UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2022-082
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 24/06/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L'UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

by

Luan CARDOSO DOS SANTOS

Born on 19 January 1993 in Pompéia - Sdo Paulo, Brazil

DESIGN, CRYPTANALYSIS AND PROTECTION OF
SYMMETRIC ENCRYPTION ALGORITHMS

Dissertation defence committee

Dr Alex Biryukov, dissertation supervisor
Professor, Université du Luxembourg

Dr. Jean-Sébastien Coron, Chairman
Professor, Université du Luxembourg

Dr. Volker Mdller, Vice Chairman
Associate Professor, Université du Luxembourg

Dr. Diego Aranha
Associate Professor, Aarhus University, Denmark

Dr.techn. Maria Eichlsede
Associate Professor, Graz University of Technology, Austria



ii

“Life is a journey. Time is a River. The door is ajar.”

Jim Butcher



Abstract

This thesis covers results from several areas related to symmetric cryptography, secure
and efficient implementation and is divided into four main parts:

In Part II, Benchmarking of AEAD, two articles will be presented, showing the re-
sults of the FELICS framework for Authenticated encryption algorithms, and multi-
architecture benchmarking of permutations used as construction block of AEAD al-
gorithms.

The Sparkle family of Hash and AEAD algorithms will be shown in Part II1. Sparkle
is currently a finalist of the NIST call for standardization of lightweight hash and
AEAD algorithms.

In Part IV, Cryptanalysis of ARX ciphers, it is discussed two cryptanalysis techniques
based on differential trails, applied to ARX ciphers. The first technique, called Meet-
in-the-Filter uses an offline trail record, combined with a fixed trail and a reverse
differential search to propose long differential trails that are useful for key recovery.
The second technique is an extension of ARX analyzing tools, that can automate
the generation of truncated trails from existing non-truncated ones, and compute the
exact probability of those truncated trails.

In Part V, Masked AES for Microcontrollers, is shown a new method to efficiently
compute a side-channel protected AES, based on the masking scheme described by
Rivain and Prouff. This method introduces table and execution-order optimizations,
as well as practical security proofs.
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Chapter 1

Introduction

1.1 Introduction to Cryptography

This section presents a small introduction to the concepts relevant to this dissertation,
for a reader that is not well acquainted with the area of cryptography.

Starting with cryptography, it is an area of both mathematics and computer science
that studies techniques that are older than the Roman Republic, whose last leader
gave name to both a cryptography technique and the forthcoming emperors — Ceaesar.
Those techniques came to be by the necessity of securing information, keeping it away
from prying eyes, from military orders to coup d’etat, from conspirations of death to
letters of forbidden love. The name cryptography —and cryptology— comes from the
Greek words “kryptds”, meaning “hidden, secret”, “graphein” meaning “to write”,
and “logia” meaning “study”: Cryptography is the study of hidden and secret writing.
In a general manner, cryptography is an area of study that deals with constructing
and analyzing tools that protect data in the presence of a malicious adversary, be it
data in transit, at rest, or even during processing.

During most of its history, cryptography lacked rigor in its construction and usage:
cryptographers and cryptanalysts relied more on their instincts to secure messages.
At this time, the used techniques were fairly simple. For example, many techniques
were simply different forms of substitution cipher where symbols were simply replaced
by others, following a simple look-up, akin to taking a text in the Latin alphabet
and writing it in the Greek one. Other ciphers could be reduced to permutation
ciphers, where the symbols were just rearranged following a simple rule, for example,
writing a message in a grid as row-major and sending it “encrypted” as column-major.
It was during the second world war that those techniques were improved greatly.
There were huge advantages in keeping the enemy from reading your messages, as
well as being able to read the enemies’, and quickly cipher machines were greatly
improved, together with techniques and machines to defeat those. The most well-
known of those machines was the Enigma, used by the German military. The efforts
to decrypt Enigma messages were a substantial aid to the Allied war effort and laid
the groundwork for not only modern cryptography but also for the development of
general-use electronic computers.

Nowadays, cryptography in general is ubiquitous in our lives, and in many situations,
transparent. Innumerable hours of work and research are used, unnoticed, whenever
we send an email, access a website over HTTPS, or use a credit card for online
shopping. Even more, computation is not restricted to desk devices. Most people
carry in their pockets computers that would look like science fiction just a handful of
years ago; Doors, cars, watches, sensors, and furniture, are all interconnected and need
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efficient and secure ways of protecting their data. Not only a tool of war anymore,
the study of cryptography is the study of tools that help groups, and individuals,
remain safe.

As an academic discipline, research in this area is relatively recent, beginning in the
mid-1970s. It was at that time that IBM designed the Data Encryption Standard
(DES) algorithm, which was adopted by the USA government as a standard. By
the end of that decade, the Diffie-Hellman key exchange algorithm was published, as
well as the RSA algorithm. Modern cryptography can be divided into many ways,
with two very important groups being Symmetric-key cryptography and Public-key
cryptography. In the following sections, we will discuss some of the relevant subareas
of Symmetric cryptography, as well as other important topics for this thesis.

1.1.1 Symmetric cryptography and block ciphers

One of the big areas of study in cryptography is the so-called Symmetric Cryptography,
also known as secret key cryptography. Symmetric-key algorithms are those that use
the same key for both encryption and decryption procedures, with those keys being a
shared secret between the involved parties. Practically, the encryption and decryption
keys are not required to be identical, but a simple transformation can be used to
convert one into another. The complementing part of symmetric cryptography is the
public-key cryptography, where a pair of keys, one public and another private, are
used and the private one cannot be easily derived from the public one.

The requirement that a secret is shared between parties might be seen as a disad-
vantage of symmetric algorithms, but this is balanced by its usefulness in encrypting
large amounts of data, its small key size, and its highspeed. Matter of fact, in situa-
tions where one would expect to use a public key encryption algorithm, in most cases
the protocol will use it for secret exchange, and then resort to a symmetric algorithm
for bulk data encryption.

Symmetric encryption algorithms can be either stream ciphers or block ciphers. In a
stream cipher, the plaintext is combined with a pseudorandom keystream, where each
plaintext bit is encrypted one at a time with the keystream, generating a ciphertext
stream. A block cipher, on the other hand, is an algorithm that operates over a fixed
length of input data, the so-called block. The common method for designing block
ciphers consists of iterating transformations that combine permutation and substitu-
tion transformations. This design based on the iteration of simple transformations
was proposed by Shannon in 1949 [Sha49]. One of the first public block ciphers was
the DES (FIPS 46-3), published by the U.S. National Bureau of Standards, and later
superseded by AES, also by NIST!, via a public competition. Block ciphers are of
great importance in cryptography, as they are not only used to encrypt data (using
a mode of operation to encrypt more data than the length of a block), but they
are used as building blocks in many other cryptographic algorithms, such as stream
ciphers, hash functions, pseudo-random number generators, message authentication
codes, and authenticated encryption.

!The USA’s National Institute of Standards and Technology ~NIST- was called the National
Bureau of Standards -NBS- from its foundation in 1901 to 1988. The Data Encryption Standard —
DES—- was published as an official Federal Information Processing Standard —FIPS— by the NBS in
1977 as FIPS PUB 46, with the third and last revision being published in 1999.
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1.1.2 Authenticated encryption

Authenticated Encryption(AE) and Authenticated Encryption with Associated Data
(AEAD) are symmetric ciphers able to simultaneously provide confidentiality and
authenticity of data. Such a scheme is useful, for example, to encrypt the body of an
email, and have the header information as associated data. In this case, the body of
the email will be confidential, while reader information is kept as plaintext, to allow
the correct routing of the message, and the whole is authenticated, guaranteeing that
it was not manipulated in transit.

The need for authenticated encryption algorithms started with the fact that combin-
ing separated encryption and authentication algorithms is non-trivial and error-prone,
exemplified by practical attacks against widely used protocols such as the SSL/TLS.
The first standardization of AE(AD) was by the creation of six AE modes of opera-
tion, in ISO/IEC 19772:2009. Latter, a competition called CAESAR was announced,
which encouraged the creation of new AEAD algorithms, not restricted to modes of
operation over a block cipher and MAC, but also featuring dedicated designs. Cur-
rently, NIST opened a competition for the design and standardization of a family of
Lightweight Authenticated encryption algorithms.

1.1.3 Lightweight cryptography

A recent concept in the cryptography area, lightweight cryptography is a research
area driven by the lack of proper primitives for usage on constrained and low-power
devices. Devices such as RFID tags, sensors, loT devices, wearable computers, and
others, are often constrained in terms of available energy and hardware, and the
security-efficiency tradeoffs of current cryptographic algorithms are not appropriate,
hence the need for specific solutions. The concept of lightweightness is often measured
against both hardware and software constraints: In software, small usage of RAM
and ROM is desirable, as well as factors such as throughput and latency, the latter
especially desirable in real-time applications, where processing agility is needed. In
the realm of hardware implementations, the area a cryptographic function takes on
the chip is usually as important as its speed. For both cases, power consumption
is also very important, as many of those constrained devices operate with limited
power supplies, such as batteries, and in some cases, energy harvested from their
surroundings, for example, smart-home controllers that use photovoltaic panels.

1.1.4 NIST and cryptography competitions

The National Institute of Standards and Technology (NIST) is a science laboratory
and non-regulatory agency in the USA. The core competencies of NIST are measure-
ment science, traceability, and the development and use of standards. In the area of
Cryptography, NIST was responsible for standardizing cryptographic algorithms that
are today in widespread use, many of them chosen via cryptographic competitions.

Cryptographic competitions are public calls for designs of cryptographic algorithms,
which are submitted and analyzed both by private organizations and academics. The
main objective of those competitions is to inspire cryptanalysis efforts and, ultimately,
choose one or more standards.

The first open cryptographic competition started in January of 1997, held by NIST,
and had the objective of selecting a successor to the DES block cipher, which re-
sulted in one of today’s most used algorithm, the Advanced Encryption Standard, or
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AES. This competition received 15 competitors, and after intensive analysis by the
public, NIST, and other competitors, Rijndael was chosen among five finalists. One
important characteristic of the AES competition, and other competitions, was that
the candidates had strong motivations for analyzing and finding flaws in their com-
petitors. The end result is a group of motivated cryptographers checking each other’s
work, which increases the confidence in the security of the winner.

After the success of the AES competition, several others followed with different ob-
jectives. Some of them are:

e NESSIE: The New European Schemes for Signatures, Integrity and Encryption
was a research project to identify secure cryptographic primitives, from 2000 to
2003. NESSIE selected block ciphers, MAC, Hash functions, public key encryp-
tion, identification schemes, and digital signature algorithms. The competition
received 42 candidates and selected twelve algorithms, plus five publicly known
ones that were not submitted explicitly but considered nonetheless. The project
stated that “no weaknesses were found in the selected designs”.

e CRYPTREC: The Cryptography Research and Evaluation Committees were set
up by the Japanese government to select, evaluate, and recommend cryptog-
raphy for both government and industrial use. It is comparable to the EU’s
NESSIE and USA’s AES competition. One characteristic of CRYPTREC was
its obligation to take into account previously existing standards and practices.
This led to some unusual features, such as recommending several block ciphers
with 64-bit keys, and the inclusion of 160-bit hash functions, which should not
be used in new systems designs.

e eSTREAM: The ECRYPT Stream Clipher Project, as the name suggests, had
the objective of promoting the design of efficient stream ciphers suitable for
widespread use. The project ran from 2004 to 2008, and in its latest review, pub-
lished a portfolio of seven ciphers divided into two profiles: A software-oriented
profile, suitable for software applications with high throughput requirements;
and a hardware profile, adequate for applications with restricted resources like
limited storage, gate count, or power consumption.

e SHA-3: The NIST hash function competition, sometimes called the SHA-3 com-
petition, was held by NIST to develop a new hash function to complement the
older —and broken— SHA-1, and SHA-2. The competition was held from 2007 to
2012 and announced Keccak as the hash function to be published as NIST FIPS
202 "SHA-3 Standard", which complements FIPS 180-4 Secure Hash Standard.

e PHC: The Password Hashing Competition, announced in 2013, was an open
competition to select password hash functions that could be recommended as
standards. Modeled after the NIST competitions, PHC was directly organized
by cryptographers to raise awareness of the need for strong password hashing
algorithms and was motivated by a series of breaches in popular services, such
as the ones that targeted the Playstation Network(2011), LinkedIn, Adobe,
ASUS(2012). Among the 24 received candidates, in 2015 Argon2 was chosen as
the recommended algorithm and is currently accredited by entities such as IETF
and OWASP (resp. Internet Engineering Task Force and Open Web Application
Security Project).

e CAESAR: The Competition for Authenticated Encryption: Security, Applicabil-
ity, and Robustness had the objective of selecting a portfolio of authenticated
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encryption algorithms adequate for widespread usage and which would offer
advantages over AES-GCM. It started in 2014, and the final portfolio was an-
nounced in early 2019. CAESAR’s portfolio is divided into three use cases:
Lightweight applications for constrained environments (Ascon and ACORN),
high-performance applications (AEGIS and OCB), and defense in depth (Deoxys-
IT and COLM); two ciphers were selected for each use case.

« Chinese Cryptographic Algorithm Design Competition?: Sponsored by the SCA
(Chinese State Cryptography Administration) was a competition held from
June 2018 to December 2019, with the objective of implementing the strategic
strengthening of the country through the internet, promoting the design of cryp-
tographic algorithms and the growth of cryptographic talents. The competition
had 60 submissions, being 22 block ciphers and 32 public-key algorithms, and
finished with the identification of the three best public-key algorithms (Aigis-sig,
LAC.PKE, and Aigis-enc) and the two best block ciphers (uBlock and Ballet).

e« PQC: in 2016, NIST started the Post-Quantum Cryptography Standardization
Process, to solicit, evaluate, and standardize new public-key cryptography stan-
dards, which are capable of protecting sensitive information in the foreseeable
future, including after the full realization of quantum computers. This com-
petition is still ongoing and received 82 submissions, of which there are seven
third-round finalists and 8 alternate candidates. It is expected that the draft
standard will be posted for public comments in 2022-2023.

Following the footsteps of the block cipher, hash function, stream cipher, and other
competitions, NIST announced the Lightweight Cryptography Standardization Pro-
cess. The project was initiated in 2015 after NIST identified that the performance
of NIST-approved cryptographic standards (especially AEAD and hash functions)
on constrained devices was not adequate. As of 2021, out of the 57 submitted al-
gorithms, ten remain finalists, namely ASCON, Elephant, GIFT-COFB, Grainl28-
AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak. This
final round of the standardization process is expected to conclude at the end of 2022.
Sparkle is part of this thesis and will be discussed in Chapter 4.

1.1.5 Cryptanalysis

Cryptanalysis is the process of analyzing systems with the objective of understanding
hidden aspects of the systems and is used to breach cryptographic systems. The goal
of cryptanalysis is to gain as much information as possible about the plaintext via the
ciphertext, which is classified by the amount of information available to the attacker:

o Ciphertext only, where the attacker has access only to a set of ciphertexts,

o Known-Plaintext, where the attacker has access to a set of ciphertexts and their
corresponding plaintexts.

e Chosen-plaintext and Chosen-Ciphertext, where the attacker can choose the
plaintext /ciphertexts and get their corresponding encryptions/decryptions. This
type of attack can also be adaptive, where the attacker is allowed to choose the
next data based on information gathered from the previous data.

2Original document in www.cacrnet.org.cn/site/content/854.html. Accessed 27.05.2022.
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o Related-key attack, where the attacker has access to ciphertexts encrypted un-
der different unknown keys but related in a known manner, e.g. they differ in
a single bit.

Those attacks can be further characterized by the resources needed to carry out the
attack (time, memory, and data).

1.1.5.1 Differential cryptanalysis

Differential cryptanalysis is a form of cryptanalytic technique, mainly applicable to
block ciphers, which studies how differences in information input can affect the differ-
ences in the outputs, where difference is normally the XOR of the pair of plaintexts/-
ciphertexts. The academic discovery of differential cryptanalysis is due to Biham
and Shamir in the late 80s, in their seminal work on cryptanalysis of DES [BS91].
Even though they managed to find an academic attack on DES which required 247
effort and chosen plaintexts vs. 25 exhaustive search complexity, they found that
the cipher was unexpectedly resistant to this powerful attack.

In 1994 Don Coppersmith, a member of the original IBM team that designed DES
stated that the technique was already known by both IBM and NSA, which choose
to not make the design considerations (and the attack, by extension) public, as that
would weaken competitive advantages the USA had concerning cryptographic tech-
niques.

In a simple manner, a differential cryptanalysis attack starts with the attacker choos-
ing plaintexts related by a given difference. The attacker then tries to predict the
ciphertext differences, in an effort to discover non-random statistical patterns. Such
prediction is typically done by tracing the difference propagation through the rounds
of a cipher forming the so-called differential trail whose probability (under certain
independence assumptions) can be computed as a product of round transition proba-
bilities. Since for a statistical distinguisher typically only input and output differences
matter, several trails which have common inputs/outputs can be combined into so-
called differential, thus accumulating higher distinguishing probability. Key recovery
is, for example, done by the attacker requesting a large number of plaintext pairs, and
assuming that the difference holds for r-1 rounds. The attacker filters away wrong
keys which do not lead to the difference predicted by the differential distinguisher.
The correct key is then recovered by trial encryption with the candidate keys.

1.1.6 Side Channel leakage and countermeasures

In addition to the mathematical analysis of the algorithms, cryptanalysis also deals
with side-channel attacks, that don’t target the algorithm itself but instead target
weakness in the implementation of algorithms. Side-channel attacks exploit timing,
power consumption, electromagnetic emanations, and other sources to gather the
information that can be exploited.

A power analysis attack uses intimate knowledge of the implementation and platform
to correlate the power consumption with the secret data being processed. For ex-
ample, exponentiation is used in many cryptosystems and is often implemented via
the square-and-multiply algorithm. By observing the power consumption of the chip
during this exponentiation, one is capable to differentiate a bit 0 and 1, since a set bit
will execute an extra multiplication. This type of direct interpretation of the power
traces during a cryptographic operation is called SPA — simple power analysis.
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Beyond SPA, a more advanced attack is the Differential Power Analysis (DPA), which
is a statistical method to analyze side-channel measurement sets to identify data-
dependent non-random statistical biases. DPA is more powerful than SPA because
even tiny correlations can be seen regardless of noise, given enough measurements.
Furthermore, DPA can treat the cipher implementation as a black box, by exploring
correlations between the measurements and a model of the power consumption of the
system (sometimes as simple as using the Hamming weight of the private data).

Defenses against side-channel are dependent on the type of leakage, and the architec-
ture. One approach is to combine the secret information with random noise, called
masking, where the data is decoupled from the system’s biases. This combination
of data and randomness works in a way analogue to Shamir’s secret sharing, which
itself is a generalization of the one-time pad. This technique, though, needs intimate
knowledge of the target system, as structures transparent to the programmer (for ex-
ample, temporary registers, pipelines, and speculative execution) can inadvertently
recombine masked values, causing them to leak.

1.1.7 The ARM architecture

ARM —Advanced RISC Machine— is a popular architecture developed by the British
company ARM Holdings. A RISC processor is, in comparison to CISC, simpler
to design and requires fewer transistors in their design. ARM is one of the most
popular processor architectures in the world, in terms of manufacture number, being
used in small sensors, real-time applications, cars, consumer electronics, and even in
servers. The majority of ARM processors support fixed-length 32-bit instructions,
and mixed 16- and 32-bit instructions for code density. The newer specification of
the architecture, ARMv8, supports 64-bit addressing space and arithmetic. The main
features of the ARM instruction set are:

e Uniform 32-bit or 64-bit registers.

o Single-cycle instructions (mostly) as well conditional execution for those in-
structions.

e A zero-penalty barrel shifter, which permits to execute arithmetic and shift
operations in a single instruction

o A load/store-based programming model, where the instructions are divided into
two main groups: Memory access instructions and logic/arithmetic instructions.
Differently from a register memory architecture, all the instructions operands
must reside in registers.

1.1.8 Other remarks

This thesis is written in a modified “collection of papers” style, instead of a single
coherent monograph, as it better represents the style of work done during the Doc-
toral studies. Each chapter follows a paper and contains most of the information from
the original publication. As those were group efforts, the papers might have sections
where I had low input in the research. Those are not present in this thesis, and the
reader is invited to read the full papers for those. This thesis goes over different
but complementary areas: Work was done on the benchmarking of authenticated en-
cryption algorithms, on the development of one such algorithm, then cryptanalytical
techniques based on differential trails, and finally, the masking of AES.
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1.2 Research papers

The scientific production during the Doctoral studies is as follow:

Publications

[Bei+19]

[Bei+20a]

[Bei+20d]

[Bir+22]

[SG21]

[SGB19)

Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Grofischddl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and
Qingju Wang. Schwaemm and FEsch: Lightweight Authenticated En-
cryption and Hashing using the Sparkle Permutation Family. https :
//www.cryptolux.org/index.php/Sparkle. 2019.

Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Grof3-
schiadl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju
Wang. “Alzette: A 64-Bit ARX-box”. In: Advances in Cryptology —
CRYPTO 2020. Ed. by Daniele Micciancio and Thomas Ristenpart.
Cham: Springer International Publishing, 2020, pp. 419-448. 1SBN: 978-
3-030-56877-1.

Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Grof3-
schiadl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju
Wang. “Lightweight AEAD and hashing using the sparkle permuta-
tion family”. In: JACR Transactions on Symmetric Cryptology (2020),
pp. 208-261.

