with the Beetle mode to construct a family of authenticated ciphers, Schwaemm, with security levels ranging from 120 to 250 bits. We also use them to build new sponge-based hash functions, Esch256 and Esch384. Our permutations are among those with the lowest footprint in software, without sacrificing throughput. These properties are allowed by our use of an ARX component (the Alzette S-box) as well as a carefully chosen number of rounds. The corresponding analysis is enabled by the long trail strategy which gives us the tools we need to efficiently bound the probability of all the differential and linear trails for an arbitrary number of rounds. We also present a new application of this approach where the only trails considered are those mapping the rate to the outer part of the internal state, such trails being the only relevant trails for instance in a differential collision attack. To further decrease the number of rounds without compromising security, we modify the message injection in the classical sponge construction to break the alignment between the rate and our S-box layer

    Review of the NIST Light-weight Cryptography Finalists

    Full text link
    Since 2016, NIST has been assessing lightweight encryption methods, and, in 2022, NIST published the final 10: ASCON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak. At the time that the article was written, NISC announced ASCOn as the chosen method that will be published as NIST'S lightweight cryptography standard later in 2023. In this article, we provide a comparison between these methods in terms of energy efficiency, time for encryption, and time for hashing.Comment: 6 page

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    Residual Vulnerabilities to Power side channel attacks of lightweight ciphers cryptography competition Finalists

    Get PDF
    The protection of communications between Internet of Things (IoT) devices is of great concern because the information exchanged contains vital sensitive data. Malicious agents seek to exploit those data to extract secret information about the owners or the system. Power side channel attacks are of great concern on these devices because their power consumption unintentionally leaks information correlatable to the device\u27s secret data. Several studies have demonstrated the effectiveness of authenticated encryption with advanced data, in protecting communications with these devices. A comprehensive evaluation of the seven (out of 10) algorithm finalists of the National Institute of Standards and Technology (NIST) IoT lightweight cipher competition that do not integrate built‐in countermeasures is proposed. The study shows that, nonetheless, they still present some residual vulnerabilities to power side channel attacks (SCA). For five ciphers, an attack methodology as well as the leakage function needed to perform correlation power analysis (CPA) is proposed. The authors assert that Ascon, Sparkle, and PHOTON‐Beetle security vulnerability can generally be assessed with the security assumptions “Chosen ciphertext attack and leakage in encryption only, with nonce‐misuse resilience adversary (CCAmL1)” and “Chosen ciphertext attack and leakage in encryption only with nonce‐respecting adversary (CCAL1)”, respectively. However, the security vulnerability of GIFT‐COFB, Grain, Romulus, and TinyJambu can be evaluated more straightforwardly with publicly available leakage models and solvers. They can also be assessed simply by increasing the number of traces collected to launch the attack

    Assembly or Optimized C for Lightweight Cryptography on RISC-V?

    Get PDF
    A major challenge when applying cryptography on constrained environments is the trade-off between performance and security. In this work, we analyzed different strategies for the optimization of several candidates of NIST\u27s lightweight cryptography standardization project on a RISC-V architecture. In particular, we studied the general impact of optimizing symmetric-key algorithms in assembly and in plain C. Furthermore, we present optimized implementations, achieving a speed-up of up to 81% over available implementations, and discuss general implementation strategies

    Lightweight Permutation-Based Cryptography for the Ultra-Low-Power Internet of Things

    Get PDF
    The U.S. National Institute of Standards and Technology is currently undertaking a process to evaluate and eventually standardize one or more "lightweight" algorithms for authenticated encryption and hashing that are suitable for resource-restricted devices. In addition to security, this process takes into account the efficiency of the candidate algorithms in various hardware environments (e.g. FPGAs, ASICs) and software platforms (e.g. 8, 16, 32-bit microcontrollers). However, while there exist numerous detailed benchmarking results for 8-bit AVR and 32-bit ARM/RISC-V/ESP32 microcontrollers, relatively little is known about the candidates' efficiency on 16-bit platforms. In order to fill this gap, we present a performance evaluation of the final-round candidates Ascon, Schwaemm, TinyJambu, and Xoodyak on the MSP430 series of ultra-low-power 16-bit microcontrollers from Texas Instruments. All four algorithms were explicitly designed to achieve high performance in software and have further in common that the underlying primitive is a permutation. We discuss how these permutations can be implemented efficiently in Assembly language and analyze how basic design decisions impact their execution time on the MSP430 architecture. Our results show that, overall, Schwaemm is the fastest algorithm across various lengths of data and associated data, respectively. Xoodyak has benefits when a large amount of associated data is to be authenticated, whereas TinyJambu is very efficient for the authentication of short messages