Alex Biryukov, Luan Cardoso dos Santos, Daniel Feher, Vesselin Velichkov,
and Giuseppe Vitto. “Automated Truncation of Differential Trails and
Trail Clustering in ARX”. In: Selected Areas in Cryptography. Ed. by
Riham AlTawy and Andreas Hiilsing. Cham: Springer International
Publishing, 2022, pp. 286—-307. 1SBN: 978-3-030-99277-4.

Luan Cardoso dos Santos and Johann Grofischiadl. “An Evaluation of the
Multi-Platform Efficiency of Lightweight Cryptographic Permutations”.
In: Innovative Security Solutions for Information Technology and Com-
munications (2021).

Luan Cardoso dos Santos, Johann Grofischddl, and Alex Biryukov.
“FELICS-AEAD: benchmarking of lightweight authenticated encryption
algorithms”. In: International Conference on Smart Card Research and
Advanced Applications. Springer. 2019, pp. 216-233.

Unrefereed Publications

[Ale+22]

[San+22]

Biryukov Alex, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko,
and Vesselin Velichkov. “Meet-in-the-Filter and Dynamic Counting with
Applications to Speck”. Cryptology ePrint Archive, Paper 2022/673. In
submission. 2022. URL: https://eprint.iacr.org/2022/673/.

Luan Cardoso dos Santos, Francois Gérard, Johann Grofischadl, and
Lorenzo Spignoli. “Rivain-Prouff on Steroids: Faster and Stronger Mask-
ing of the AES”. In submission. 2022.

Furthermore, results regarding FELICS and the benchmarks were presented in the
following workshops:

e Lightweight Cryptography Workshop 2019: On November 04-06, 2019,
presentation on the FELICS framework [SGB19].


https://www.cryptolux.org/index.php/Sparkle
https://www.cryptolux.org/index.php/Sparkle
https://eprint.iacr.org/2022/673/
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e Lightweight Cryptography Workshop 2020: On October 19-21, 2020, pre-
sentation on the Multiplataform efficiency of the LWC permutations [SG21].

1.3 Thesis structure

This thesis is organized analogous to the execution timeline of the doctoral studies,
and it divided into four parts and it is organized as following:

In Part II, titled “Benchmarking of AEAD”, I will present the work done on extending
the FELICS framework for bechmarking AEAD algorithms, and also the results of
specific benchmark of AEAD primitives, with focus to the NIST lightweight AEAD
competition. This section is based on two publications [SGB19] and [SG21].

In Part III, T will present my contributions to the family of AEAD ciphersSPARKLE.
Creating an AEAD family of ciphers is no trivial task, and as such, SPARKLEis a
joint effort of many scientists, with different and complementary skillsets; and at
the time of the writing of this thesis, a sucessful effort, as SPARKLE is a finalist of
the NIST competition. My focus is on implementation aspects, and how the design
of the cipher was guided to be efficient in microcontrollers. This part is based on
the SPARKLE publications, and for a full description of the algorithms, the reader is
invited to consult [Bei419; Bei+-20a; Bei+20d].

In Part IV —Cryptanalysis of ARX ciphers— two cryptanalysis techniques will be pre-
sented. First, based on [Ale+22], is a differential-based attack against ARX ciphers,
that combines a online offline parts to generate long trail guesses for ciphertext and
plaintext pairs to be used in a key recovery procedure. This attack was instantiated
against the block cipher SPECK. Also will be discussed the results from [Bir+22],
where an efficient tool for automated truncation of differential trails in ARX ciphers
is proposed.

Lastly, in Part V, based on [San+22], is shown an improved method for masking
AES, that results in a very fast and secure first-order masked implementation. In
this Part, I also discuss a discrepancy between the practical and theoretical aspects
of side-channel protection papers, where, until now, very few papers execute practical
leakage tests, and when tested, show very relevant levels of leakage.






Part 11

Benchmarking of AEAD

13






15

Chapter 2

FELICS Framework

2.1 Introduction ... ... ... ...ttt 16
2.1.1 Motivation and Research Needs . . . . . .. ... ... ... 17
2.1.2  Aims and Contributions of this work . . . . . ... .. ... 17

2.2 FELICS Framework and its AEAD Extension ... . ... 18
2.2.1 Overview of Modules . . . . ... ... ... ... ...... 19
2.2.2  API for Authenticated Encryption . . . ... ... ..... 21
2.2.3 Target Devices and Evaluation Metrics . . . . . . ... ... 22

2.3 Analyzed AEAD Algorithms. . . .. ... ... ....... 24

2.4 Preliminary Results . . . . ... ... ... ......... 25

2.5 Comparison with other Benchmarking Tools . . . ... .. 28

2.6 Conclusions and Remarks . ... ............... 30

In this section, I present an adaptation of the paper titled “FELICS-AED: Bench-
marking of Lightweight authenticated encryption algorithms"[SGB19]. This paper
was published in the International Conference on Smart Card Research and Advanced
Applications, and was also featured in the NIST Lightweight Cryptography Workshop
2019.

Cryptographic algorithms that can simultaneously provide both encryption and au-
thentication play an increasingly important role in modern security architectures and
protocols (e.g. TLS v1.3). Dozens of authenticated encryption systems have been de-
signed in the past years, which has initiated a large body of research in cryptanalysis.
The interest in authenticated encryption has further risen after the National Insti-
tute of Standards and Technology (NIST) announced an initiative to standardize
“lightweight” authenticated ciphers and hash functions that are suitable for resource-
constrained devices. However, while there already exist some cryptanalytic results on
these recent designs, information is lacking regarding their performance, especially
when they are executed on small 8, 16, and 32-bit microcontrollers. In the follwo-
ing paper, it is introduced an open-source benchmarking tool suite for a fair and
consistent evaluation of Authenticated Encryption with Associated Data (AEAD)
algorithms written in C or assembly language for 8-bit AVR, 16-bit MSP430, and
32-bit ARM Cortex-M3 platforms. The tool suite is an extension of the FELICS
benchmarking framework and provides a new AEAD-specific low-level API that al-
lows users to collect very fine-grained and detailed results for execution time, RAM
consumption, and binary code size in a highly automated fashion.
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2.1 Introduction

An Authenticated Encryption (AE) algorithm can be loosely defined as a symmetric
cryptographic algorithm that is capable to (simultaneously) assure the confidentiality
and authenticity of data [BR00; KYO01]. A special form of AE, known as Authenti-
cated Encryption with Associated Data (AEAD), allows a part of the data to remain
unencrypted, while still all data gets authenticated. The notion of AEAD was first
formalized by Rogaway [Rog02] in 2002 and has applications in such areas as network
packet encryption where the header (which contains the destination address) needs
to be readable by routers, but should nonetheless be authenticated and integrity-
protected. An AEAD algorithm takes a quadruple of the form (M, A, K, N) as input
and outputs a tuple (C,T), where M is the message to be encrypted and authen-
ticated, A is the associated data that gets authenticated only (but not encrypted),
K is the secret key, N is a nonce, C is the ciphertext, and T is an authentication
tag. Conversely, the decryption uses (C, A, K, N, T') as input and outputs the original
message M if T is valid, or an error symbol L otherwise. The two essential secu-
rity goals an AEAD algorithm has to achieve are confidentiality and authenticity;
a mathematically rigorous definition of both was given by Rogaway [Rog02]. Infor-
mally, confidentiality means that a passive adversary with access to C' and T should
not be able to deduce any information about M, except of its length. Authenticity
generally refers to the ability to thwart forgery attacks, which means an active ad-
versary should have a very low success probability when attempting to fabricate a
(C,T)-tuple that the decrypting party will verify as authentic.

Initially, AEAD schemes were created by combining a block cipher in some mode of
operation with a Message Authentication Code (MAC) algorithm. A clear disadvan-
tage of this approach is the necessity of having two different primitives and requiring
two passes over the message. Modern constructions including most submissions to
NIST’s lightweight cryptography standardization project, use a different approach,
where a single algorithm is able to deliver authenticated encryption, with a single
pass over the message.

In recent years, the cryptographic community has shown great interest in AEAD
because of the CAESAR competition and the NIST call for lightweight primitives.
CAESAR (short for Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness) is an already finished competition whose objective was to
select a portfolio of AEAD algorithms. It followed the spirit of previous crypto-
graphic competitions, such as the one that yielded the now omnipresent block cipher
AES. In 2018, NIST officially announced the initiation of a process to solicit, evalu-
ate, and standardize lightweight cryptographic algorithms—namely AEAD schemes
and hash functions—that are suitable for constrained environments where the cur-
rent standards can not provide acceptable performance. The motivation behind this
initiative is the emergence of more and more application domains where constrained
devices are interconnected to form the so-called Internet of Things (IoT). Security and
privacy are extremely important in the IoT, but cannot always be provided by the
currently standardized cryptosystems. This is because the severe constraints under
which present (and future) IoT devices are expected to operate were not anticipated
20-25 years ago when many of the current NIST standards (e.g. AES, SHA-2) were
designed.



2.1. Introduction 17

2.1.1 Motivation and Research Needs

In response to NIST’s call for proposals for lightweight AEAD algorithms and hash
functions, a total of 57 candidates were submitted by March 29, 2019'. These candi-
dates are currently evaluated in an open process taking various criteria into account,
which include besides security (i.e. resistance against known cryptanalytic attacks)
also practical aspects like performance and resource requirements (e.g. silicon area,
memory footprint, code size) when implemented in hardware and software [Nat18].
NIST anticipates an initial (i.e. first-round) evaluation period of about six months
to filter out candidates with obvious weaknesses and narrow the candidate pool for
a more careful study and analysis in a second round. In total, the NIST estimates a
duration of two to four years until the publication of a first draft standard and em-
phasizes that “the success of the lightweight crypto standardization process relies on
the efforts of the researchers from the cryptographic community that provide security,
implementation, and performance analysis of the candidates” 2.

Most papers introducing a new AEAD algorithm report some kind of results of some
kind of performance evaluation on some kind of platform using some kind of imple-
mentation. Unfortunately, these results are usually not suitable for a comparison
of the efficiency of two or more algorithms since it is not easily possible to take
differences in the characteristics of the target platforms or differences in the simu-
lation/measurement conditions into account. There is a need for a way to compare
performance figures for many algorithms consistently and fairly so that designers
and implementers of IoT applications can make better decisions regarding which al-
gorithm is the most suitable one under a given set of efficiency requirements and
resource constraints.

In the course of the CAESAR competition, the e BACS framework [BL09] was used for
the bechmarking of the submitted AEAD algorithms. However, the original eBACS
tools only support 64-bit Intel/AMD processors and high-end ARM models, mostly
from the Cortex-A series, whereas many [oT devices are equipped with low-end mi-
crocontrollers, e.g. 8-bit AVR ATmega, 16-bit TT MSP430, or 32-bit ARM Cortex-M.
These microcontrollers are optimized for small silicon area and low power consump-
tion, which means they have totally different characteristics than their 64-bit coun-
terparts. These differences manifest not only in the word size, but also the instruction
set, the size of the register file, the latency of individual instructions, the degree of
instruction-level parallelism, and many other aspects. For example, 64-bit Intel or
ARM processors have a register space of 128 bytes (or even more when taking vector
registers into account), whereas the MSP430 platform (which lies at the opposite
end of the spectrum) provides 24 bytes altogether. Furthermore, most 8 and 16-bit
microcontrollers can only execute shifts or rotations at a rate of one bit per cycle,
whereas more powerful processors are capable to perform n-bit shifts/rotations in a
single cycle. For all these reasons, benchmarking results generated with eBACS are
of little use when it comes to the evaluation of AEAD algorithms on microcontrollers.

2.1.2 Aims and Contributions of this work

The present paper addresses the research needs identified above and puts forward a
proposal for the benchmarking of lightweight AEAD algorithms. Our proposal aims

LCurrent at the time of the publication of the original article. Of the 57 candidates, 56 were
selected for Round 1, 32 for round 2, and currently there are ten finalist candidates.

2See https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates (ac-
cessed 2022-04-27).


https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
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to answer two basic questions that generally arise in the context of software bench-
marking of cryptographic algorithms. The first question relates to the Application
Program Interface (API) that implementations of a candidate algorithms have to fol-
low to ensure a fair and consistent evaluation. We will argue in Section 2.2.2 that,
for the purpose of benchmarking, it makes sense to use a low-level API sense ince it
allows one to obtain more fine-grained results compared to a high-level API consisting
of just the functions encrypt and decrypt. Furthermore, we introduce an API con-
taining seven low-level functions, which we consider well suited for the benchmarking
of AEAD algorithms. The second issue concerns the question of how to measure the
execution time and other metrics of interest, which includes aspects like the length of
the message M and the length of the associated data A. More concretely, how should
the length-ratio of M and A be to get meaningful results? We will try to answer these
questions in Section 2.2.1 through the definition of so-called evaluation scenarios that
aim to mimic security-related operations commonly carried out by “real” IoT de-
vices. More concretely, these scenarios are inspired by the need for AEAD operations
in two networking protocols with relevance for the IoT, namely IEEE 802.15.4 (the
most common PHY /MAC-layer protocol for low-rate wireless networks) and IPv6.

We implemented both the low-level API for AEAD and the evaluation scenarios in
the form of an extension to the well-known and widely-used FELICS (Fair Evaluation
of Lightweight Cryptographic Systems) framework [Cry16]. FELICS was originally
created to support the collection benchmarking results for (lightweight) block ci-
phers on three embedded platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM
Cortex-M3. The full source code of FELICS is available under GPLv3 to increase the
transparency and reproducibility of benchmarking results. Besides execution time,
FELICS is also capable to determine the binary size and RAM footprint on the three
currently supported platforms. The framework is modular, built on well documented
and free compilers and tools, which allows easy extension of functionality and in-
tegration of new microcontroller platforms and evaluation scenarios. We tested the
extended FELICS toolsuite using optimized C implementations of five AEAD algo-
rithms (namely AES-GCM, ACORN, ASCON, Ketje-Jr, and NORX) that adhere
to our low-level API. These tests confirm that FELICS-AEAD works properly and
is able to collect large amounts of benchmarking results in an efficient and highly-
automated fashion. An analysis of the collected benchmarking results for these five
algorithms allows us to draw some conclusions about how basic design decisions like
the organization of the “state” (i.e. whether the state is processed at a granularity of
32-bit words or 64-bit words) affect the performance on small microcontrollers.

2.2 FELICS Framework and its AEAD Extension

FELICS — Fair Evaluation of Lightweight Cryptographic Systems — is a free and open
source framework that assesses the efficiency of C and assembly implementations of
lightweight cryptographic primitives on embedded devices. Following a modular de-
sign philosophy, the framework can easily be extended to accommodate new metrics,
evaluation scenarios, and devices. FELICS is the core of an effort to increase the
transparency in the in the performance analysis of lightweight algorithms and aims
to facilitate a fair comparison of a large number of candidates.
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2.2.1 Overview of Modules

FELICS is written in C, but also includes Bash and Python scripts. The framework
was designed to work on Linux and allows the benchmarking of C and assembly imple-
mentations of cryptographic primitives that follow a set of pre-defined requirements.
C was chosen because of its continuing popularity in the IoT and the fact that most
reference implementations are written in this language. Furthermore, C code is highly
portable, which is an important asset since there is no single dominating platform
in the IoT. However, FELICS also supports the benchmarking of platform specific
Assembler implementations to eliminate the impact of the compiler’s ability (or in-
ability) for code optimization. Hand-crafted Assembler code can take architecture-
specific optimizations into account and has the potential to significantly outperform
compiled C code.

FELICS FRAMEWORK ‘

Block Ciphers Module Steam Ciphers Module AEAD Ciphers Module

| |
Scenario 1 Source Scenario 1 Source Scenario 1(abc) Source
Scenario 2 Code Scenario 2 Code Scenario 2(abc) Code
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FI1GURE 2.1: Modular structure of the FELICS benchmarking framework.

Core Module

The Core module, as the name implies, is the main part of the framework, and
provides the tools necessary to collect the metrics for each of the supported devices.
This module aims to facilitate the integration of new target devices and new metrics.
Collection of metrics can be done individually or in batch mode. Beyond metrics
collection, the Core also defines modules to debug and evaluate ciphers in a PC,
mainly to aid in the implementation and integration process of new ciphers by the
framework’s users. A Python script for processing the generated CSV files and to
assemble a ranking of candidates based on a so-called Figure-Of-Merit (FOM) is also
present (see [Din+15a] for details).

The Core module is also responsible for exporting the extracted results. The frame-
work main reporting format is CSV, but it also offers support to other output formats:
Formatted raw text table, XML compatible with Microsoft Office Excel and Libre-
Office Calc, MediaWiki table and Latex Table. Due to the modular nature of the
framework, new formats can be added should the need for those arise.
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Authenticated Encryption Module

This module allows the evaluation of lightweight AEAD ciphers. To allow the frame-
work to extract the metrics, each cipher’s implementation must follow the defined
API.

A template for implementation, as well as implementations of identity ciphers, are
provided with the module and can be used as a guide to help new users to integrate
new implementations. The complete rules and step-by-step integration guide for
cipher implementations can be found in the README file in the example cipher.

The framework supports cipher evaluation based on scenarios. Scenarios implement
common real-world use cases, with practical relevance for IoT, with the main objective
of generating realistic benchmark results that are meaningful in the real world. The
current scenarios in the AEAD module of FELICS are divided into three main groups:

¢ Debug and verification Scenario: Also called Scenario 0, is mainly used
for debugging purposes. It operates over a single block of input and allows the
implementers to check their implementations on known test vectors.

o IEEE 802.15.4 Scenarios: These scenarios are based on the security needs
of data communication in wireless sensor networks and other IoT applications
using the IEEE 802.15.4 MAC/PHY-layer protocol. The maximum frame size of
IEEE 802.15.4 is 127 bytes; the length of the header depends on various factors,
such as the format of the source and destination addresses, but can not exceed 25
bytes. This leaves (at least) 102 bytes as frame payload. IEEE 802.15.4 supports
three kinds of security services, namely (i) “Encryption Only” with AES in
counter mode, (ii) “Authentication Only” with AES-CBC-MAC producing a
MAC of either 32, 64, or 128 bits, and (iii) “Authenticated Encryption” using
AES-CCM with the same MAC lengths.

— Scenario la: Encryption of 102 bytes of data.

— Scenario 1b: Authentication of 86 bytes of payload and 25 bytes of
header. This scenario assumes that 16 bytes of payload are reserved to
write the authentication tag.

— Scenario 1lc: Authenticated encryption of 86 bytes of payload and 25
bytes of header (which is authenticated but not encrypted). As with Sce-
nario 1b, the authentication tag has a length of 16 bytes.

e IPv6 Scenarios: These scenarios are based on the use cases of IPv6 frames, as
defined in RFC 2460. The MTU of IPv6 is at least 1280 bytes and the header has
a fixed length of 40 bytes. Based on experiments with the Network Simulator
NS-3, we found that the following message and associated data lengths serve as
good representatives for real-world scenarios.

— Scenario 2a: Encryption of 1240 bytes of data.

— Scenario 2b: Authentication of 1224 bytes of payload and 40 bytes of
header.

— Scenario 2c: Authenticated encryption of 1224 bytes of payload and 40
bytes of header.

The IEEE 802.15.4 and IPv6 scenarios differ not only in the amount of data to be
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protected (127 bytes vs 1280 bytes), but also in the relation of data-length of AD-
length. In the former case, the AD/D ratio is 0.29, whereas in the latter case the
AD-length is negligible in relation to the D-length.

2.2.2 API for Authenticated Encryption

The FELICS API aims to offer a generic and well-specified interface for the most com-
mon operations performed by an AEAD algorithm. Different from other frameworks,
the FELICS API is composed of seven low-level functions. While this may intro-
duce difficulties for certain implementation techniques (e.g. bitslicing), the low-level
API gives the framework more flexibility and allows one to obtain more fine-grained
benchmarking results. Such fine-grained results can be useful, for example, when
one wants to analyze why a given AEAD algorithm is more or less efficient and its
competitors. Our seven functions are described below and their prototypes are given
in Listing 2.1.

e Initialize: This function receives as parameters pointers to the algorithm’s
state, key, and nonce, and should execute the cipher’s initialization procedures.

e ProcessAssocData: This function receives as parameters a pointer to the state,
a byte stream of associated data, as well as its length.

e ProcessPlaintext: This function receives as parameters a pointer to the state,
a byte stream of data, as well as the length of plaintext and ciphertext. The
ciphertext should overwrite the plaintext.

e ProcessCiphertext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The plaintext should overwrite the ciphertext.

e Finalize: This function receives as parameters pointers to the state and key,
and executes the finalization steps on the internal state, preparing it for the
authentication tag generation.

e GenerateTag: This functions receives as parameters a pointer to the internal
state and the authentication tag and should write the appropriate information
on the authentication tag.

e VerifyTag: This function received two pointers to authentication tags, and
compares both. Returns (int) (1) if the tags match, and (int) (0) otherwise.

NIST specified a high-level API consisting of two functions (namely aead_encrypt
and aead_decrypt), which submitters of AEAD candidates had to follow when they
developed the (mandatory) reference implementation and an (optional) optimized im-
plementation. While such a high-level API is convenient for software developers using
AEAD algorithms, it is not necessarily a good choice for collecting benchmarking re-
sults, especially in Scenario 0. This is probably best explained taking the block-cipher
benchmarks from [Din+15b] as example. Similar to AEAD, one can benchmark block
ciphers using either a high-level or a low-level API. The former consists of generic
functions for encrypting/decrypting of an arbitrary amount of data using a speci-
fied mode operation. On the other hand, the low-level API consists of two functions
for each encryption and decryption, one to encrypt/decrypt a single block, and one
to perform the encrytion/decryption key schedule. In order to minimize the overall
development effort, the high-level functions can simply be implemented as wrappers
over the low-level functions. However, using the low-level API for benchmarking
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Listing 2.1: Function prototypes of the low-level AEAD API.

void Initialize(uint8_t *state, const uint8_t *key, const uint8_t *nonce);
void ProcessAssocData(uint8_t *state, uint8_t *assocData, size_t assocDatalen);
void ProcessPlaintext(uint8_t *state, uint8_t #*message, size_t messagelen);
void ProcessCiphertext(uint8_t *state, uint8_t *message,size_t messagelen);
void Finalize(uint8_t *state, uint8_t *key);

void GenerateTag(uint8_t *state, uint8_t *tag);

int VerifyTag(uint8_t *state, uint8_t *tag);

in Scenario 0 makes certain properties of ciphers more apparent than the high-level
API. For example, RC5 is extremely fast, but has a very costly key schedule, which
becomes immediately evident with benchmarking results obtained with the low-level
API. Therefore, RC5 is unattractive for scenarios where the the amount of data to
be encrypted or decrypted is small. This information is not so directly obvious when
benchmarking results are generated with the high-level API.

2.2.3 Target Devices and Evaluation Metrics

For this framework, three widely used microcontrollers were chosen as representatives
of the most used 8, 16, and 32-bit platforms used in the IoT. These microcontrollers
have been optimized for small area and low power consumption. Their main char-
acteristics are summarized in Table 2.1 and a brief description of each will follow on
the next paragraphs.

Characteristic AVR MSP ARM
CPU 8-bit RISC  16-bit RISC  32-bit RISC
Frequency 16 MHz 8 MHz 84 MHz
Registers 32 16 21
Architecture Harvard Von Neumann Havard
Flash 128 KB 48 KB 512 KB
SRAM 4 KB 10 KB 96 KB

Supply voltage 4.6-5.5 V 1.8-3.6 V 1.6-3.6 V

TABLE 2.1: Key characteristics of the target microcontrollers.

The AVR ATMega 128 is a microcontroller manufactured by Atmel, featuring 32
8-bit registers (RO - R31) with single clock access time. Six of those registers can
also be used as 16-bit indirect address pointers for data space. The instructions are
executed within a two-stage, single-level pipeline, with most of its 133 instructions
requiring a single cycle to execute. AVR processors are based on a modified Harvard
architecture, where program and data are stored in separate physical memory regions
in different physical addresses. Regarding memory, the ATmegal28 comes with 128
KB Flash amd 4 KB SRAM.

The MSP430F1611 microcontroller is a RISC CPU produced by Texas Instruments.
It follows a Von Neumann architecture, and features 16 registers, with 12 being general
purpose. Operations over registers take one clock cycle, while the other instructions
depend on its format and addressing mode used. Memory wise, the MSP430 has one
shared address space for special function registers, peripherals, RAM and FLASH.
It has 48 KB of Flash and 10 KB of SRAM. Typical applications include medical

devices and smart meters.
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The 32-bit Atmel SAM3X8 Cortex M3 is a RISC CPU that executes the Thumb-
2 instruction set. This processor has a three-level pipeline and 13 general-purpose
registers. It features 512 KB of Flash and 96 KB of SRAM divided into two banks of
64 KB and 32 KB. The Cortex-M3 is specially designed to achieve high performance
in power-sensitive embedded applications, such as microcontrollers, automotive and
industrial controllers, wireless networking, and others. This processor runs at a max-
imum frequency of 84 MHz.

For cipher evaluation, three metrics are used: Execution time, RAM usage, and code
size. These metrics were chosen because they outline the main characteristics of the
implementations. Secondary metrics, such as energy consumption were not included
mainly due to being closely related to the basic metrics.

Execution time consists in measuring w number of cycles necessary to execute a
given operation. This metric is extracted by using either a cycle-accurate simulator a
development board. Extraction of cycle-counter uses AVRORA [TLP05] for the AVR
processor, and MSPDebug [Beel5] for MSP. Extraction of cycle counter on ARM is
done via the automatic insertion of code to read ARM’s system time registers. One
important detail regarding ARM’s measurements is that there may exist variations
in the extracted numbers, due to different instructions being generated at compi-
lation time and memory alignment of test data, as well as different manufacturer’s
implementation of the ISA.

RAM consumption is a combination of stack and data requirements. The stack
consumption describes the maximum amount of RAM used to store local variables
and return addresses after interruptions and system calls. The data requirement
represents the static RAM usage and is given by the size of the constants stored in
the device’s RAM. Static RAM consumption is measured using the GNU size tool.
The stack consumption is measured using a gdb client and the target simulator or
development board. At the beginning of each operation to be measured, the stack is
filled with a memory pattern. At the end of the function execution, the memory is
compared with the initial pattern, and the number of modified bytes gives the stack
consumption.

Alternatively, stack requirements could be calculated statically via a call graph, using
the generated assembly instructions. This method, though, is not able to solve re-
cursive functions, neither calls to functions in the standard C lib. Using a gdb client
with a well-tested simulator is less error-prone than building such an analysis tool
from scratch and was the preferred method in the framework.

Code size is measured in bytes and quantifies the amount of storage an operation
or evaluation scenario occupies in the non-volatile memory of the target device. It
is measured using the GNU size tool on the appropriate object files. To obtain the
overall code size, the framework simply sums the size of the text and data sections,
which contain, respectively, the executable instructions generated by the compiler
and the static variables that are initialized with a non-zero value. The bss section is
not taken into account since none of the benchmarked operations and scenarios use
uninitialized static variables.

Figure of Merit

Due to space limitations, normally only a subset of data can be correctly shown in
publications. To aid in the classifications of the evaluated ciphers, FELICS introduces
the Figure-of-Merit(FOM), that can be used to rank the analyzed ciphers. For each
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implementation ¢ and platform d, a performance indicator p;, that aggregates the
metrics from M = { execution time, RAM consumption, code size } as

Did = Z wm%
meM 1\ Vi, d,m
where v; 4., is the value of the metric m for the implementation 7 on the platform
p; and w,, is the relative weight for the metric m, with w,, = 1 by default for
all platforms. Then, for each cipher and the selected set of best implementations
iAVR, iMsP, and igrps (one for each platform) the FOM is calculated as the average
performance indicator across the three platforms:

Piave T Pivsp T Piarm
3

FOM(iavR,inmsp,iArRM) =

2.3 Analyzed AEAD Algorithms

In this section, we briefly describe the ciphers implemented in FELICS, as an example
and initial work for the framework. These ciphers were chosen for their relevance in
the context of IoT and lightweight cryptography, as well for being part of an ongoing
effort of standardizing AEAD schemes.

ACORN
Acorn is an AEAD scheme created by Hongjun Wu, and finalist of the CAESAR

competition. It features a stream-cipher-like construction based on six concatenated
linear feedback shift registers. The cipher’s design benefits lightweight hardware im-
plementations since the processing can be done in a bitwise fashion. It also allows the
parallel computation of 32 steps of the cipher, which is beneficial for both hardware
and software implementations. Another characteristic of ACORN, it does not need
to check message length and does not need to pad messages to a multiple of the block
size. ACORN has advantages over AES-GCM, namely being more efficient in terms
of hardware resources and energy consumption, and in constrained devices (without
AES instructions and polynomial computing circuits) ACORN is more efficient than
AES in software [Wul6].

AES-GCM

The Galois/Counter mode is a mode of operation for 128-bit block ciphers, widely
used together with the AES block cipher for its efficiency and performance. GCM is
used in MACSec Ethernet Security, IEEE 802.11ad wireless protocols, Fibre Channel
security protocols, and is also included in the NSA Suite B Cryptography, as well as
various other software [MV04]. AES-GCM gains great performance results by using
pipelined or parallelized operations, as well as using specific hardware instructions,
such as Intel’s PCLMULQDQ and AES-NI instructions. These characteristics, although,
are a target of criticism, since parallel processing is not suited for embedded and
limited devices, which thus results in a reduction of performance in those devices.

ASCON

ASCON is a family of AEAD ciphers, finalist of the CAESAR competition. It was de-
signed by Christoph Dobraunig et al. in 2014. The main goal of ASCON is to achieve
a very low memory footprint, both in hardware and software implementations, and
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Cipher ‘Block Key Nonce State Tag

NORX 384 128 128 512 128
ACORN 1 128 128 293 128
Ketje-Jr 16 128 48 200 128
ASCON 64 128 128 320 128
AES-GCM | 128 128 96 1824 128

TABLE 2.2: Parameters of the evaluated ciphers, in bits.

still provide an adequate combination of security, speed, and size, with focus on the
last. ASCON is based on the Sponge Design, being similar to SpongeWrap and Mon-
keyDuplex constructions [Dob+14]. The permutation of ASCON is an SPN designed
to provide low-cost fast diffusion. The SBox used is an improved version of the x
mapping of Keccak, and the LBox uses a function similar to SHA-2’s ¥ functions.
ASCON was not designed to compete with very fast parallel AEAD schemes run-
ning on unconstrained devices, but on the other hand, it features good instruction
parallelism, which makes it achieve good characteristics on constrained devices.

Ketje

Ketje is a family of four AEAD algorithms, aimed to memory-constrained devices
and that strongly relies on nonce uniqueness for security. It was designed by Guido
Bertoni et al. and is a third-round candidate of the CAESAR competition. Ketje
is based on a reduced round version of Keccak, over a MonkeyDuplex and Monkey-
Wrap constructions [Ber+b]. One interesting characteristic of Ketje is the support
for sessions: Without the need for a key and a new nonce, communicating parties can
exchange metadata-plaintext pairs, with the generated tag authenticating the com-
plete exchange of messages since the begging of the communication process. Of the
four algorithms in the Ketje family, two are aimed towards compact implementations
—Ketje Jr and Sr— and two are research ciphers aimed towards high speed —Ketje
Minor and Major.

NORX

NORX is a family of AEAD ciphers created by Jean-Philippe Aumasson et al. in
2014. NORX supports associated data both as header and trailer. The algorithm
also supports arbitrary parallelism in the payload processing step and is optimized
for hardware and software implementations, with a specially SIMD friendly construc-
tion. NORX is based on ChaCha’s permutation, with the integer addition replaced by
an ARX approximation, which —according to the designers— allows simplified crypt-
analysis and improves hardware efficiency [AJN14].

2.4 Preliminary Results

Using the FELICS extension for authenticated encryption described in Section 2,
we benchmarked optimized C implementations of the five AEAD algorithms on three
platforms and for two evaluation scenarios plus Scenario 0, which is mainly for debug-
ging and verification. Table 2.2 summarizes the main characteristics of the specific
variants of the AEAD algorithms we implemented.

The FELICS framework allows ranking all these implementations according to their
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| AVR | MSP | ARM | oM

‘Size Mem Time ‘Size Mem Time ‘Size Mem Time ‘

Sla (4702 214 135640(3992 214 667381474 214 17227 4.3
NORX S1b|3936 223 907283482 223 53035|1148 223 10089 4.0
Slc [5028 207 124062|4216 207 757271634 207  16685| 4.5

Sla 3734 190 519420|5656 190 5996431712 190 80316 9.4
ASCON S1b|3734 199 340671|5656 199 3955641712 199  52958| 8.9
Slc [3734 183 5349085656 183 6195231712 183 83118 9.4

Sla 5156 165 290446|6248 165 3468673564 165 138867 9.4
Ketje-Jr S1b|5156 174 211749(6248 174 254923|3564 174  99490| 9.8
Slc [5156 158 311949|6248 158 372720(3564 158 148381 9.7

Sla (3292 191 337818|3170 191 4569721954 191 191869| 10.0
ACORN S1b|3292 200 4089143170 200 551501|1954 200 236235| 15.7
Slc 3292 184 464381|3170 184 6261921954 184 267168| 12.5

Sla [6578 374 8895736798 374 21372516096 374 1086449 | 41.5
AES-GCM S1b 5944 383 4475056782 383 1150450 (6028 383 565606| 34.0
Slc [6578 367 9751846798 367 23695726096 367 1197073 | 44.6

Cipher

TABLE 2.3: Results for Scenario 1 (IEEE 802.15.4). For each platform and each cipher,
the best implementation results are reported in case more than one implementation was
available in the framework. The code size and memory consumption are specified for the
whole scenario (and not just the AEAD algorithm alone), which includes the 127-byte
IEEE 802.15.4 frame to be encrypted and/or authenticated. The smaller the Figure-of-
merit, the better is the implementation of a cipher.

execution time, RAM footprint, or code size in any scenario on any platform. Ta-
ble 2.3 summarizes the results of Scenario 1, which is inspired by the need for security
in the IEEE 802.15.4 protocol. This scenario actually consists of three sub-scenarios
with different operations and slightly different lengths of the data to be encrypted
and/or authenticated. However, all three sub-scenarios have in common that the
amount of data is relatively small, namely between 86 and 102 bytes, due to the 127-
byte MTU —maximum transmission unit— of the IEEE 802.15.4 protocol. If associated
data is processed, its length is roughly one fourth of the data-length. Concretely, in
Sub-scenario la (“encryption only”), 102 bytes of data are encrypted, whereas in Sub-
scenario 1b (“authentication only”) the size of the data is 86 bytes and the size of
the associated data is 25 bytes. Finally, in Scenario lc¢ (“authenticated encryption”)
86 bytes of data are encrypted and 86 + 25 = 111 bytes are authenticated. NORX is
the clear winner in all three sub-scenarios, followed by ASCON and Ketje-Jr, which
perform very similar in all three sub-scenarios. However, the FOM score of the latter
two algorithms is more than twice higher than that of NORX.

Finally, Table 2.4 shows the results of Scenario 2, which deals with security for the
IPv6 protocol. This scenario is again split into three sub-scenarios, similar to the
sub-scenarios in the context of IEEE 802.15.4 described above. However, the amount
of data to be encrypted is much larger, around 1200 bytes, while the amount of asso-
ciated data is relatively small; more concretely, the ratio between data and associated
data is roughly 30:1. Again, NORX is the clear winner in all three sub-scenarios, fol-
lowed by ASCON and Ketje-Jr. However, compared to the IEEE 802.15.4 scenarios,
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| AVR | MSP | ARM | roM

‘Size Mem Time ‘Size Mem  Time ‘Size Mem Time ‘

S2a {4702 1376 800313(3992 1376 501290 |1474 1376  109933| 4.1
NORX S2b[3936 1376 424601|3482 1376 2462631148 1376 46113| 3.7
S2c |5028 1376 8144674216 1376 5087281634 1376 111361 4.2

S2a {3292 1353 1811457 (3170 1353 24549621954 1353 1013715 8.5
ASCON S2b[3292 1353 1136110|3170 1353 1541295|1954 1353  644411| 10.5
S2c {3292 1353 1916720(3170 1353 2595469 |1954 1353 1077068 8.7

S2a | 5156 1327 3026956 (6248 1327 36237073564 1327 1481660| 12.6
Ketje-Jr S2b|5156 1327 15279416248 1327 1860262|3564 1327  751536| 13.3
S2c |5156 1327 3007966 (6248 1327 3601416 (3564 1327 1471405| 12.5

S2a|3734 1352 6174633|5656 1352 71091271712 1352  947367| 13.9
ACORN S2b|3734 1352 3146041 |5656 1352 36196651712 1352  479574| 14.2
S2c 3734 1352 6112583 (5656 1352 70396891712 1352  938358| 13.6

S2a {6578 1536 9807655 (6798 1536 237481536096 1536 12036393 | 64.4
AES-GCM S2b[5944 1536 3526008 |6782 1536 95315386028 1536 4564667 | 54.2
S2c [6578 1536 98120086798 1536 23796554 |6096 1536 12050336 63.6

Cipher

TABLE 2.4: Results for Scenario 2 (IPv6). For each platform and each cipher, the best
implementation results are reported in case more than one implementation was available
in the framework. The code size and memory consumption are specified for the whole
scenario (and not just the AEAD algorithm alone), which includes the 1280-byte IPv6
packet to be encrypted and/or authenticated. The smaller the Figure-of-merit, the better
is the implementation of a cipher.

the difference between ASCON and Ketje-Jr is much bigger. Similar to before, the
FOM score of NORX is significantly better than that of the runner-up ASCON.

It is interesting to observe that NORX is in both scenarios speed-wise much better
than the other candidates. NORX outperforms its CAESAR competitors by a factor
of at least two; in some extreme cases, NORX is even five times faster than the
second-best algorithm. This significant difference begs for more analysis and raises the
question of what design decisions make an AEAD algorithm efficient (or inefficient)
on small microcontroller platforms. However, this question is difficult to answer since
the efficiency of AEAD designs depends on many different factors, some of which
are architecture-independent, i.e. affect the performance on 8, 16, 32, and 64-bit
platforms similarly, whereas others are architecture-dependent in the sense that they
impact the performance across platforms differently. An example of the latter is the
organization of the state, i.e. whether the state is processed at a granularity of 32-
bit words or 64-bit words. The benchmarked version of NORX processes the state
in 32-bit words, whereas ASCON, ACORN, and Ketje-Jr operate on 64-bit words.
Organizing the state in 64-bit quantities is the natural choice for designs aiming at
high performance on Intel/AMD and 64-bit ARM processors as it allows one to exploit
the full word-size of these processors, but may lead to suboptimal performance on
smaller microcontroller platforms, which is due to three reasons.

First, C compilers for 8-bit AVR and 16-bit MSP microcontrollers (e.g. mspgcc) are, in
general, not very good at handling 64-bit words (i.e. operands of type uint64_t). We
assume this is because outside cryptography there are very few application domains
where a programmer really needs a 64-bit integer on an 8 or 16-bit microcontroller.
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NORX128 uses 32-bit words, which seems to make it much easier for a C compiler
to generate efficient code than for the other CAESAR candidates that process 64-bit
words. The second reason is the small register space of 8 and 16-bit microcontrollers.
For example, the MSP430 architecture comes with only twelve 16-bit general-purpose
registers, which means it would theoretically be possible to hold three 64-bit words
in the register file. However, in practice, this is not the case since always one or two
registers are needed for temporary results and often also one register has to be set
to 0. Therefore, it can be expected that no more than two 64-bit words can be kept
in registers at any time, but it may be possible to accommodate five 32-bit words
when the cipher’s state is organized in 32-bit words. Finally, the third reason why
64-bit words can entail suboptimal performance is ARM-specific and relates to the
fact that one of the two operands of an arithmetic/logical instruction is fed through
a barrel-shifter before it enters the ALU, which means shifts and rotations can be
executed “for free” together with other instructions. However, on a 32-bit ARM
microcontroller, shifts and rotations are only free for 32-bit operands, but not for
64-bit quantities.

2.5 Comparison with other Benchmarking Tools

Besides FELICS, there exist a few other tools for the benchmarking of cryptographic
algorithms, of which eBACS and XXBX are the most closely related ones. eBACS
(short for ECRYPT Benchmarking of Cryptographic Systems) was developed dur-
ing the ECRYPT II project to evaluate the performance of cryptographic algorithms
on Intel/AMD processors and high-end ARM models capable to run Linux (e.g. the
Cortex-A series). It features modules for measuring the performance of public-key
cryptosystems (called eBATS), stream ciphers (eBASC), hash functions (eBASH),
and authenticated encryption algorithms (eBAEAD). Those modules operate all un-
der a common framework called SUPERCOP (System for Unified Performance Evalu-
ation Related to Cryptographic Operations and Primitives) that allows benchmarking
of C, C++ and assembly implementations. It comes with a large collection of imple-
mentations of cryptographic algorithms and automatically compiles source code using
different compilers and compiler options. The execution time is extracted via a cycle
counter (accessed through assembler code) for many different lengths of input data.
Since execution time is the only metric measured by this framework, implementations
are optimized solely for speed.

The eXternal Benchmarking eXtension [WBG10] is an extension for the SUPERCOP
framework developed with the objective of benchmarking hash functions on different
microcontrollers in the context of the SHA-3 competition. XBX was the first project
to measure, in a unified manner, the performance of cryptographic primitives built
for different devices using the same evaluation methodology. In support for the now
finished CAESAR competition, XBX was extended for AEAD algorithms and the
ability to measure power consumption. However, apart from a 1-page summary of
this so-called XXBX extension [Car-+18] (published in 2017), we are not of aware any
further papers describing concrete details of its inner working, which indicates that
XXBX is still under development.

Low-Level API.

eBACS (and also XXBX) require AEAD implementations to follow a simple high-level
API consisting of just two basic functions, namely aead_encrypt and aead_decrypt.
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This simplicity ensures that the API is easy to use (and hard to misuse), even for in-
experienced software developers, but yields very coarse-grained results when applied
to benchmarking. FELICS-AEAD, on the other hand, defines a low-level API com-
prising the seven functions specified in Listing 2.1. This low-level API offers a high
degree of flexibility and allows for easy implementation of different kinds of security
services, including the high-level functions of eBACS, for which nothing more than
simple wrappers are needed. Consequently, adhering to the low-level API does not
introduce more development effort than the high-level functions of eBACS. However,
the low-level API enables a more fine-grained evaluation of AEAD algorithms since
not only their overall execution times can be compared but also the times needed for
initialization, encrypting/decrypting the data, processing the associated data, and
generating/verifying the authentication tag. All these timings are valuable for al-
gorithm designers when trying to analyze why a given AEAD algorithm is faster or
slower than others. The fine-grained benchmarking results obtained with the low-
level API may also be useful when one has to find the most suitable AEAD algorithm
(out of a pool of candidates) for the encryption and/or authentication of a certain
amount of data and associated data, respectively.