    Design, Cryptanalysis and Protection of Symmetric Encryption Algorithms

    Get PDF
    This thesis covers results from several areas related to symmetric cryptography, secure and efficient implementation and is divided into four main parts: In Part II, Benchmarking of AEAD, two articles will be presented, showing the results of the FELICS framework for Authenticated encryption algorithms, and multiarchitecture benchmarking of permutations used as construction block of AEAD algorithms. The Sparkle family of Hash and AEAD algorithms will be shown in Part III. Sparkle is currently a finalist of the NIST call for standardization of lightweight hash and AEAD algorithms. In Part IV, Cryptanalysis of ARX ciphers, it is discussed two cryptanalysis techniques based on differential trails, applied to ARX ciphers. The first technique, called Meet-in-the-Filter uses an offline trail record, combined with a fixed trail and a reverse differential search to propose long differential trails that are useful for key recovery. The second technique is an extension of ARX analyzing tools, that can automate the generation of truncated trails from existing non-truncated ones, and compute the exact probability of those truncated trails. In Part V, Masked AES for Microcontrollers, is shown a new method to efficiently compute a side-channel protected AES, based on the masking scheme described by Rivain and Prouff. This method introduces table and execution-order optimizations, as well as practical security proofs

    CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for Extendable and Deeply Embedded Processors

    Get PDF
    The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge devices. Introducing CrISA-X, a Cryptography Instruction Set Architecture extensions designed to improve cryptographic latency on extendable processors. CrISA-X, classified as Generic-Atomic, Block-Specific and Procedure-Specific, leverages RISC processor hardware and a base ISA to effectively execute LWC algorithms. Our study aims to evaluate the execution efficiency of new single-cycle instruction extensions and tightly coupled multicycle instructions on extendable modular RISC processors. CrISA-X provides enhanced speed of various algorithms simultaneously while optimizing ISA adaptability, a feat yet to be accomplished. The extension, diverse for several computation levels, is first specifically tailored for individual algorithms and sets of LWC algorithms, depending on performance, frequency, and area trade-offs. By diligently applying the Min-Max optimization technique, we have configured these extensions to achieve a delicate balance between performance, area code size, etc. Our study presents empirical evidence of the performance enhancement achieved on a real synthesis modular RISC processor. We offer a framework for creating optimized processor hardware and ISA extensions. The CrISA-X framework generally outperforms ISA extensions by delivering significant performance boosts between 3x to 17x while experiencing a relative area cost increase of +12% and +47% in LUTs, in respect to the instruction set category. Notably, as one important example, the utilization of the ASCON algorithm yields a 10x performance boost in contrast to the base ISA instruction implementatio

    An Evaluation of the Multi-Platform Efficiency of Lightweight Cryptographic Permutations

    Get PDF
    Permutation-based symmetric cryptography has become increasingly popular over the past ten years, especially in the lightweight domain. More than half of the 32 second-round candidates of NIST's lightweight cryptography standardization project are permutation-based designs or can be instantiated with a permutation. The performance of a permutation-based construction depends, among other aspects, on the rate (i.e. the number of bytes processed per call of the permutation function) and the execution time of the permutation. In this paper we analyze the execution time and code size of assembler implementations of the permutation of Ascon, Gimli, Schwaemm, and Xoodyak on an 8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. Our aim is to ascertain how well these four permutations perform on microcontrollers with very different architectural and micro-architectural characteristics such as the available register capacity or the latency of multi-bit shifts and rotations. We also determine the impact of flash wait states on the execution time of the permutations on Cortex-M3 development boards with 0, 2, and 4 wait states. Our results show that the throughput (in terms of permutation time divided by rate when the capacity is fixed to 256 bits) of the permutation of Ascon, Schwaemm, and Xoodyak is similar on ARM Cortex-M3 and lies in the range of 41.1 to 48.6 cycles per rate-byte. However, on an 8-bit AVR ATmega128, the permutation of Schwaemm outperforms its counterparts of Ascon and Xoodyak by a factor of 1.20 and 1.59, respectively

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023
    corecore