Evaluation Scenarios.

eBACS measures the execution time of AEAD algorithms for combinations of data
lengths and associated data lengths ranging from 0 to 2048 bytes in steps of one byte.
These more than four million combinations have to be multiplied by the number of
compiler options (i.e. optimization levels), which makes the collection of benchmark-
ing results extremely computation-intensive and costly, especially when a large num-
ber of AEAD implementations have to be evaluated. The target platforms of eBACS
(Intel/AMD and high-end ARM processors) are powerful enough to execute such a
workload in an acceptable time, but this is not the case for resource-constrained 8 and
16-bit microcontrollers that can only be accessed via a debug probe and have to be
programmed separately for each implementation. Using cycle-accurate instruction-
set simulators is also not a solution since most of them lack a stable way of scripting
to automate the verification of test vectors and the recording of cycle counts. These
issues were the main reason to introduce the two evaluation scenarios (and six sub-
scenarios) described in Section 2.2.1. Namely, by defining very specific use cases that
resemble real-world security services in the IoT, FELICS-AEAD becomes capable to
evaluate a large number of implementations in a reasonable amount of time. The
two scenarios are intended to have very different characteristics and requirements for
AEAD algorithms. For example, the amount of data in Scenario 1 is relatively small
and the length of the associated data is roughly a quarter of the data length. On the
other hand, the amount of data in Scenario 2 is much higher, but the associated data
amounts to only a small fraction of the data-length.

Figure-of-Merit

eBACS measures only the execution time of AEAD implementations, which makes
it relatively easy to rank candidates by e.g. comparing their average throughput in
cycles/byte. In contrast, FELICS-AEAD determines not only the execution time but
also the memory footprint and code size of an implementation on each of the three
supported platforms. This is reasonable since both RAM and ROM (resp. flash) are
usually scarce resources in the IoT. However, taking three different metrics for each
AEAD implementation into account makes a comparison of the benchmarking results
relatively difficult, which is why FELICS allows the user to define a Figure-of-Merit
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(FOM) that combines execution time, RAM footprint, and code size into a single
number. The FOM metric can use different weight factors for the three metrics, but
by default, they have equal weight and, consequently, the execution time is considered
to be equally important as RAM footprint and code size.

2.6 Conclusions and Remarks

In this paper, we introduced an extension to FELICS, a free and open-source bench-
marking framework for the evaluation of AEAD algorithms. The main motivation
behind this development is to give the designers of AEAD algorithms a fair, compre-
hensive and consistent way of evaluating their algorithms in the context of lightweight
embedded devices, as well as a consistent way of comparing performance metrics be-
tween different algorithms. More specifically, this paper provided three contributions:
(i) an API that allows a fine-grained evaluation of algorithms, while still maintaining
design flexibility for the designers; (ii) a series of real-world based evaluations sce-
narios, allowing a fair comparison of algorithms based on their predicted future use;
and (iii) preliminary results with a small set of well-known AEAD algorithms that
demonstrate the framework’s practical value. Thanks to its modular design, FELICS
is very flexible and can be extended to support new metrics, new scenarios, and new
devices. Furthermore, new implementations of AEAD algorithms can easily be added
to the framework. With that in mind, we encourage the cryptographic community
to contribute optimized C and Assembler implementations of AEAD candidates sub-
mitted to the NIST lightweight crypto project and support in this way the fair and
transparent evaluation of AEAD algorithms.
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This chapter is an adaptation of the article titled “An Evaluation of the Multi-
Platform Efficiency of Lightweight Cryptographic Permutations”[SG21]. The paper
was accepted for publication on SECITC 2021:  14th International Conference on
Security for Information Technology and Communications.

Permutation-based symmetric cryptography has become increasingly popular over
the past ten years, especially in the lightweight domain. More than half of the 32
second-round candidates of NIST’s lightweight cryptography standardization project
are permutation-based designs or can be instantiated with a permutation. The per-
formance of a permutation-based construction depends, among other aspects, on the
rate (i.e. the number of bytes processed per call of the permutation function) and
the execution time of the permutation. In this paper we analyze the execution time
and code size of assembler implementations of the permutation of ASCON, GIMLI,
SCHWAEMM, and XOODYAK on an 8-bit AVR and a 32-bit ARM Cortex-M3 micro-
controllers. Our aim is to ascertain how well these four permutations perform on
microcontrollers with very different architectural and micro-architectural character-
istics such as the available register capacity or the latency of multi-bit shifts and
rotations. We also determine the impact of flash wait states on the execution time
of the permutations on Cortex-M3 development boards with 0, 2, and 5 wait states.
Our results show that the throughput (in terms of permutation time divided by rate
when the capacity is fixed to 256 bits) of the permutation of ASCON, SCHWAEMM,
and XOODYAK is similar on ARM Cortex-M3 and lies in the range of 41.1 to 48.4
cycles per rate-byte. However, on an 8-bit AVR ATmegal28, the permutation of
SCHWAEMM outperforms its counterparts of ASCON and XOODYAK by a factor of
1.59 and 1.48, respectively.
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FIGURE 3.1: North American microcontroller market by product (8-bit, 16-bit, 32-bit)
in million units (source: Radiant Insights Inc. [Rad15])

3.1 Introduction

The term Internet of Things (IoT) describes the evolution of the Internet from a
computer network to a network that connects various kinds of smart devices and
enables them to communicate with each other or transmit data to central servers.
This development started roughly 15 years ago, when more and more “everyday ob-
jects,” ranging from household appliances over business machines to vehicles, became
equipped with microcontrollers and transceivers for wireless communication (e.g. Zig-
Bee, Bluetooth, WiFi). These devices differ greatly in terms of computing power, but
also regarding their data transmission speeds and run-time memory capacities. At
one end of the spectrum are e.g. modern cars, which are equipped with powerful
processors, while e.g. battery-operated miniature sensor nodes at the opposite end of
the spectrum commonly feature only a small 8-bit or 16-bit microcontroller. Already
today, approximately twice as many “smart things” are connected to the Internet
than ordinary computers like PCs or laptops, and this proportion will grow rapidly
over the next couple of years [Tell7]. Internet-enabled smart devices can be found
in basically all areas of our life, from home automation over industrial production
(“Industry 4.0”) to transportation and logistics.

The IoT can be seen as a large ecosystem populated by highly diverse and heteroge-
neous devices, which come in all shapes and sizes. Therefore, it is little surprising that
there exist dozens of different (and largely incompatible) microcontroller platforms,
operating systems, and wireless communication standards for the IoT, many of which
are optimized to serve a certain application domain with specific requirements and
constraints. This heterogeneity of IoT devices is in stark contrast to the “monocul-
ture” in the realm of classical computers like PCs or laptops, where the 64-bit Intel
architecture has a market share of well over 90%. Nonetheless, 64-bit Intel proces-
sors represent only a small fraction of the IoT altogether, which is (quantitatively)
dominated by microcontrollers with rather modest computational capabilities. Fig-
ure 3.1 shows a forecast of the development of the North American microcontroller
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market until 2020, split up in 8-bit, 16-bit, and 32-bit architectures [Rad15]. The
North American market was estimated to be over 3700 million units in 2013 and is
expected to reach some 8000 million units in 2020, i.e. the compound annual growth
rate is more than 11.2% in the period from 2014 to 2020. 32-bit microcontrollers con-
stitute the fastest growing product segment over the forecast period, driven mainly
by an increased demand for higher processing capabilities and the expected reduc-
tion in unit prices. Currently, the ARM architecture is the undisputed leader in the
32-bit segment, but it faces fierce competition by ESP32 and RISC-V. There is also a
growing demand for 16-bit microcontrollers (e.g. MSP430, 68HC16) due to the need
for high level of precision in embedded processing and the development of intelligent
and real-time functions in the automotive domain [Rad15]. The 8-bit platforms (e.g.
AVR, PIC) are expected to retain their market share and continue to be widely used
for automotive and industrial applications [Mor20].

Since there is no single dominating microcontroller platform in the IoT, it is essen-
tial that a cryptographic algorithm delivers consistently high performance on a wide
variety of 8, 16, and 32-bit architectures. This is far from trivial to achieve since, for
example, a 32-bit ARM Cortex-M3 microcontroller has significantly different archi-
tectural and micro-architectural characteristics than an 8-bit AVR, ATmega microcon-
troller. The Cortex-M3 has 16 registers, of which 14 are available for general use, i.e.
the general-purpose register space amounts to 448 bits. AVR microcontrollers, on the
other hand, have 32 general-purpose registers, but each of them can only store eight
bits of data, yielding a usable register space of 256 bits. ARM and AVR also differ
greatly in their ability to execute multi-bit shifts or rotations, which are performance-
critical operations of various symmetric cryptosystems. The arithmetic/logic unit of
a Cortex-M3 comes with a fast barrel shifter capable to shift or rotate a 32-bit word
by an arbitrary number of bits in a single cycle. Furthermore, a shift or rotation can
be combined with most data-processing instructions, in which case they become prac-
tically “free” [Arm21]. More specifically, the second operand of most arithmetic or
logical instructions can be shifted or rotated (before the actual operation is executed)
without increasing the instruction latency. However, the situation is much different
for 8 and 16-bit architectures, as most of them have only single-bit shift and rotate
instructions, which means that shifting a register by n bits requires (at least) n clock
cycles. This can make multi-bit shifts and rotations very costly, especially when the
length of the operand to be shifted or rotated exceeds the capacity of a single register.
For example, rotating a 32-bit word on an 8-bit AVR microcontroller (stored in four
registers) can, depending on the rotation amount, require more than 20 clock cycles.

A cryptographic permutation is a bijective mapping within Z%, designed to behave as
a random permutation, i.e. a permutation chosen randomly from the set of all possible
permutations that operate on b bits. The width b of a cryptographic permutation is
usually between 200 (for cryptosystems targeting the lightweight domain) and 1600
[Ber+12]. Permutation-based cryptography emerged approximately 15 years ago as
a sub-area of research in the field of symmetric cryptography and started to attract
particular interest when the hash function KECCAK [Ber+11e] and the stream cipher
SALSA [Ber08] became popular!. Permutations are extremely flexible and versatile
primitives, similar to block ciphers, and can be used to construct e.g. hash func-
tions, message authentication codes, pseudo-random bit-sequence generators, stream

Tn October 2012, the U.S. National Institute of Standards and Technology (NIST) selected KEc-
CAK as winner of the SHA-3 hash competition [Nat15]. Roughly 1.5 years later, in April 2014, Google
announced that a TLS cipher suite using CHACHA20 (a variant of SALSA) for symmetric encryption
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ciphers, and authenticated encryption algorithms [Ber+11b; Ber+12]. However, un-
like a block cipher, a permutation does not have a key schedule and needs to be effi-
cient only in one direction since the inverse permutation is normally never used. Past
research in the area of permutation-based cryptography can be split into two main
categories; the first is about the design (and security analysis) of permutation-based
constructions and “modes of use” built on top of them, while the second category is
concerned with the permutations themselves. Representative work in the former cat-
egory includes besides the classical sponge [Ber+11b] and duplex [Ber+11d] construc-
tion also various kinds of constuctions/modes that aim to boost performance through
a higher bitrate (e.g. full-state absorption [MRV15], BEETLE mode [Cha-+18]) or via a
parallel application of a sponge or a permutation (e.g. KANGAROOTWELVE [Ber+18],
FARFALLE [Ber+17¢]), as well as modes with “built-in” countermeasures against cer-
tain physical attacks (e.g. IsAp [Dob+20]). Research in the second category deals
mainly with the design of permutations and their efficient (and side-channel resis-
tant) implementation in hardware and/or software. The majority of the published
permutations are either classical Addition-Rotation-XOR (ARX) designs, e.g. SALSA
[Ber08], or can be classified as “AndRX” variants, e.g. KECCAK-f [Ber+11le], NORX
F! [AIN16].

Permutation-based cryptography is well suited for resource-limited devices (e.g. RFID
tags, wireless sensor nodes, smart cards), which is evidenced by the fact that roughly
half of the 32 second-round candidates of NIST’s currently-ongoing standardization
effort for lightweight cryptography use a permutation as underlying primitive [Nat21].
However, despite a broad body of research in the area of permutation-based cryptog-
raphy, surprisingly little is known about the performance of state-of-the-art permu-
tations on small microcontrollers. There exist, of course, a lot of benchmarking
results for the second-round candidates of NIST’s lightweight crypto project?, but
these benchmarks specify only the execution time of the full authenticated encryp-
tion (resp. hash) algorithms and not that of the permutation alone. These timings
are relatively poor indicators for the efficiency of the underlying permutation since
they also include various “auxiliary” operations. For example, designs based on the
BEETLE mode, such as the NIST candidate SCHWAEMM [Bei+20c], include a feedback
function p through which data is injected into (and extracted from) the state. Further-
more, some optimized implementations of permutations that operate on 64-bit words,
like KECCAK-f[1600] and ASCON’s p [Dob+21], adopt the bit-interleaving method
[Ber+11e] to speed up rotations on 32-bit ARM processors. This bit-interleaving
makes the injection/extraction of data to/from the state more costly, whereby the
actual penalty factor depends on how fast the permutation itself is. The benchmarks
for full authenticated encryption or hash algorithms do not even allow one to reason
about the relative efficiency of their permutations due to differences in the bit-rates.
Unfortunately, the lack of detailed implementation results makes the design of new
permutations a challenging task since it is not easily possible to compare the execution
time and code size with the state-of-the-art.

In this paper, we analyze and compare the multi-platform (resp. cross-platform) effi-
ciency of four cryptographic permutations that are part of candidates of the current
lightweight cryptography standardization project of the National Institute of Stan-
dards and Technology (NIST) [Nat21]. These four candidates are ASCON [Dob+21],

will be their default option to secure HT'TPS connections on devices without AES hardware acceler-
ation [Burl4].

2See  https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking (accessed
2020-10-10).
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GIMLI [Ber+17a), SCHWAEMM [Bei+20c], and X0ODYAK [Dae+20], all of which come
with algorithms for Authenticated Encryption with Associated Data (AEAD) and
hashing. In addition, they have in common that the permutation width is very simi-
lar (i.e. between 320 and 384 bits) and they all consist of only simple arithmetic/logic
operations (SCHWAEMM is a classical ARX construction, while the other three can be
classified as “AndRX” designs, i.e. they use the logical AND operation or OR oper-
ation as a source of non-linearity). We evaluate the execution time and code size of
these four permutations with highly-optimized Assembler implementations for ARM
Cortex-M3 and AVR ATmegal28 microcontrollers, whereby we applied the same gen-
eral optimization strategies and invested a similar amount of optimization effort for
each implementation so as to ensure a fair evaluation. By focusing solely on the per-
mutations, we aim to make their relative performance more transparent and generate
new insights to their multi-platform efficiency, which are not immediately apparent
when one compares the execution times collected by other benchmarking initiatives.
We also assess how basic design decisions, e.g. shift /rotation amounts, impact the
performance of the permutations on 32-bit ARM and 8-bit AVR platforms.

3.2 Overview of the Permutations

In this section, we briefly review the main properties of the four permutations we
consider in this paper, which are the permutations of the NIST candidates ASCON,
GIMLI, SCHWAEMM, and XOODYAK. Except for GIMLI, they all made it to the final
round of the evaluation process [Nat21]. GIMLI was eliminated in the second round,
but we still include it in our study since its permutation is well known and has inspired
a number of other designs.

ASCON

ASCON is not only one of the 10 finalists of NIST’s standardization project in lightweight
cryptography, but was also selected for the final portfolio of the CAESAR competi-
tion. The main AEAD instance of the ASCON suite is ASCON-128 and offers 128-bit
security according to [Dob-+21]. Tt is based on the so- called Monkey Duplex mode
[Ber+12] with a stronger keyed initialization and keyed finalization function, respec-
tively, which means the underlying permutation is carried out with an increased
number of rounds. Said permutation operates on a 320-bit state (organized in five
64-bit words) by iteratively applying a round function p. The number of rounds is
a = 12 in the initialization and finalization phase, and b = 6 otherwise; the corre-
sponding permutations are referred to as p® and p® in the specification. ASCON-128
processes associated data as well as plaintext/ciphertext with a rate of r = 64 bits,
i.e. the capacity is 256 bits. The hash function of the ASCON suite is a classical sponge
construction.

AscoN’s round function p is SPN-based and comprises three parts: (i) the addition
of an 8-bit round constant ¢, to a 64-bit state-word, (ii) a substitution layer that
operates across the five words of the state and implements an affine equivalent of the
S-box in the x mapping of KECCAK, and (iii) a permutation layer consisting of linear
functions that are similar to the ¥ functions in SHA2 and performed on each state-
word individually. The S-box maps five input bits to five output bits and is applied to
each column of the state, whereby the five state-words are arranged upon each other.
It is normally implemented in a bit- sliced fashion using logical ANDs and XORs. The
permutation layer performs an operation of the form x =z @ (x => nq) ® (z =>> ng)
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on each word z of the state with n; € {1,7,10,19,61} and ne € {6,17,28,39,41}
[Dob+21].

Gimli

The second-round NIST candidate GIMLI consists of the AEAD algorithm GIMLI-
CI1PHER and the hash function GIMLI-HASH. Both are claimed to provide 128 bits
of security against all known attacks, and GIMLI-CIPHER even uses a 256-bit key
to “reduce concerns about multi-target attacks and quantum attacks” [Ber+17al.
The underlying 384-bit permutation is called GIMLI-24 and was presented at CHES
2017. GIMLI-CIPHER is a conventional duplex construction with a capacity of 256
bits, i.e. the rate is 128 bits. On the other hand, GIMLI-HASH is an ordinary sponge
and also uses a rate of 128 bits. Unfortunately, the permutation has weak diffusion,
which makes it possible to build a full-round distinguisher of relatively low complex-
ity [F16+21]. Though this distinguisher on the permutation does not immediately
threaten the security of GIMLI-CIPHER and GIMLI-HASH, the NIST decided to not
promote GIMLI to the final round.

The GIMLI-24 permutation was designed to reach high performance across a broad
range of platforms, from high-end 64-bit CPUs with vector extensions to small 8-bit
microcontrollers, as well as FPGAs and ASICs. Its 384-bit state is represented as a
3 x 4 matrix of 32-bit words. Each of the 24 rounds consists of three operations: (i) a
non-linear layer in the form of a 96-bit SP-box that is applied to each column of the
matrix, (ii) a linear mixing layer in every second round, and (iii) a constant addition
in every fourth round. The SP-box itself is inspired by NORX and can be efficiently
implemented using logical operations (32-bit AND, OR, and XOR), left shifts by 1, 2
and 3 bits, as well as rotations by 9 and 24 bits. On the other hand, the linear layer
performs swap operations on row 0 of the matrix: a small-swap every fourth round
(starting from round 1), and a big-swap also every fourth round (starting from round
3).

Sparkle

The SPARKLE suite submitted to NIST consists of four instances of the AEAD al-
gorithm SCHWAEMM, targeting security levels of 128, 192, and 256 bits, as well as
two instances of the hash function ESCH with digest lengths of 256 and 384 bits.
All instances are built on top of the SPARKLE permutation family, which consists
of three members that differ by the width (i.e. the state size) and the number of
steps they execute. SCHWAEMM is based on the highly-efficient BEETLE mode of
use [Cha-+18], whereas ESCH can be classified as a sponge construction. The main
instance of SCHWAEMM uses the 384-bit variant of the SPARKLE permutation, i.e.
SPARKLE384, with a rate of 256 bits. This variant is also used for ESCH256, the main
instance of the hash function ESCH. Besides SPARKLE384, there exists also a smaller
and a larger version of the permutation with a width of 256 and 512 bits, respectively
(see [Bei+20c] for details).

SPARKLE384 is a classical ARX design, optimized for high speed on a wide range of 8,
16, and 32-bit microcontrollers. The permutation is performed with a big number of
steps, namely 11, for initialization, finalization, and separation between the processing
of associated data and the secret message, while a slim (i.e. 7-step) version is used to
update the intermediate state. From a high-level point of view, the permutation has
an SPN structure and comprises three main parts: (i) a non-linear layer consisting of
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six parallel ARX-boxes, (ii) a simple linear diffusion layer, (iii) the addition of a step
counter and round constant to the 384-bit state. The ARX-box is called ALZETTE
and can be seen as a small 64-bit block cipher that operates on two 32-bit words and
performs additions modulo 232, logical XORs, and rotations by 16, 17, 24, and 31 bits
[Bei+20c]. On the other hand, the linear layer is, in essence, a Feistel round with a
linear Feistel function, followed by a swap of the left and right half of the state.

Xoodoo

XOODYAK is a highly versatile cryptographic scheme that is suitable for a wide range
of symmetric-key functions including hashing, pseudo-random bit generation, au-
thentication, encryption, and authenticated encryption. At its heart is XOODOO, a
lightweight 384-bit permutation [Dae+18]. The XOODYAK suite submitted to the
NIST lightweight crypto project includes an AEAD algorithm and a hash function;
both are built on the Cyclist mode of operation [Dae+20]. To perform authenticated
encryption, Cyclist has to be initialized in keyed mode with a 128-bit key and nonce,
respectively, after which associated data can be absorbed at a rate of 352 bits (i.e.
44 bytes), whereas plaintext/ciphertext gets processed at a rate of 192 bits. On the
other hand, when Cyclist is operated in hash mode, the rate is 128 bits (i.e. 256 bits
of capacity).

X00DOoO is inspired by both KEccAkK and GIMLI in the sense that the state has
the same size and is represented in the same way as in GIMLI, though the round
function is similar to KECCAK [Ber+11e]. Consequently, the state has the form of
a 3 X 4 matrix of 32-bit words, which can be visualized via three horizontal 128-bit
planes (one above the other), each consisting of four 32-bit lanes. It is also possible
to view the 384-bit state as 128 columns of three bits lying upon another (i.e. each bit
belongs to a different plane). The X0ODOO permutation executes 12 iterations of a
round function of five steps: a column-parity mixing layer 8, a non-linear layer y, two
plane-shifting layers (pwest and peast) between them, and a round-constant addition.
Both p layers move bits horizontally and perform lane-wise rotations of planes as
well as rotations of lanes by 11, 1, and 8 bits to the left. On the other hand, in the
parity-computation part of 8 and in the x layer, state-bits interact only vertically, i.e.
within 3-bit columns. The 0 layer mainly executes XORs and left-rotations by 5 and
14 bits. Finally, the non-linear layer x applies a 3-bit S-box to each column of the
state, which can be computed using logical ANDs, XORs, and bitwise complements.

3.3 Implementation and Evaluation

To ensure a fair and consistent evaluation of the four permutations, we applied the
same implementation and optimization strategy to each permutation, and we put a
similar effort into optimizing each implementation. This section gives a brief overview
of our optimization strategy for ARM and AVR, and describes how we optimized and
benchmarked the permutations. In total, we evaluated eight implementations (four
for ARM and also four for AVR), half of which we developed from scratch, namely
the ARM implementation of SPARKLE384 and the AVR implementations of ASCON,
SPARKLE384, and X0OODOO, whereas the remaining four are based on Assembler
source code provided by the designers (with minor modifications to ensure a fair and
consistent evaluation).
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3.3.1 Optimization Strategies

The assembly implementations for the ARM Cortex-M3 platform [Arm16] are purely
speed-optimized, which means whenever there was a trade-off to be made between
execution time and code size, we opted for the optimization that led to the best
performance. This implies, for example, that the main loop of each permutation is
fully unrolled to eliminate the loop overhead. Round constants are not kept in tables
in flash or RAM, but put into registers on the fly using movw and movt instructions
or, if they are less than 12 bits long, directly encoded into an instruction as inter-
mediate value. Such speed-optimized implementations have been developed by the
designers of AsCcON, GIMLI, and X00ODOO; we used these implementations as start-
ing point and made some small modifications to increase the readability of the source
code (e.g. by using macros) and ensured that they all adhere to the specification of
the ARM Application Binary Interface (ABI). For example, the ABI specification
requires that the stack pointer is double-word (i.e. 8 bytes) aligned at a public inter-
face; when necessary we modified the source code to ensure full ABI compliance. We
also translated the assembler source code of GIMLI from the GNU assembler syntax
to the syntax used by Keil MicroVision so that its execution time can be determined
with Keil’s cycle-accurate simulator and by execution on development boards using
the GNU toolchain for ARM. The original ARM implementation of ASCON provided
by its designers was written in the form of “inlined” assembly code for the permuta-
tion. We converted this implementation into a separate assembly function to ensure
consistency across all permutations. The fourth permutation, which is SPARKLE384,
was implemented by us from scratch.

Our assembly implementations of the permutations for the 8-bit AVR architecture
[Mic20] aim for small (binary) code size instead of high speed. Therefore, we re-
frained from code-size increasing optimization techniques like (full) loop unrolling as
otherwise the code size would become unreasonably large. This can be exemplified
using the AVR assembler implementations of GIMLI (provided by its designers) as
case study. One of these implementations is size-optimized and, therefore, relatively
small (less than 800 bytes), whereas the other is speed-optimized (with fully unrolled
loop) and has a code size of more than 19 kB. For comparison, the code size of the
fully-unrolled ARM implementation is less than 4 kB. However, it has to be taken
into account that flash capacity for storing program code is, in general, more scarce
on small and cheap devices with an 8-bit microcontroller than on devices equipped
with a more powerful 32-bit ARM microcontroller. We developed the assembly imple-
mentations of ASCON, SPARKLE384, and XOODOO from scratch since, at the time we
started with our evaluation of the permutations, no optimized AVR assembler code
existed for them. However, we took over the size-optimized AVR implementation of
the GIMLI permutation developed by its designers since it complies with our opti-
mization strategy. We put a similar effort into optimizing the AVR implementation
of the permutations to ensure a fair and consistent evaluation.

3.3.2 Benchmarking.

We evaluated the execution time of both the AVR and the ARM implementations
through simulation with a cycle-accurate instruction set simulator, namely the simu-
lator contained in Atmel Studio 7 and Keil MicroVision 5.24, respectively. Execution
times obtained by simulation with Atmel Studio are, in general, very close to the
timings on “real” hardware. Unfortunately, this is usually not the case for simulation
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results for ARM since, as mentioned on the Keil website?, the simulator assumes
ideal conditions for memory accesses and “does not simulate wait states for data or
code fetches” Therefore, the timings obtained with the simulator should be seen
as lower bounds of the actual execution times one will get on a real Cortex-M3 de-
vice. In order to get realistic performance figures, we also measured the execution
time of the permutations on three development boards with a different number of
flash wait states. The first board is the STM32 VL Discovery, which is equipped
with an STM32F100RBT6B Cortex-M3 microcontroller clocked with a nominal fre-
quency of 24 MHz. Due to this relatively low clock frequency, the microcontroller
can access flash memory without wait states. Our second board is again an STM32
board, but a more sophisticated one, namely the STM32 Nucleo-64. It comes with an
STM32F103RBT6 Cortex-M3 microcontroller clocked with a frequency of 72 MHz.
At this frequency, flash accesses require two wait states. Finally, the third board is an
Arduino Due [Ard12], which houses an Atmel SAM3X8E Cortex-M3 microcontroller
clocked with a frequency of 84 MHz. When operated with its standard configuration,
flash accesses require 5 wait states. However, the performance impact of this high
number of wait states is, to some extent, mitigated by a “flash accelerator.”

3.4 Results

Table 3.1 compares the execution time and code size of speed-optimized (i.e. fully un-
rolled) assembly implementations of the four permutations ASCON, GIMLI, SPARKLE384,
and XooD0O. These execution times have been determined via simulation with
the cycle-accurate instruction set simulator of Keil MicroVision 5.24 using a generic
Cortex-M3 model as target device. The times range from 387 clock cycles (for As-
CON) to 1041 clock cycles (GiMLI). However, when comparing symmetric crypto-
graphic primitives, the throughput (in cycles per byte) is often more meaningful than
the raw execution time. For example, when comparing block ciphers, the throughput
in terms of execution time divided by block size allows one to take into account that
different algorithms can have different block sizes. Similarly, when comparing per-
mutations, one can obtain throughput figures by dividing the computation time by
either the width of the permutation or the rate of the associated AEAD algorithm.
In the case of our four permutations, the corresponding AEAD rates are eight bytes
(ASCON-128), 16 bytes (GIMLI-CIPHER), 24 bytes (XOODYAK), as well as 32 bytes
(SCHWAEMM256-128). Unfortunately, when using the rate of the associated AEAD
algorithm to determine the throughput, the evaluation takes into account the effi-
ciency of the permutation and the efficiency of the mode of the AEAD algorithm.
However, since we want to evaluate and compare the efficiency of the permutation
alone, we decided to calculate the throughput under the assumption that all four per-
mutations are used to instantiate one and the same mode of use (namely a classical
sponge) with one and the same capacity (namely 256 bits, which corresponds to 128
bits of security). This means ASCON has a rate of eight bytes, and the three other
permutations a rate of 16 bytes.

The last column of Table 3.1 specifies the throughput (in cycles per byte) of the
permutations calculated in this way, i.e. by dividing the execution time by the rate
under the assumption that the permutation is used to instantiate a classical sponge
with a capacity of 256 bits. X0OODOO reaches the best throughput since it needs only
41 clock cycles per rate-byte, closely followed by ASCON and SPARKLE384, which

3See https://www2.keil.com/mdk5/simulation (accessed 2020-09-14)
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Permutation Code size Exec. time Throughput
(bytes) (clock cycles) | (cc/rate-byte)
ASCON-128 (6 rounds) 1364 387 48.38
Gimli (24 rounds) 3950 1041 65.06
SPARKLE384 (7 steps) 2820 781 48.81
Xoodoo (12 rounds) 2376 657 41.06

TABLE 3.1: Code size, execution time, and throughput of speed-optimized ARMv7-M
assembly implementations of the four permutations on a Cortex-M3 microcontroller.

have almost identical throughput. The throughput of GIMLI is clearly the worst of
all four permutations and about 1.5 times lower than that of X00D0O. In terms of
code size, ASCON is the clear winner, while GIMLI has the largest code size and is

more than twice as big as ASCON.

Permutation Code size Exec. time Throughput
(bytes) (clock cycles) | (cc/rate-byte)
ASCON-128 (6 rounds) 888 6434 804.25
Gimli (24 rounds) 778 23699 1481.19
SPARKLES384 (7 steps) 866 8068 504.25
Xoodoo (12 rounds) 906 11972 748.25

TABLE 3.2: Code size, execution time, and throughput of size-optimized AVR assembly
implementations of the four permutations on an ATmegal28 microcontroller.

Table 3.2 contains the code size, execution time and throughput (in terms of permuta-
tion time divided by the rate, assuming a capacity of 256 bits) of code-size optimized
AVR assembly implementation of the four permutations on an 8-bit ATmegal28 mi-
crocontroller [Micll]. The execution times were simulated using the cycle-accurate
instruction set simulator that is part of Atmel Studio 7. Apparently, the obtained
AVR timings are significantly worse (by at least an order of magnitude) than the
execution times of the permutations on ARM. This massive performance penalty can
be explained by the different optimization goals (i.e. size vs. speed) and, more impor-
tantly, by the completely different characteristics of the architectures as mentioned
in Section 1 (e.g. register space, latency of multi-bit shifts and rotations). In terms of
throughput, SPARKLE384 is now the clear winner, followed by ASCON and X0O0ODOO.
In contrast to ARM, AScON slightly outperforms XooD00 on AVR. While on ARM
the top-3 permutations were throughput-wise relatively close to each other, we see a
significant difference on AVR since the throughput of ASCON is 1.60 times worse than
the throughput of SPARKLE384, and the throughput of X00DO0O is about 1.62 times
worse. We emphasize again that these results are based on size-optimized implemen-
tations, which means all four permutations can reach better throughput rates when
optimized for speed. Such speed-optimized implementations were developed in the
course of Rhys Weatherley’s benchmarking project for AVR and are available online”.
Interestingly, these benchmarking results indicate that the relative performance of the
corresponding AEAD algorithms is very similar to our throughput results for the per-
mutations, namely SCHWAEMM256-128 is significantly faster than ASCON-128 and
XOODYAK.

“See  https://rweather.github.io/lightweight-crypto/performance_avr.html (accessed

2020-09-14).
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. Keil pVision | VL Discovery| Nucleo-64 | Arduino Due
Permutation ) ) . . .
(simulation) | 0 wait states | 2 wait states | 5 wait states
ASCON-128 (6 rounds) 387 389 601 (1.54) 472 (1.21)
Gimli (24 rounds) 1041 1043 1656 (1.59) 1287 (1.23)
SPARKLE384 (7 steps) 781 782 1196 (1.53) 936 (1.20)
Xoodoo (12 rounds) 657 659 1014 (1.54) 795 (1.21)

TABLE 3.3: Execution time of the four permutations as determined by simulation with
Keil MicroVision using a generic Cortex-M3 model and measurement on Cortex-M3 de-
velopment boards with 0, 2, and 5 flash wait states (values in parentheses are the perfor-
mance penalties over the execution time on the VL Discovery board, which has 0 flash
wait states).

As mentioned in the previous section, the simulation results obtained with Keil Mi-
croVision may differ from the execution time on “real” Cortex-M3 hardware since the
Keil simulator does not take flash wait states into account. The purpose of flash wait
states is to compensate the difference of the maximum clock frequency with which
the microcontroller core and the flash memory can be clocked. Modern Cortex-M3
microcontrollers can reach clock frequencies of more than 200 MHz, which is far above
the maximum frequency of flash memory (usually between 16 to 32 MHz). Therefore,
we decided to assess the impact of flash wait states on the performance of the four
permutations by measuring their execution time on the three Cortex-M3 development
boards mentioned in the previous section, namely an STM32 VL Discovery (no flash
wait states), an STM32 Nucleo-64 (2 flash wait states), and an Arduino Due (5 flash
wait states). However, the SAM3X8E microcontroller on the Arduino board contains
a “flash accelerator,” which is essentially a small buffer located between the micro-
controller core and the flash memory, to mitigate the impact of the wait states. Table
3.3 shows the measured execution times of the four permutations on these boards.
The timings on the VL Discovery are almost identical to those obtained through
simulation with Keil MicroVision, which confirms that the Keil simulator is indeed
cycle-accurate. On the other hand, the execution times on the Nucleo-64 board are
significantly worse (by factors of between 1.53 and 1.60) than the results on the Dis-
covery board and the timings reported by the simulator. These results also show that
flash wait states do not impact each permutation to the same extent since the penalty
factor for ASCON is higher than the penalty factor for SPARKLE384. The timings on
the Arduino Due are better than the timings on the Nucleo-64, despite the larger
number of wait states, which is due to the afore-mentioned flash accelerator.

3.5 Conclusions

Since there is no single dominating platform in the IoT, designers of lightweight cryp-
tographic algorithms have to aim for multi-platform efficiency, i.e. efficiency on a
wide range of microcontroller architectures with highly diverse and divergent char-
acteristics. In this paper we analyzed to what extent the permutations of the NIST
candidates ASCON, GIMLI, SPARKLE and XOODYAK achieve this goal, whereby we
used 32-bit ARM Cortex-M3 and 8-bit AVR as evaluation platforms. We bench-
marked speed-optimized assembler implementations for ARM, using source code pro-
vided by the designers, and size-optimized assembler implementations for AVR, which
we mainly developed from scratch. Our results show that the throughput (i.e. per-
mutation time divided by rate when the capacity is fixed to 256 bits) of ASCON,
SPARKLE384, and X00DOO is very similar on ARM and differs only by a few cycles
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per rate-byte. On the other hand, on 8-bit AVR, SPARKLE384 significantly outper-
forms ASCON and X00ODOO by a factor of 1.63 and 1.65, respectively. One reason
for this discrepancy between the ARM and AVR results is the cost of multi-bit shifts
and rotations on the latter, which has a significant impact on the overall execution
time. However, the shifts and rotations do not impact the four permutations in the
same way; the impact on SPARKLE is relatively small since, as stated by the designers
in [Bei+20c], the rotation amounts were specifically chosen in a way that facilitates
high speed on AVR. On the other hand, the designers of ASCON and X0ODOO either
“over-optimized” their permutations for ARM, or they neglected efficiency on small
8 and 16-bit microcontrollers. On a more positive note, the results for SPARKLE
demonstrate that it is possible to design a permutation for multi-platform efficiency.
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This chapter is based on the specification of the SPARKLE family of of ciphers and
hash functions, which was published in a special issue of TOSC, dedicated to second
round candidates of the NIST lightweight standardization process[Bei+19]. Design
minutiae and cryptanalitical proofs are not discussed in this dissertation, as my main
contribution was towards the implementation aspects, and helping guide the design
into a direction that yielded high performance code.

My main contribution in this chapter was in Implementation Aspects. During the design period
of Alzette and their related hash and AEAD functions, my main work was guiding the design towards
components that would yield good performance on our target architectures, e.g. usage of 8n £ 1
bit rotations, combinations of arithmetic/logic operations with shifts that can use ARM’s barrel
shifter, and sizing the components in a way to maximize register-bank usage and minimize load-store
operations.
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4.1 Introduction

With the advent of the Internet of Things (IoT), a myriad of devices are being con-
nected to one another in order to exchange information. This information has to
be secured. Symmetric cryptography can ensure that the data those devices share
remains confidential, that it is properly authenticated and that it has not been tam-
pered with.

As such objects have little computing power—and even less so that is dedicated to
information security—the cost of the algorithms ensuring these properties has to
be as low as possible. To answer this need, the NIST has called for the design of
authenticated ciphers and hash functions providing a sufficient security level at as
small an implementation cost as possible.

In this document, we present a suite of algorithms that answer this call. All our
algorithms are built using the same core, namely the SPARKLE family of permutations.
The authenticated ciphers, SCHWAEMM, provide confidentiality of the plaintext as
well as both integrity and authentication for the plaintext and for additional public
associated data.

The hash functions, ESCH, are (second) preimage and collision-resistant. Our aim for
our algorithms is to use as few CPU cycles as possible to perform their task while
retaining strong security guarantees and a small implementation size. This speed will
allow devices to use much fewer CPU cycles than what is currently needed to ensure
the protection of their data. To give one of many very concrete applications of this
gain, the energy demanded by cryptography for a battery-powered microcontroller
will be decreased.

In summary, our goal is to provide fast software encryption for all platforms.

4.2 FEsch and Schwaemm: Hash and AEAD

Both are cryptographic algorithms that were designed to be lightweight in software
(i.e., to have small code size and low RAM footprint) and still reach high performance
on a wide range of 8, 16, and 32-bit microcontrollers. Section 4.6 gives an overview of
software implementation options for different platforms. ESCH and SCHWAEMM can
also be well optimized to achieve small silicon area and low power consumption when
implemented in hardware. Hardware implementation aspects (including a proposal
for a lightweight hardware architecture for the SPARKLE permutation) are discussed
in Section 4.6.1.

Our schemes are built from well-understood principles, i.e., the sponge (resp. duplex-
sponge) construction based on a cryptographic permutation, which, for example,
the NIST hashing standard SHA-3 employs as well. Our underlying permutation,
SPARKLE, follows an ARX construction like SHA-2 and Chacha/Salsa but, unlike
most ARX constructions, we provide security guarantees with regard to differential
and linear cryptanalysis thanks to the long trail strategy (LTS). The particular struc-
ture it imposes is also convenient to investigate other attacks (integral, impossible
differential, etc.) and thus to argue about the security of our algorithms against

After the main design phase, I worked on the reference code for NIST’s evaluation, and optimized
implementations and benchmarking for the competition part of the LWC call.

Due to the nature of my contribution, design minutiae and cryptanalitical proofs are not discussed
in this chapter.
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them. The LTS is a strategy which was first used to design the lightweight block
cipher Sparx, presented at ASTACRYPT 2016 [Din-+]. Several independent research
teams have already analyzed this algorithm and their results have bolstered our con-
fidence in this design approach.

4.2.1 The Hash Function Esch

A hash function takes a message of arbitrary length and outputs a digest with a fixed
length. It should provide the cryptographic security notions of preimage resistance,
second preimage resistance and collision resistance. The main instance of EscH (i.e.,
the primary member of the submission for the hash functionality) is ESCH256 which
produces a 256-bit digest, offering a security level of 128 bits with regard to the
above mentioned security goals. It is based on the permutation family SPARKLE384
(see Section 4.3). We also provide the member EsScH384 based on the permutation
family SPARKLES12, which produces a 384-bit digest and offers a security level of
192 bits. Both of those hash functions serve as the basis for two Extendable-Output
Functions (XOFs): XOEScH256 and XOEscH384.

The name EScH stands for
Efficient, Sponge-based, and Cheap Hashing.

It is also the part of the name of a small town in southern Luxembourg, which is
close to the campus of the University of Luxembourg. ESCH is pronounced [€f].

4.2.2 The Authenticated Cipher Schwaemm

A scheme for authenticated encryption with associated data (AEAD) takes a key and
a nonce of fixed length, as well as a message and associated data of arbitrary size.
The encryption procedure outputs a ciphertext of the message as well as a fixed-size
authentication tag. The decryption procedure takes the key, nonce, associated data
and the ciphertext and tag as input and outputs the decrypted message if the tag
is valid, otherwise a symbolic error L. An AEAD scheme should fulfill the security
notions of confidentiality and integrity. Users must not reuse nonces for processing
messages in a fixed-key instance.

The main instance of SCHWAEMM (i.e., the primary member of the submission for the
AEAD functionality) is SCHWAEMM256-128 which takes a 256-bit nonce, a 128-bit
key and outputs a 128-bit authentication tag. It achieves a security level of 120 bits
with regard to confidentiality and integrity. We further provide three other instances,
i.e., SCHWAEMM128-128, SCHWAEMM192-192, and SCHWAEMM256-256 which differ in
the length of key, nonce and tag and in the achieved security level.

The name SCHWAEMM stands for

Sponge-based Cipher for Hardened but Weightless Authenticated Encryption
on Many Microcontrollers

It is also the Luxembourgish word for “sponges”. SCHWAEMM is pronounced [[vem)].

4.3 Underlying permutation: Sparkle

It is a family of cryptographic permutations based on an ARX design. Its name comes
from the block cipher SPARX [Din-+], which SPARKLE is closely related to. SPARKLE
is basically a SPARX instance with a wider block size and a fixed key, hence its name:
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SPARXx, but Key LEss.

We provide three versions corresponding to three block sizes, i.e., SPARKLE256,
SPARKLE384, and SPARKLES512. The number of steps used varies with the use case
as our design approach is not hermetic (see Section 4.4.2).

4.4 Key Features

Both ScuwaEMM and EscH employ the well-known sponge construction. The under-
lying SPARKLE family of permutations was designed from scratch, but based on well-
known and widely accepted principles, to achieve high security and high efficiency.
The following two subsections give an overview of the main features of SCHWAEMM
and ESCH. A more detailed discussion is provided in Chapter 4.6.

4.4.1 What is their efficiency based on?

In the context of cryptographic software, the term efficiency is commonly associated
with fast execution times, low run-time memory (i.e., RAM) requirements, and small
code size. However, these three metrics are mutually exclusive since standard software
optimization techniques to increase performance, such as loop unrolling or the use of
look-up tables to speed up certain operations (e.g., SubBytes in AES), come at the
expense of increased code size or increased RAM footprint or both. On the other
hand, a cryptographic hardware implementation is called efficient when it achieves
small silicon area and, depending on the requirements of the target application, low
power consumption, low latency, or high throughput, whereby one of these metrics
can be optimized at the expense of the other(s).

Small State size. Both SCHWAEMM and ESCH are characterized by a relatively
small state size, which is only 256 bits for the most lightweight instance of SCHWAEMM
described in this document (achieving a security level of 120 bits) and 384 bits for the
lightest variant of ESCH. Having a small state is an important asset for lightweight
cryptosystems for several reasons. First and foremost, the size of the state determines
to a large extent the RAM consumption (in the case of software implementation)
and the silicon area (when implemented in hardware) of a symmetric algorithm.
In particular, software implementations for 8 and 16-bit microcontrollers with little
register space (e.g., Atmel AVR or TT MSP430) can profit significantly from a small
state size since it allows a large fraction of the state to reside in registers, which reduces
the number of load and store operations. On 32-bit microcontrollers (e.g., ARM
Cortex-M series) it is even possible to keep a full 256-bit state in registers, thereby
eliminating almost all loads and stores. The ability to hold the whole state in registers
does not only benefit execution time, but also provides some intrinsic protection
against side-channel attacks [BDG16]. Finally, since SCHWAEMM and ESCH consist of
very simple arithmetic/logical operations (which are cheap in hardware), the overall
silicon area of a standard-cell implementation is primarily determined by storage
required for the state.

Extremely lightweight permutation. The SPARKLE permutation is a classical
ARX design and performs additions, rotations, and XOR operations on 32-bit words.
Using a word-size of 32 bits enables high efficiency in software on 8, 16, and 32-bit
platforms; smaller word-sizes (e.g., 16 bits) would compromise performance on 32-
bit platforms, whereas 64-bit words are problematic for 8-bit microcontrollers. The
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rotation amounts (16, 17, 24, and 31 bits) have been carefully chosen to minimize
the execution time and code size on microcontrollers that support only rotations by
one bit at a time. An implementation of SPARKLE for ARM microcontrollers can
exploit their ability to combine an addition or XOR with a rotation into a single
instruction with a latency of one clock cycle. On the other hand, a small-area hard-
ware implementation can take advantage of the fact that only six arithmetic/logical
operations need to be supported: 32-bit XOR, addition modulo 232, and rotations
by 16, 17, 24, and 31 bits. A minimalist 32-bit Arithmetic/Logic Unit (ALU) for
these six operations can be well optimized to achieve small silicon area and low power
consumption.

Consistency across security levels. SCHWAEMM and ESCH were designed to be
consistent across security levels, which facilitates a parameterized software implemen-
tation of the algorithms and the underlying permutation SPARKLE. All instances of
SCHWAEMM and ESCH can use a single implementation of SPARKLE that is param-
eterized with respect to the block (i.e., state) size and the number of steps. Such a
parameterized implementation reduces the software development effort significantly
since only a single function for SPARKLE needs to be implemented and tested.

Even higher speed through parallelism. The performance of SCHWAEMM and
ESCH on processor platforms with vector engines (e.g., ARM NEON;, Intel SSE and
AVX) can be significantly increased by taking advantage of the SIMD-level parallelism
they provide, which is possible since all 32-bit words of the state perform the same
operations in the same order. Hardware implementations can trade performance for
silicon area by instantiating several 32-bit ALUs that work in parallel.

4.4.2 What Is Their Security Based On?

We have not traded security for efficiency. Our detailed security finds that our algo-
rithms are safe from all attacks we are aware of with a comfortable security margin.
Overall, the security levels our primitives provide are on par with those of modern
symmetric algorithms but their cost is lower. Our hash functions are secure against
preimage, second preimage and collision search. Our authenticated cipher provide
confidentiality, integrity and authentication.

The Security of Sponges. The security of our schemes is based on the security of
the underlying cryptographic permutations and the security of sponge-based modes,
more precisely the sponge-based hashing mode and the BEETLE mode for authenti-
cated encryption (which is based on a duplexed sponge). The sponge-based approach
has received a lot of attention as it the one used by the latest NIST-standardized hash
function, SHA-3. We re-use this approach to leverage both its low memory footprint
and the confidence cryptographers have gained for such components.

The Literature on Block Cipher Design. The design of the SPARKLE family of
permutations is based on the decades old SPN structure which allows us to decompose
its analysis into two stages: first the study of its substitution layer, and, second, the
study of its linear layer. The latter combines the Feistel structure, which has been
used since the publication of the DES [Des|, and a linear permutation with a high
branching number, like a vast number of SPNs such as the AES [Aes]. To combine
these two types of subcomponents, we rely on the design strategy that was used for the
block cipher SPARX: the long trail strategy. Our substitution layer operates on 64-bit
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branches using ARX-based S-boxes, where ARX stands (modular) Addition, Rotation
and XOR. The study of the differential and linear properties of modular addition in
the context of block cipher can be traced back to the late 90’s. The fact that the block
size of the ARX component (the ARX-box, named Alzette! [Bei+20b]) is limited to
64 bits means that it is possible to investigate it thoroughly using computer assisted
methods. The simplicity and particular shape of the linear layer then allows us to
deduce the properties of the full permutation from those of the 64-bit ARX-box.

Components Tailored for Their Use Cases. When using a permutation in a
mode of operation, two approaches are possible. We can use a “hermetic” approach
(see [Ber+1lc, Section 8.1.1]), meaning that no distinguishers are known to exist
against the permutation. This security then carries over directly to the whole function
(e.g. to the whole hash function or AEAD scheme). The downside in this case is that
this hermetic strategy requires an expensive permutation which, in the context of
lightweight cryptography, may be too much.

At the opposite, we can use a permutation which, on its own, cannot provide the
properties needed. The security is then provided by the coupling of the permutation
and the mode of operation in which it is used. For example, the winner of the
CAESAR competition ASCON [Dob+16] and the third-round CAESAR candidate
KETJE [Ber-+16], both authenticated ciphers, use such an approach. The advantage
in this case is a much higher efficiency as we need fewer rounds of the permutation.
However, the security guarantees are a priori weaker in this case as it is harder to
estimate the strength needed by the permutation. It is necessary to carefully assess
the security of the specific permutation used with the knowledge of the mode of
operation it is intended for.

For SPARKLE (and thus for both ESCH and SCHWAEMM), we use the latter approach:
the permutation used has a number of rounds that may allow the existence of some
distinguishers (in the sense that we do not claim that the permutation behaves like
one would expect from a randomly-drawn permutation). However, using a novel ap-
plication of the established long trail strategy, we are able to prove that our algorithms
are safe with regard to the most important attack vectors (differential attacks, i.e.,
the method used to break SHA-1 [Ste+17], and linear attacks) with a comfortable se-
curity margin. We thus get the best of both worlds: we do not have the performance
penalty of a hermetic approach but still obtain security guarantees similar to those
of a hermetic design.

4.4.3 More Security Features

Security under Random Nonces. All instances of SCHWAEMM, with the excep-
tion of SCHWAEMM128-128, permit nonce sizes higher than 192 bits. Therefore, a
collision in randomly chosen nonces is not expected to happen before 292 encryptions
are performed. Therefore, the security of the authenticated encryption schemes is
not affected when the user employs them with nonces chosen uniformly at random
for each encryption process.”

Integrity Security without Restrictions on the Number of Forgery At-
tempts. The BEETLE mode of operation allows us to use a small internal state

! Alzette is pronounced [alzet].
2Since SCHWAEMM128-128 allows nonces of 128 bits, the same claim on the security under ran-
domly chosen nonces holds when the number of encryptions is < 254
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together with a high rate to ensure integrity security without a birthday-bound re-
striction on the number of forgery attempts (decryption queries) by the adversary.

4.5 Specification

For the sake of simplicity, we make no distinction between the sets F5™ and Fg x F3,
we interpret those to be the same. The only difference is that we write elements of
the second as tuples, while the members of the first set are bit strings corresponding
to the concatenation of the two elements in the tuple. The empty bitstring is denoted
€. The algorithms assume the byte order to be little-endian.

The specification of the SPARKLE permutation and of its various instances is given in
Section 4.5.1. Then, we use these permutations to specify the hash functions EScH
in Section 4.5.4 and the authenticated ciphers SCHWAEMM in Section 4.5.5.

We use “+” to denote the addition modulo 232 and & to denote the XOR of two
bitstrings of the same size.

4.5.1 The Sparkle Permutations

Our schemes for authenticated encryption and hashing employ the permutation family
SPARKLE which we specify in the following. In particular, the SPARKLE family consists
of the permutations SPARKLE256,, , SPARKLE384,,  and SPARKLE512,,  with block
sizes of 256, 384, and 512 bit, respectively. The parameter ng refers to the number of
steps and a permutation can be defined for any ns; € N. The permutations are built
using the following main components:

o The ARX-box Alzette [Bei+20b] (shortly denoted A), i.e., a 64-bit block cipher
with a 32-bit key

A (F3? x F3?) x F3? — (F3” x ), ((2,9), 0) = (u,0) .

We define A, to be the permutation (x,y) — A(z,y, c) from F32 x F32 to F3% x
F32.

o A linear diffusion layer L,,: FS'™ — FS'™  where n;, denotes the number of
64-bit branches, i.e., the block size divided by 64. It is necessary that ny is even.

The high-level structure of the permutations is given in Algorithms 1, 2 and 3, respec-
tively. It is a classical Substitution-Permutation Network (SPN) construction except
that functions playing the role of the S-boxes are different in each branch. More
specifically, each member of the permutation family iterates a parallel application
of Alzette under different, branch-dependent, constants ¢;. This small 64-bit block
cipher is specified in Section 4.5.2. It is followed by an application of £,,, a linear
permutation operating on all branches; it is specified in Section 4.5.3. We call such a
parallel application of Alzette followed by the linear layer a step. The high-level struc-
ture of a step is represented in Figure 4.1. Before each step, a sparse step-dependent
constant is XORed to the cipher’s state (i.e., to yo and yj).

A self-contained C implementation of the SPARKLE permutation, parameterized by
the number of branches ny; and the number of steps ns, can be found in Section 4.7.
The implementation uses a single array named state of type uint32_t that consists of
2ny, elements to represent the state. More precisely, state [0] = zq, state[1] = o,
state[2] =z, state[3] = yi, ... state[2*nb-2] =z, 1, and state[2*nb-1] =
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Yn,—1. Bach 32-bit word contains four state bytes in little-endian order. More pre-
cisely, if (mg, m1,...,mp—1) € F3, n € {256,384,512}, is an input to a SPARKLE
instance, it is mapped to the state words via statel[k] =

m32k+24”m32k+25” cee ”m32k+31 ”m32k+16”m32k+17” R
magkt23|l - - - [[maakllmaokr1ll - - - [ma2ks7
and the inverse mapping is used for transforming state words back to bitstrings.?

In what follows, we rely on the following definition given below to simplify our de-
scriptions.

Definition 1 (Left/Right branches). We call left branches those that correspond

to the state inputs (o, yo), (x1,y1),- .-
those corresponding to (JUm,/z: ynb/z), e

s (T, /2-15 Uny j2—1), and we call right branches
, (xnb—Za ynb—2)7 (xnb—la ynb—l)-

Algorithm 1 SPARKLE256,,,

Algorithm 2 SPARKLE384,,

In/Out:  ((x0,40), .- (x3,93)), xi, i € In/Out:  ((x0,90), - (T5,45)), Ti,Yi €

F3? F32
(co,c1) + (0xB7E15162,0xBF715880) (co,c1) < (0xB7E15162,0xBF715880)
(c2,c3) + (0x38B4DA56,0x324E7738) (c2,c3) + (0x38B4DA56,0x324E7738)
(ca,c5) < (0xBB1185EB, 0x4F7C7B57) (ca,cs5) < (0xBB1185EB, 0x4F7C7B57)
(c6, c7) + (0xCFBFA1C8,0xC2B3293D) (ce,c7) < (0OxCFBFA1C8,0xC2B3293D)

for all s € [0,ns — 1] do
Yo < Yo & C(s mod 8)
Y1 <+ y1 © (s mod 232)
for all 7 € [0, 3] do
(@i,yi) « Ac; (x4, i)
end for
((z0,0), - (3,93))
L4((z0,y0), -, (x3,y3))
end for
return ((zo,%0), ..., (z3,¥3))

for all s € [0,ns — 1] do
Y0 < Y0 D C(s mod 8)
y1 + y1 @ (s mod 232)
for all 7 € [0, 5] do
(Ti,ys) + Ac; (w4, yi)

end for

((z0,90), -, (%5, Y5)) —
Ls((%0,Y0), - (x5, Y5))
end for

return ((zo0,%0), --., (z5,¥s5))

Algorithm 3 SPARKLES512,,
In/Out: ((z0,Y0), - (x7, 7)), x € F32,y; €

32
FQ

(co,c1) <
(c2,c3)
(ca,c5)
(c6,c7)
for all s € [0,ns — 1] do
Yo < Yo D C(s mod 8)
y1 < 1 © (s mod 232)
for all i € [0,7] do
(w4, y:) < Ac; (@i, yi)
end for

((20,90), ---» (x7,y7)) + Ls((x0,50); -

end for

return ((an yO)a () ($77 y7))

(0xB7E15162,0xBF715880
(0x38B4DA56, 0x324E7738
(0xBB1185EB, 0x4F7C7B57
(0xCFBFA1C8,0xC2B3293D

~— — — —

(z7,y7))

3Note that the indirect injection through Mp, in ESCH also operates on state words. Therefore,
the same mapping of bitstrings to words (and vice versa) is applied.
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20 Z1 Z2 s Zhy—1 Zhy Zhy+1  Zhy4+2 -0 Fmy—1
| | l l l l l l
’ ACU ’ ACL ’ AC2 Chy—1 ’ Achb AC"b+1 Chy+2 }Ac”b,l

My,

FIGURE 4.1: The overall structure of a step of SPARKLE. z; denotes the 64-bit input
(z4,y;) to the corresponding Alzette instance.

Specific Instances. The SPARKLE permutations are defined for 4, 6 and 8 branches
and for any number of steps. Unlike in other sponge algorithms such as, e.g., SHA-3,
we use two versions of the permutations which differ only by the number of steps
used. More precisely, we use a slim and a big instance of SPARKLE. The slim and big
versions of all SPARKLE instances are given in Table 4.1.

Name n 7 steps slim  # steps big
SPARKLE256 256 7 10
SPARKLE384 384 7 11
SPARKLES12 512 8 12

TABLE 4.1: The different versions of each SPARKLE instance.

4.5.2 The ARX-box Alzette

Alzette, shortly denoted A, is a 64-bit block cipher. It is specified in Algorithm 4 and
depicted in Figure 4.2. It can be understood as a four-round iterated block cipher
for which the rounds differ in the rotation amounts. After each round, the 32-bit
constant (i.e., the key) is XORed to the left word. Note that, as Alzette has a simple
Feistel-like structure, the computation of the inverse is straightforward.

Its purpose is to provide non-linearity to the whole permutation and to ensure a quick
diffusion within each branch—the diffusion between the branches being ensured by the
linear layer (Section 4.5.3). Its round constants ensure that the computations in each
branch are independent from one another to break the symmetry of the permutation
structure we chose. As the rounds themselves are different (because of different
rotation amounts), we do not rely on the round constant to provide independence
between the rounds of Alzette.

4.5.3 The Diffusion Layer

The diffusion layer has a structure which draws heavily from the one used in SPARX-
128 [Din+]. We denote it L,,,. It is a Feistel round with a linear Feistel function My,

which permutes (Fg4)hb, where hy, = . More formally, My, is defined as follows.
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Algorithm 4 A,

Input/Output: (z,y) € F3? x F32
z  z+ (y>>31)
Yy yd(z>>24)
rT<—rDc
x—x+ (y>>17)
y<—yd(z>>17)
T rTrDce
x4+ (y>>0)
Yy < yd(z>>31)
rT<—rDc
T =+ (y > 24)
y < y®(z>>16)
r<—rDc
return (z,y)

Definition 2. Let w > 1 be an integer. We denote M, the permutation of (F32)¥
such that

Mw((x07y0)a ) (xw—la yw—l)) = ((UOaUO)’ EERR) (uw—lavw—l))

where the branches (u;,v;) are obtained via the following equations

w—1 w—1
ty%@yi7tx<_®l'i,
=0 =0

ui < x; ® L(ty), Vi € {0,...,w—1},
v Y ®LU(ty), Vie{0,...,w—1},

(4.1)

where the indices are understood modulo w, and where £ : F32 — F32 is a permutation
defined by
l(z) = (x « 16) & (x&O0xffff) ,

where z&y is a C-style notation denoting the bitwise AND of z and y. Note in
particular that, if y and z are in Fi° so that y||z € F3?, then

Lyllz) = 2[|l(y® 2) -

The diffusion layer £, then applies the corresponding Feistel function Mj,, and swaps
the left branches with the right branches. However, before the branches are swapped,
we rotate the branches on the right side by 1 branch to the left. This process is
pictured in Figure 4.1. Algorithms describing the three diffusion layers used in our
permutations are given in Algorithms 5, 6 and 7.

4.5.4 The Hash Functions Esch256 and Esch384
4.5.4.1 Instances

We propose two instances for hashing, i.e., ESCH256 and EscH384, which allow to
process messages M € [} of arbitrary length? and output a digest D of bitlengths 256,

“More rigorously, all bitlengths under a given (very large) threshold are supported.
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FIGURE 4.2: The structure of the Alzette instance A..

Algorithm 5 £4
Input/Output: ((x0,v0), (x1,1), (T2,2), (23,3)) € (F3? x F32)*
// Feistel round
(ta, ty) « (2o ® 21,90 B Y1)
(ta,ty) < ((te ® (t» < 16)) << 16, (t, @ (t, < 16)) < 16)
(Y2,93) < (12 D yo D ta, Y3 Dy1 St )
($2,133) (CEQ@.TQEBty, SUg@.TlEBty)
// Branch permutation
(zo,x1,x2,x3) < (23, T2, T0,T1)
(Y0, y1,Y2,Y3) < (Y3, Y2, Y0, Y1)
return ((:co,yg), R (xg,yg))

and 384, respectively. Our primary member for hashing is ESCH256. They employ the
well-known sponge construction, which is instantiated with SPARKLE permutations
and parameterized by the rate r and the capacity c. The slim version is used during
both absorption and squeezing. The big one is used in between the two phases.
Table 4.2 gives an overview of the parameters used in the corresponding sponges.
The maximum length is chosen as r x 2¢/2 bits, where ¢ is both the capacity and the
digest size.

4.5.4.2 Specification of the Hash Functions

In both EscH256 and ESCH384, the rate r is fixed to 128. This means that the message
M has to be padded such that its length in bit becomes a multiple of 128. For this,
we use the simple padding rule that appends 10*. It is formalized in Algorithm 8
which describes how a block with length strictly smaller that r is turned into a block
of length 7.

The different digest sizes and the corresponding security levels are obtained using
different permutation sizes in the sponge, i.e., SPARKLE3847 and SPARKLE3841; for
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Algorithm 6 Lg

Input/Output: ((zo,Y0), - .., (x5, y5)) € (F32 x F32)0

// Feistel round

tx,t ) (zo® 21 B 32, Yo B Y1 B Y2)

by ty) < ((te @ (tz < 16)) < 16, (t, & (t, < 16)) << 16)
y3;y4;y5) (y3@y0@t$7 Ya D y1 @ Ly, yB@yQ@tz)
x3,T4,%5) < (T3 B 20 D ly, T4 ®x1 Dly, 5B T2 Dly)
// Branch permutation

(xo,x1, X2, 3, T4, x5) < (T4, X5, X3, X0, T1,T2)

(Y0, Y1, Y2, Y3, Y4, Y5) < (Y4, Y5, Y35 Yo, Y1, Y2)

return ((xo, Yo)s - - -, (T3, y5))

(
(tz,
(
(

Algorithm 7 Lg

Input/Output: ((w0,%0), ..., (z7,y7)) € (F3? x F3?)®
// Feistel round
(tz,ty) < (zo ® 21 D 22 D 73,50 D Y1 D Y2 D Y3)
(ta ty) < ((tz ® (to < 16)) << 16, (t, @ (t, < 16)) < 16)
(Y4, Y5, Y6, y7) < (Ya© Yo Dta, Ys D Y1 Bta, Y6 Y2 Dla, Y7 O ys Do)
(24,25, 26, 27) < (24 D20 Dty, 5 D21 Dy, T6 D T2 Dty, T7 O T3 Dty)
// Branch permutation

(x0, x1, T2, 3, T4, X5, Te, T7) < (T5, T, T7, T4, To, T1, T2, T3)
(Y0, Y1, Y25 Y3, Y4, Y5, Y6, Y7) < (Y5, Y6, Y7, Y4, Y0, Y1, Y2, Y3)
return ((zo,v0), .- -, (z7,y7))

n r c collision 2nd preimage preimage data limit (bytes)
Escu256 384 128 256 128 128 128 2132
Escu384 512 128 384 192 192 192 2196
XOEscH256 384 128 256 min{128,f} min{128,¢}  min{128,¢} 2132
XOEscH384 512 128 384 min{192,f} min{192,¢}  min{192,¢} 2196

TABLE 4.2: The hashing instances with their security level in bit with regard to collision
resistance and (second) preimage resistance and the limitation on the message size in
bytes. For the security levels of the XOFs, we assume that ¢ is smaller than the allowed
data limit. The first line refers to our primary member, i.e. ESCH256.

EscH256 and SPARKLES12g and SPARKLES1219 for EscH384. The algorithms are
formally specified in Algorithm 9 and 10 and are depicted in Figure 4.3 and Figure 4.4,
respectively. Note that the 128 bits of message blocks are injected indirectly, i.e.,
they are first padded with zeros and transformed via M3 in ESCH256, resp., My in
EscH384, and the resulting image is XORed to the leftmost branches of the state.
We stress that this tweak can still be expressed in the regular sponge mode. Instead
of injecting the messages through My, , one can use an equivalent representation in
which the message is injected as usual and the permutation is defined by prepending
My, and appending M, ' to SPARKLE,,.

For generating the digest, we use the simple truncation function trunc; which returns
the t leftmost bits of the internal state.

A message with a length that is a multiple of r is not padded. To prevent trivial
collisions, we borrow the technique introduced in [Hir16] and xor Consty to the inner
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Algorithm 8 pad,

Input/Output: M € F3, with |M| <r
i<+ (—=|M|—-1) mod r
M « M]||1]|0?
return M

part, where Consty is different depending on whether the message was padded or not.

192

SPARKLE3847

SPARKLE3847
SPARKLE3847;
SPARKLE38411
SPARKLE3847;

192

w M M3 M3 %Sepﬂration%
T T

Pyl|054 Py |05 Pr_5]|054 (Pp_1||08YY®MzNen) Do D,

FIGURE 4.3: The Hash Function ESCcH256 with rate » = 128 and capacity ¢ = 256. The

constant ¢y is equal to (0,0,...,0,1) € F1°? if the last block was padded and equal to
(0,0,...,0,1,0) € Fi92 otherwise.
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Algorithm 9 EscH256
Input: M € F5  Output: D € F3%

Algorithm 10 Escu384
Input: M € I}

Output: D € T3

// Padding the message
if M # € then
PPl | Py M
with Vi </-1: |P;|=128 and 1<|P_;|<
128
else
{1
P() — €
end if
if |P,_y| < 128 then
Py« padygs(Pr-1)
Consty « (1 <« 192)
else
Consty « (2 < 192)
end if
// Absorption
S« 0eF3d
for all j =0,...,/—2do
Pl Ms(P;]|0%)
S« SPARKLE3847(S @ (Pj[|0'9%))
end for
Py_y = M3 (Pr-1]|0%)
S + SPARKLE38411(S & (P)_]|0'?) &
Constp)
// Squeezing
Dy + trunclgg(S)
S < SPARKLE3847(S)
Dy + trunclgg(S)

return Dg||D;

// Padding the message
if M # € then
PollPu||. . [Py < M
with Vi</-1: |P;|=128 and 1<|Pp_4|<
128
else
{1
P() — €
end if
if |P,_1| < 128 then
Py_1 + padygs(Pr-1)
Consty + (1 < 256)
else
Consty + (2 < 256)
end if
// Absorption
S « 0 € F31?
for all j =0,...,/—2do
P+ My (P;]|0128)
S SPARKLE5123 (S @ (Pj[[0*°9))
end for
Py_y ¢ Muy(Pr-1]|0™%)
S < SPARKLES1212(S @ (P)_;0%%) @
Constp )
// Squeezing
Dy + trunc128(S)
S + SPARKLE512g(S)
Dy + trunc128(S)
S + SPARKLE512g(S)
Dy + trunc12g(S)
return Dg||D1|| Do

IS — —_—
256 © @ o a 384 0 o
0 4 N 3 g L & 4
2 2 ] 3 el 0
< & = = E 2
< o g | 3 =}
= E; X < Z g
: : : : : 2
2 7 A S & =
. i A »n | n &
256 ‘ | | m
0 ] ‘ ‘ ‘
-1
Pyll0=# Py|o'® Pr_s]|0128 Pp_q |08 M enr) Do D, Dy

FIGURE 4.4: The Hash Function Escu384 with rate r = 128 and capacity ¢ = 384. The
constant ¢y is equal to (0,0,...,0,1) € F3°¢ if the last block was padded and equal to

(0,0,...,0,1,0) € F2° otherwise.
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4.5.4.3 The Extendable-Output Functions XOEsch256 and XOEsch384

The hash functions ESCH256 and ESCH384 can easily be adapted to provide outputs of
arbitrary length. We define the extendable-output functions (XOFs) XOEscH256 and
XOEsCcH384, which are very similar to their hashing counterparts. Besides that other
values for the constants Consty; are used in order to separate between the different
use-cases, the only difference is that the XOFs obtain an additional input parameter
t which defines the size of the output string. The squeezing phase is extended in
order to provide the output of the required length. XOEscH256 and XOEscH384
are formally described in Algorithms 11 and 12, respectively. The parameters and
security levels are given in Table 4.2.

Algorithm 11 XOESCcH256 Algorithm 12 XOEscH384
Input: M € F5,t € N Output: D € F5 Input: M € F5,t € N Output: D € F}

// Padding the message
if M # ¢ then
POHPIH ce ||Pg_1 —~ M

with Vi</-1: |P;|=128 and 1<|Py_1|<

128
else
{1
Py+ ¢
end if
if |P;_1]| < 128 then
Py—y < padyps(Pr-1)
Consty + (1 < 192) @ (4 < 192)
else
Consty + (2 < 192) @ (4 < 192)
end if
// Absorption
S+ 0eF3¥
for all j =0,...,/—2do
P}« M3(P;]0%%)
S« SPARKLE3847 (S @ (Pj[|0'%%))
end for
Pj_y = M3(Pp_1][0%)

S < SPARKLE38411(S @ (P)_,0"?) &

ConstM)
// Squeezing
Dy « truncyag(S)
for all j=1,...,[t/128] — 1 do
S < SPARKLE3847(S5)
Dj — trunclgg(S)
end for
return trunc,(Dol|D1| ... [ Dyt /1281-1)

// Padding the message
if M # ¢ then
P0||P1” - HPZ—l — M
with Vi</-1: |P;|=128 and 1<|Py_4|<
128
else
{1
Py+ ¢
end if
if |Pg_1’ < 128 then
Py—y < padyps(Pe-1)
Consty + (1 <« 256) @ (4 < 256)
else
Consty + (2 < 256) @ (4 < 256)
end if
// Absorption
S+ 0 € F}'2
for all j =0,...,/—2do
Pl Mi(P0129)
S<SPARKLE5123 (S @ (Pj[]0*°))
end for
Pel—l — M4(Pg_1||0128)
S <+ SPARKLE51215(S @ (P)_,(|0%%6) &
ConstM)
// Squeezing
Dy < truncyag(S)
for all j =1,...,[t/128] — 1 do
S < SPARKLE5125(S5)
Dj — truncug(S)
end for
return trunc,(Dol|D1l| - . . [[Df/1281-1)
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4.5.5 The Authenticated Cipher Family Schwaemm
4.5.5.1 Instances

We propose four instances for authenticated encryption with associated data, i.e.
SCHWAEMM128-128, SCHWAEMM256-128, SCHWAEMM192-192 and SCHWAEMM256-
256 which, for a given key K and nonce N allow to process associated data A and
messages M of arbitrary length® and output a ciphertext C' with |C| = |[M| and an
authentication tag T. For given (K, N, A,C,T), the decryption procedure returns
the decryption M of C' if the tag T is valid, otherwise it returns the error symbol
1. Our primary member of the family is SCHWAEMM256-128. All instances use
(a slight variation of) the BEETLE mode of operation presented in [Cha+ 18], which
is based on the well-known SPONGEWRAP AEAD mode [Ber+11a]. The difference
between the instances is the version of the underlying SPARKLE permutation (and
thus the rate and capacity is different) and the size of the authentication tag. As a
naming convention, we used SCHWAEMMTr-c, where r refers to the size of the rate and
¢ to the size of the capacity in bits. Similar as for hashing, we use the big version
of SPARKLE for initialization, separation between processing of associated data and
secret message, and finalization, and the slim version of SPARKLE for updating the
intermediate state otherwise. Table 4.3 gives an overview of the parameters of the
SCHWAEMM instances. The data limits correspond to 254 blocks of r bits rounded
up to the closest power of two, except for the high security SCHWAEMM256-256 for
which it is r x 2128 bits.

n r ¢ |K| |N| |T| security data limit (bytes)

SCHWAEMM256-128 384 256 128 128 256 128 120 208
SCHWAEMM192-192 384 192 192 192 192 192 184 268
SCHWAEMM128-128 256 128 128 128 128 128 120 268
SCHWAEMM256-256 512 256 256 256 256 256 248 2133

TABLE 4.3: The instances we provide for authenticated encryption together with their
(joint) security level in bit with regard to confidentiality and integrity and the limitation
in the data (in bytes) to be processed. The first line refers to our primary member, i.e.
SCHWAEMM256-128.

4.5.5.2 The Algorithms

The main difference between the BEETLE mode and duplexed sponge modes is the us-
age of a combined feedback p to differentiate the ciphertext blocks and the outer part
of the states. This combined feedback is created by applying the function FeistelSwap
to the outer part of the state, which is computed as

FeistelSwap(S) = Sa||(S2 & S1) ,

where S € Fy and S1[|S2 = S with |S1| = |S2| = §. The feedback function p: (F5 x
F5) — (F5 x FY) is defined as p(S, D) = (p1(S, D), p2(S, D)), where

p1: (S, D) — FeistelSwap(S) ® D, p2: (S,D)— S@® D .

5As for the hash function, the length can be chosen arbitrarily but it has do be under thresholds
that are given in Table 4.3.



4.5. Specification 61

For decryption, we have to use the inverse feedback function p’: (Ff xF5) — (F5 x F5)
defined as p'(S, D) = (p/ (S, D), p5(S, D)), where

p1: (S, D)+ FeistelSwap(S) & S@& D, ph: (S,D)— S& D .

After each application of p and the additions of the domain separation constants,
i.e., before each call to the SPARKLE permutation except the one for initialization,
we prepend a rate whitening layer which XORs the value of W, ,(Sg) to the outer
part, where Sk denotes the internal state corresponding to the inner part. For the
SCHWAEMM instances with r = ¢, we define W,,: F§ — F} as the identity (i.e.,
we just XOR the inner part to the outer part). For SCHWAEMM256-128, we define
Wias.2s6(7,y) = (z,y,7,y), where 2,y € F$*. Note that this tweak can still be de-
scribed in the BEETLE framework as the prepended rate whitening can be considered
to be part of the definition of the underlying permutation.

Figure 4.5 depicts the mode for our primary member SCHWAEMM256-128. The formal
specifications of the encryption and decryption procedures of the four family members
are given in Algorithms 13-20.

Const 4
— — — — l
K — ]
128
= S S i~
F < < ~
0 el 0 0
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=i =) & =)
v 2 2 2
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FIGURE 4.5: The Authenticated Encryption Algorithm SCHWAEMM256-128 with rate
r = 256 and capacity ¢ = 128.
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Algorithm 13 SCHWAEMM256-128-ENC
Input: (K,N, A, M) where K € F1?8 is a key, N € F3°0 is a nonce and A, M € F}
Output: (C,T), where C € F} is the ciphertext and T' € F32® is the authentication
tag
// Padding the associated data and message
if A # e then
Ao||A1]l .. |Aey—1 + A with Vi € {0,...,0a — 2} : |A;] =256 and 1 < |As, 1| < 256
if |As, 1] < 256 then
Apy—1 < padygg (A, —1)
Consta + 0 (1 K 2)
else
Consty + 14 (1<K 2)
end if
end if
if M # e then
Mo|| M| ... ||Me,,—1 < M with Vi € {0,...,¢n — 2} : |M;] = 256 and 1 < | My, 1| < 256
[ |M‘€M_1|
if |Mo,, 1| < 256 then
Moy, —1 + padys(Mey, 1)
Consty + 2@ (1 < 2)
else
Consty < 360 (1 < 2)
end if
end if
// State initialization
SL||Sr < SPARKLE3841; (N||K) with |Sp| =256 and |Sg| = 128
// Processing of associated data
if A # ¢ then
for all j =0,...,44 —2do
SL||Sr < SPARKLE3847((p1(SL, Aj) ® Wizs 256(Sr))||Skr)
end for

// Finalization if message is empty
SL||Sk + SPARKLE38411 ((p1(SL, Ar,—1) © Wias, 256(Sk @ Consta))||(Sk ® Consta))
end if
// Encrypting
if M # e then
for all j=0,...,4y —2 do
Cj « p2(Sc, M;)
SL||Sr + SPARKLE3847((/?1(SL, M;) & W123,256(SR))||SR)
end for
Crp—1 + truncy (pg(SL, MgM_l))
// Finalization
SLHSR — SPARKLE38411<(p1 (SL, M@M_l) D W1287256(SR [a2) ConstM))H(SR (&3} ConstM))
end if

return (Co||C1]|...||Cep—1,Sr ® K)
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Algorithm 14 SCHWAEMM256-128-DEC
Input: (K,N,A,C,T) where K € Fi® is a key, N € F3% is a nonce, A, C € F} and
T € Fi%
Output: Decryption M of C' if the tag T is valid, L otherwise
if A # € then
AollA4]| ... ||AgA_1 «— Awith Vi € {0,...,04 —2}:|A;] =256 and 1 < |A15A_1| < 256
if |A¢,—1] < 256 then
Agy—1 4 padgss(Ae,—1)
Consty + 0 (1 K 2)
else
Consty + 19 (1<K 2)
end if
end if
if C # ¢ then
COHCIH - HOEM*I <~ C with Vi € {0, v b — 2} : |CZ| =256and 1 < ‘CgM,1| < 256
t < |CgM_1‘
if ‘C£M—1| < 256 then
Copr—1 4= padys6(Cep 1)
Constyr + 2@ (1 <« 2)
else
Constyr <+ 3@ (1 < 2)
end if
end if
// State initialization
SL||Sk + SPARKLE38411 (N||K) with |S.| = 256 and |Sg| = 128
// Processing of associated data
if A #£ € then
for all j =0,...,04 —2 do
SLHSR — SP‘ARKLE3847((pl(SL7 Aj) (&) W128,256(SR))H5R)
end for

// Finalization if ciphertext is empty
SL”SR < SPARKLE3841; ((pl(SL, AgA_1) D W1287256(SR ) ConstA))H(SR D ConstA))
end if
// Decrypting
if C # ¢ then
for all j =0,...,¢4m —2 do
M; + p5(Sz, Cj)
SL||Sr + SPARKLE3847((pI1 (St,Cj) @ W128,256(SR))||SR)
end for
My, -1 < trunce (p5(St, Ceyy-1))
// Finalization and tag verification
if t < 256 then
SL||Sr < SPARKLE38411 ((pl (St,padysg(Me,, —1))BWizs,256 (SREBCOHS'EM))||(SR@C0nStM))
else
SLHSR < SPARKLE3841, ((pll (SL, Cngl) D W128,256(SR [S2) ConstM))H(SR (&) COﬂStM))
end if
end if
if S ® K =T then
return (Mo||Mi]|...||Mey,—1)
else
return |
end if
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Algorithm 15 SCHWAEMM192-192-ENC
Input: (K, N, A, M) where K € F1%? is a key, N € F3%? is a nonce and A, M € T}
Output: (C,T), where C € F} is the ciphertext and T' € Fi%? is the authentication
tag
// Padding the associated data and message
if A # ¢ then
Aol| A1l .. ||[Ag,—1 <~ AwithVi € {0,...,04—2} 1 |A;| =192and 1 < |4y, 1] <
192
if |Ap,—1] < 192 then
Agy—1 < padygy(Ar,—1)
Constg + 0 (1 <« 3)
else
Constg + 14 (1 < 3)
end if
end if
if M # ¢ then
M0||M1” HMZM—l <~ M with Vi € {anéM — 2} : |Mz| =192 and 1 <
[Miy, | < 192
bt |M€M—1|
if |M,,,_1| < 192 then
My, —1 + padygy(My,,—1)
Consty; + 2@ (1 < 3)
else
Consty; + 3@ (1 < 3)
end if
end if
// State initialization
Sp||Sk < SPARKLE3841; (N||K) with |Sz| = 192 and |Sg| = 192
// Processing of associated data
if A # ¢ then
for all j=0,...,/4—2do
SL||Sr < SPARKLE3847((p1(SL, 4;) @ Sr)|SR)
end for
// Finalization if message is empty
SL||Skr + SPARKLE3841; ((,Ol(SL, AgA_l) @ Sk @ Consta)||(Sg & ConstA))
end if
// Encrypting
if M # ¢ then
for all j =0,...,¢yy —2 do
Cj < p2(St, Mj)
Sp|ISk + SPARKLE3847((/)1(SL, M;) & SR)HSR)
end for
CEM—I < truncy (pQ(SL, MKM—I))
// Finalization
SLHSR < SPARKLE3841 ((pl(SL, MZM—I) @ Sk P ConstM)H(SR D ConstM))
end if

return (Co||C1]|...[|Cry,-1,5r & K)
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Algorithm 16 SCHWAEMM192-192-DEC
Input: (K,N,A,C,T) where K € Fi? is a key, N € F}?? is a nonce, A, C € F} and
T € FI?
Output: Decryption M of C' if the tag T' is valid, L otherwise
if A #£ € then
Aol|Ar]l .. A -1 <~ AwithVi € {0,...,04—2} : |A;| =192and 1 < [Ay, 41| <
192
if |Ay,_1| < 192 then
Agy—1 = padigy(Ar,—1)
Constg + 0 (1 < 3)
else
Constg + 1@ (1 < 3)
end if
end if
if C' # € then
CO||01||~'||C€M—1 «— C with Vi € {0,...,€M — 2} : ’Cz| =192 and 1 <
|C£AI—1‘ <192
2R o ‘CZM—1|
if |Cy,,—1] < 192 then
Cop—1 4= padygy(Cry,-1)
Consty; + 2@ (1 < 3)
else
Consty; < 3@ (1 < 3)
end if
end if
// State initialization
SL||Sr < SPARKLE3841; (N||K) with |Sr| =192 and |Sg| = 192
// Processing of associated data
if A # ¢ then
for all j =0,...,/4—2do
SL||Sr + SPARKLE3847((p1(SL,Aj) @ SR)HSR)
end for
// Finalization if ciphertext is empty
SL||Sr < SPARKLE38411 ((p1(SL, Ae,—1) ® Sk ® Consta)||(Sk @ Consty))
end if
// Decrypting
if C # ¢ then
for all j =0,...,4y —2 do
M; — ph(S1,C)
SL||Sk + SPARKLE3847 ((p}(SL,C;) @ Sr)||Sr)
end for
My,,—1 < trunc (p’z(SL, CgM,l))
// Finalization and tag verification
if t <192 then
SLHSR — SPARKLE38411((p1(SL, pad192(MgM_1)) ©® SR ©® ConstM)||(SR D
Constyy))
else
SL”SR < SPARKLE38411 ((pll(SL, Cfol) ® Sg ® ConstM)H(SR ) ConstM))
end if
end if
if S K =T then
return (Mo||Mi]| ... ||Me,,—1)
else
return |

end if
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Algorithm 17 SCHWAEMMI128-128-ENC
Input: (K, N, A, M) where K € Fi?® is a key, N € F3® is a nonce and A4, M € I}
Output: (C,T), where C € F} is the ciphertext and T' € Fi2® is the authentication
tag
// Padding the associated data and message
if A # ¢ then
Aol| A1l .. ||[Ag, -1 <~ AwithVi € {0,...,04—2} : |A;| =128 and 1 < |4y, 1] <
128
if |4, 1| < 128 then
Agy—1 < padygg(Ar,—1)
Consty + 0 (1 < 2)
else
Consty + 14 (1 < 2)
end if
end if
if M # ¢ then
M0||M1” HMZM—l <~ M with Vi € {anéM — 2} : |Mz| =128 and 1 <
My, 1] < 128
bt |M€M—1|
if |M,,,_1| < 128 then
My, —1 + padyg3(My,,—1)
Consty; + 2@ (1 < 2)
else
Consty; + 3@ (1 < 2)
end if
end if
// State initialization
SL||Skr < SPARKLE25619 (N | K) with |Sr| = 128 and |Sp| = 128
// Processing of associated data
if A # ¢ then
for all j=0,...,/4—2do
SL||Sr < SPARKLE2567((p1(SL, A;) @ Sr)|SR)
end for
// Finalization if message is empty
SL||Skr + SPARKLE25610((,01(SL, Ay,—1) ® Sk @ Consta)||(Skr & ConstA))
end if
// Encrypting
if M # ¢ then
for all j =0,...,¢yy —2 do
Cj < p2(St, Mj)
Sp|ISk + SPARKLE2567((/J1(SL, M;) & SR)HSR)
end for
CEM—I < truncy (pQ(SL, MKM—I))
// Finalization
SLHSR — SPARKLE25610((p1(SL, MZM—I) @ Sk P ConstM)H(SR D ConstM))
end if

return (Co||C1]|...[|Cry,-1,5r & K)
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Algorithm 18 SCHWAEMM128-128-DEC
Input: (K,N,A,C,T) where K € Fi® is a key, N € F}?8 is a nonce, A, C € F} and
T € FI%
Output: Decryption M of C' if the tag T' is valid, L otherwise
if A #£ € then
Aol|Arll .. A -1 <~ AwithVi € {0,...,04—2} : |A;| =128 and 1 < |4y, 41| <
128
if |Ag,_1| < 128 then
Agy—1 « padigg(Ar,—1)
Consty + 0 (1 < 2)
else
Consty + 1® (1 <K 2)
end if
end if
if C' # € then
CO||01||~'||C€M—1 «— C with Vi € {0,...,€M — 2} : ’Cz| = 128 and 1 <
|C£AI—1‘ <128
2R o ‘CZM—1|
if |Cy,,_1] < 128 then
Crp—1 4 padypg(Cry,—1)
Consty; 2@ (1 <€ 2)
else
Consty; + 3@ (1 < 2)
end if
end if
// State initialization
SL||Sr < SPARKLE25619 (N || K) with |Sr| = 128 and |Sg| = 128
// Processing of associated data
if A # ¢ then
for all j =0,...,/4—2do
SL||Sr + SPARKLE2567 ((p1(SL, A;) ® Sgr)||SR)
end for
// Finalization if ciphertext is empty
SL||Sr < SPARKLE25610 ((p1(SL, Aey—1) ® Sk ® Consta)||(Sk ® Consty))
end if
// Decrypting
if C # ¢ then
for all j =0,...,4y —2 do
M; — ph(S1,C)
SL||Sr + SPARKLE2567 ((p}(SL, C;) @ Sr)||Sr)
end for
My,,—1 < trunc (p’z(SL, CgM,l))
// Finalization and tag verification
if t <128 then
SLHSR — SPARKLE25610((p1(SL, padlgg(MgM_l)) @ Sp P ConstM)||(SR D
Constyy))
else
SL||Sr <+ SPARKLE25610 ((p) (SL, Cry—1) ® Sk @ Constar)||(Sk ® Constay))
end if
end if
if S K =T then
return (Mo||Mi]| ... ||Me,,—1)
else
return |

end if
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Algorithm 19 SCHWAEMM256-256-ENC
Input: (K, N, A, M) where K € F3° is a key, N € F3°% is a nonce and A, M € [}
Output: (C,T), where C € F} is the ciphertext and T' € F3% is the authentication
tag
// Padding the associated data and message
if A # ¢ then
Aol| A1l .. ||Ag,—1 <~ AwithVi € {0,...,04—2} : |A;| =256and 1 < |4y, 1] <
256
if |Ay,—1] < 256 then
Agy—1 < padysg(Ar,—1)
Constg + 0 (1 < 4)
else
Constg + 1@ (1 < 4)
end if
end if
if M # ¢ then
M0||M1” HMZM—l <~ M with Vi € {anéM — 2} : |Mz| =256 and 1 <
[Mey, 1] < 256
bt |M€M—1|
if |My,,—1| < 256 then
My, —1 + padyss (M, —1)
Consty; + 2@ (1 < 4)
else
Consty; + 3@ (1 < 4)
end if
end if
// State initialization
SL||Skr < SPARKLE51215 (N | K) with |SL| = 256 and |Sg| = 256
// Processing of associated data
if A # ¢ then
for all j=0,...,/4—2do
SL||Sr < SPARKLES12s((p1(SL, 4;) @ Sr)|SR)
end for
// Finalization if message is empty
SL||Skr + SPARKLE51212((,01(SL, AgA_l) @ Sk @ Consta)||(Sg & ConstA))
end if
// Encrypting
if M # ¢ then
for all j =0,...,¢yy —2 do
Cj < p2(St, Mj)
SLl|Sr < SPARKLES12s((p1(SL, M;) & Sg)|Sk)
end for
CEM—I < truncy (pQ(SL, MKM—I))
// Finalization
SLHSR — SPARKLE51212((p1(SL, MZM—I) @ Sk P ConstM)H(SR D ConstM))
end if

return (Co||C1]|...[|Cry,-1,5r & K)
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Algorithm 20 SCHWAEMM256-256-DEC
Input: (K,N,A,C,T) where K € F3° is a key, N € F2% is a nonce, A,C € F} and
T € F250
Output: Decryption M of C' if the tag T' is valid, L otherwise
if A #£ € then
Aol| A1l Az, -1 <~ AwithVi € {0,...,04—2} : |A;| =256and 1 < [Ap, 1| <
256
if |Ay, 1| < 256 then
Agy—1 = padysg(Ar,—1)
Constg + 0 (1 < 4)
else
Consty + 1@ (1 <« 4)
end if
end if
if C' # € then
CO||01||~'||C€M—1 «— C with Vi € {0,...,€M — 2} : ’Cz| = 256 and 1 <
|C£AI—1‘ < 256
2R o ‘CZM—1|
if |Cy,,_1| < 256 then
Cop—1 4 padyse(Cry,—1)
Consty; 2@ (1 <« 4)
else
Consty; + 3@ (1 < 4)
end if
end if
// State initialization
SL||Sr < SPARKLES1215(N||K) with |Sr| =256 and |Sg| = 256
// Processing of associated data
if A # ¢ then
for all j =0,...,/4—2do
SL||Sr + SPARKLE5128((p1(SL,Aj) ® SR)HSR)
end for
// Finalization if ciphertext is empty
SL||Sr < SPARKLES1212((p1(SL, Aey—1) ® Sk ® Consta)||(Sk @ Consty))
end if
// Decrypting
if C # ¢ then
for all j =0,...,4y —2 do
M;  ph(S1.Cy)
St||Sr + SPARKLE512s((p) (S, C;) @ Sgr)||SR)
end for
My,,—1 < trunc (p’z(SL, CgM,l))
// Finalization and tag verification
if t < 256 then
SLlSr <+ SPARKLE51212((p1(SL, padyss(Me,,—1)) & Sk & Consta)||(Skr &
Constyy))
else
SL”SR — SPARKLE51212((p/1(SL, Cfol) ® Sg ® ConstM)H(SR ) ConstM))
end if
end if
if S K =T then
return (Mo||Mi]| ... ||Me,,—1)
else
return |

end if
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4.5.6 Recommendations for instances

We recommend the joint evaluation of the AEAD and hashing schemes that use the
same SPARKLE version as the underlying permutation. The particular pairings are
shown in Table 4.4. Note that we do not pair SCHWAEMM128-128 with a hashing
algorithm as we did not specify a member of the ESCH family that employs SPARK-
LE256.

Hashing AEAD based on

EScH256 SCHWAEMM256-128 SPARKLE384
EscH256 SCHWAEMM192-192 SPARKLE384

EscH384 SCHWAEMM256-256 SPARKLEH12

- SCHWAEMMI128-128 SPARKLE256

TABLE 4.4: Recommendations for joint evaluation of EscH and SCHWAEMM. The first
pairing refers to the primary member of both functionalities.

4.6 Implementation Aspects

This section presents some characteristics of SPARKLE, with focus on software imple-
mentations.

Alzette

The ARX-box Alzette is an important part of SPARKLE, and as such, was designed
to provide good security bounds, but also efficient implementation. The rotation
amounts have been carefully chosen to be a multiple of eight bits or one bit from
it. On 8 or 16 bit architectures these rotations can be efficiently implemented using
move, swap, and 1-bit rotate instructions. On ARM processors, operations of the
form z < z <op> (y << n) can be executed with a single instruction in a single
clock cycle, irrespective of the rotation distance.

Alzette itself operates over two 32-bit words of data, with an extra 32-bit constant
value. This allows the full computation to happen in-register in AVR, MSP and
ARM architectures, whereby the latter is able to hold at least 4 Alzette instances
entirely in registers. This in turn reduces load-store overheads and contributes to the
performance of the permutation.

The consistency of operations across branches, which means that each branch executes
the same sequence of instructions, allows one to either focus on small code size (by
implementing the Alzette layer in a loop), or on architectures with more registers,
execute two or more branches to exploit instruction pipelining.

This consistency of operations also allows some degree of parallelism, namely by using
Single Instruction Multiple Data (SIMD) instructions. SIMD is a type of computa-
tional model that executes the same operation on multiple operands. The branch
structure of SPARKLE makes it possible to manipulate the state through SIMD in-
structions. In addition, the small size of the state also allows it to fit in most popular
SIMD engines, such as ARM’s NEON and Intel’s SSE or AVX. Due to the layout
of Alzette a SIMD implementation can be created by packing xg...Zn,, Yo ... Yn,,

and cg ... cy, each in a vector register. That allows 128-bit SIMD architectures such
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as NEON to execute four Alzette instances in parallel, or even eight instances when
using x86 AVX2 instructions.

Linear Layer

It is, of course, possible to implement the branch permutation at the end of the linear
layer like a branch rotation in the right half followed by a swap of the left and right
branches. However, the combination of the two operation has a unique cycle meaning
that it can be implemented simply in one loop, as shown in Algorithm 21. It is the
strategy we used in Section 4.7. Note that it is not necessary to reduce the indices
modulo w or w/2, which greatly simplifies this implementation of the linear layer.

Algorithm 21 The permutation of w branch used in £,
Input/Output: (Zg, ..., Z—1) € (F§H)¥
AR ZO
for alli e {1,...,w/2 -1} do
Zi1 < Zigw)2
Zivw)2 < Zi
end for
Zjp=2'
return (Z, ..., Zy—_1)

On an optimized implementation, the linear layer’s branch permutations can be ab-
stracted on an unrolled implementation, at the cost of code size.

Parameterized implementations

Parameterized implementations, offering support to all instances of the algorithm,
are easily done and contribute to a small code size. It also facilitates the writing of
macro-based code that compiles binaries for a specific instance. An implementation of
SPARKLE can be parameterized by the number of rounds and branches. SCHWAEMM
implementations need only the rate, capacity, and round numbers. Similarly, EsCcH
needs only the number of branches and steps. Beyond that, a single implementation of
SPARKLE is sufficient for all instances of SCHWAEMM and ESCH, making optimization,
implementation, and testing easier.

4.6.1 Hardware Implementation

Both EscH and SCHWAEMM are based on the SPARKLE permutations, where addition,
rotation, and XOR are the main components. There exist a number of different design
approaches for a 32-bit adder as the largest component in hardware. The simplest
variant is a conventional Ripple-Carry Adder (RCA) composed of 32 Full Adder
(FA) cells. RCAs are very efficient in terms of area requirements, but their delay
increases linearly with the bit-length of the adder. Alternatively, if an implementation
requires a short critical path, the adder can also take the form of a Carry-Lookahead
Adder (CLA), Carry-Skip Adder (CSA), or KoggeStone Adder (KSA), which have
a delay that grows logarithmically with the word size at the cost of higher area
overhead. Rotations are free in hardware as they are just a simple wiring, and the
implementation of XOR operation is pretty straightforward.

To achieve a high-throughput implementation, each round of a SPARKLE permutation
can be implemented as a fully combinatorial circuit, performed by a single clock cycle.
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In this approach, the ARX-box Alzette is instantiated multiple times depending on
the number of branches, i.e., n; times in parallel followed by an instance of linear
layer £,, to realize a round function of SPARKLE permutation. To reduce the area
overhead, the ARX-box Alzette can be instantiated once and re-used multiple times
to perform the round function. Hence, each round can be performed in n; clock
cycles, leading to higher latency but lower area overhead. Moreover, the design can
be optimized further for small size of silicon area. Since only four different amount
of rotations - namely 16, 17, 24, and 31 bits - are used, it can be simply implemented
by 32 instances of a 4-to-1 multiplexer. Hence, a minimalist hardware designer can
realize the ARX-box Alzette by a 32-bit adder, a 32-bit XOR, a 32-bit wide 4-to-1
multiplexer, and a control unit. Following this approach, each round of SPARKLE
permutation can be executed in 4n; clock cycles provided that an instance of linear
layer L£,, is implemented in the design.

4.6.2 Protection against Side-Channel Attacks

A straightforward implementation of a symmetric cryptographic algorithm such as
SCHWAEMM is normally vulnerable to side-channel attacks, in particular to Differen-
tial Power Anaylsis (DPA). Timing attacks and conventional Simple Power Analysis
(SPA) attacks are a lesser concern since the specification of SCHWAEMM does not
contain any conditional statement (e.g. if-then-else clauses) that depend on secret
data. A well-known and widely-used countermeasure against DPA attacks is mask-
ing, which can be realized in both hardware and software. Masking aims to conceal
every key-dependent variable with a random value called mask (or a set of masks for
high orders) to decorrelate the sensitive data of the algorithm from the data that is
actually processed on the device. The basic principle is related to the idea of secret
sharing because every sensitive variable is split up into n > 2 “shares” so that any
combination of up to d = n — 1 shares is statistically independent of any secret value.
These n shares have to be processed separately during the execution of the algorithm
(to ensure their leakages are independent of each other) and then recombined at the
end to yield the correct result.

Depending on the actual operation to be protected against DPA, a masking scheme
can be Boolean (using logical XOR), arithmetic (using modular addition or modular
subtraction) or multiplicative (using modular multiplication). Since SCHWAEMM is
an ARX design and, consequently, involves arithmetic and Boolean operations, the
masks have to be converted from one form to the other without introducing any kind
of leakage. There exists an abundant literature on mask conversion techniques and it
is nowadays well understood how one can convert efficiently from arithmetic masks
to Boolean masks and vice versa, see e.g. [CGV14]. An alternative approach is to
compute the arithmetic operations (i.e. modular addition) directly on Boolean shares
as described in e.g. [Cor+15; SMGI15]. In summary, SCHWAEMM profits from the
vast body of research on masking schemes for ARX designs and can be effectively
and efficiently protected against DPA attacks.

4.6.3 Implementation Results

Accompanying this submission are reference and optimized C implementations of dif-
ferent instances of SCHWAEMM and ESCH, as well as assembler implementations of
the SPARKLE permutation for 8-bit AVR ATmega and 32-bit ARM Cortex-M micro-
controllers. The AVR assembler code for SPARKLE is parameterized by the number of
branches and the number of steps, and complies with the interface of the optimized
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C implementation. Therefore, the assembler implementation can serve as a “plug-in”
replacement for the optimized C code to further increase the performance on AVR
devices. Thanks to the parameterization, the assembler implementation of SPARKLE
provides the full functionality needed by the different instances of SCHWAEMM and
Esch.

In contrast to AVR, we developed separate assembler implementations for SPARK-
LE256, SPARKLE384, and SPARKLE512 for ARM, which are “branch-unrolled” in
the sense that the number of branches is hard-coded and not passed as argument
anymore. However, all three ARM assembler implementations are still parameterized
by the number of steps so that a unique assembler function is capable to support
both the slim and big number of steps specified in Table 4.1. The main reason why it
makes sense to develop three branch-unrolled Assembler implementations of SPARKLE
for ARM but not for AVR is the large register space of the former architecture,
which is capable to accommodate the full state of SPARKLE256 and SPARKLE384,
thereby significantly reducing the number of load/store operations. Unfortunately,
this approach for optimizing the two smaller SPARKLE instances can not be applied in
a single branch-parameterized assembler function. It is nonetheless possible to have a
“plug-in” assembler replacement for the fully-parameterized C implementation of the
SPARKLE permutation by writing a wrapper over the three SPARKLE functions that
has the same interface as the C implementation (i.e. this wrapper is parameterized by
both the number of steps and the number of branches). The wrapper simple checks
the number of branches and then calls the corresponding variant of the assembler
function, i.e. SPARKLE256 when the number of branches is 4, SPARKLE384 when the
number of branches is 6, and SPARKLE512 when the number of branches is 8.

The execution times and throughputs of our assembler implementations of the SPARKLE
permutation for AVR and ARM are summarized in Table 4.5. On AVR, the assembler
code is approximately four times faster than the optimized C code (compiled with
avr-gcc 5.4.0), which is roughly in line with the results observed in [CDG19]. The
main reasons for the relatively bad performance of the compiled code are a poor reg-
ister allocation strategy (which causes many unnecessary memory accesses) and the
non-optimal code generated for the rotations compared to hand-optimized assembler
code. Our AVR assembler implementation is also relatively small in terms of code
size (702 bytes) and occupies only 21 bytes on the stack (for callee-saved registers).
All execution times for AVR were determined with help of the cycle-accurate instruc-
tion set simulator of Atmel Studio 7 using the ATmegal28 microcontroller as target
device.

The performance gap between the compiled C code and the hand-written assembler
code is a bit smaller on ARM, namely by a factor of roughly 2.5 when executed on a
Cortex-M3. However, it has to be taken into account that the assembler functions are
“branch-unrolled,” whereas the C version is fully parameterized. The C implemen-
tation was compiled with Keil MicroVision v5.24.2.0 using optimization level -02.
Obviously, the large register space and the “free” rotations of the ARM architecture
make it easier for a compiler to generate efficient code. The binary code size of the
assembler implementations of SPARKLE for ARM ranges between 348 and 628 bytes
and they occupy at most 52 bytes on the stack, of which 36 bytes are due to callee-
saved registers (see Table 4.6). All execution times for ARM specified in Table 4.5
were obtained with the cycle-accurate instruction set simulator of Keil MicroVision
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) AVR ARM
Permutation Rounds
C asm C asm
1 22 1 2 46 (14 1
SPARKLE256 (s im) 697 (22305) 79 ( 5728) 6 (1487) 9 ( 605)
0 (big) 992 (31761) 254 ( 8146) 66 (2111) 26 ( 842)
1 2 1 1 45 (21 1
SPARKLE384 (S im) 680 (32679) 73 ( 8318) 5 (2173) 9 (1930)
1 (big) 1066 (51215) 271 (13022) 71 (3397) 30 (1430)
8 (slim) 768 (49169) 194 (12454) 51 (3263) 23 (1489)
SPARKLEH512
12 (big) 1150 (73633) 291 (18638) 76 (4879) 35 (2209)

TABLE 4.5: Performance of the SPARKLE permutation on an 8-bit AVR ATmegal28 and
a 32-bit ARM Cortex-M3 microcontroller. The results are given in cycles/byte, with
the number inside parentheses representing the total cycle count for an execution of the
permutation.

using a generic Cortex-M3 model as target device.® It should be noted that the results
for ARM are based on assembler implementations that were optimized to achieve a
balance between (binary) code size and speed, which means we refrained from certain
optimization techniques like full loop unrolling (i.e. unrolling not only the branches
but also the steps). However, we also developed more aggressively speed-optimized
versions of the three permutations where we fully unrolled the step-loop, which re-
duces the execution time by between 15% and 18% (e.g. 149 cycles in the case of
SPARKLE384 with the slim number of steps). This performance gain is not only due
to the elimination of the overhead of the step-loop. Indeed, the execution time of
the linear layer could be further reduced: concretely, the 1-branch left-rotation of the
right-side branches in the linear layer is done “implicitly”. The downside of this full
loop unrolling is a massive increase in code size (e.g. by a factor of almost 6 for the
slim version of SPARKLE384).

Permutation Code Size (byte) Stack Usage (byte)

SPARKLE256 316432 40
SPARKLE384 452432 48
SPARKLEH12 596432 52

TABLE 4.6: Code size and stack consumption of the SPARKLE permutations on a 32-
bit ARM Cortex-M3 microcontroller. The code size is given as the number of bytes the
permutation occupies in the text segment plus the 32 bytes for the round constants.

Besides SPARKLE, a multitude of other permutation-based designs was submitted to
the NIST lightweight cryptography standardization process. Three of those designs,
namely ASCON, GIMLI, and XOODOO, come with optimized (i.e. fully unrolled) assem-
bly implementations of the underlying permutation for the Cortex-M series of ARM

5As mentioned on http://www2.keil.com/mdk5/simulation, the Keil simulator assumes ideal
conditions for memory accesses and does not simulate wait states for data or code fetches. Therefore,
the timings in Table 4.5 should be seen as lower bounds of the actual execution times one will get
on a real Cortex-M3 device. The fact that the Keil simulator does not take flash wait-states into
account may also explain why our simulated execution time for the GIMLI permutation (1041 cycles)
differs slightly from the 1047 cycles specified in Section 5.5 of [Ber+17b].


http://www2.keil.com/mdk5/simulation
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Permutation Code Size (byte) Time (cycles) Time/Rate (cycles/byte)
AscoN (8 rounds) 1810 499 31.19
GIMLI (24 rounds) 3950 1041 65.06
SPARKLE384 (7 steps) 2820 781 24.40
X00D00 (12 rounds) 2376 657 27.38

TABLE 4.7: Comparison of fully unrolled ARMv7-M Assembler implementations of the
permutations of ASCON, SPARKLE384, GIMLI and X0OODOO on a Cortex-M3 microcon-
troller.

microcontrollers. Table 4.7 compares the execution time and code size of the permu-
tations of ASCON, GIMLI and X00ODOO with a fully-unrolled version of SPARKLE384,
which is the permutation used by the primary instance of SCHWAEMM and EscH.”
As mentioned before, full loop unrolling reduces the execution time of SPARKLE384
from 930 to 781 clock cycles, but this reduction by 149 cycles comes at the expense
of an almost 6-fold increase of code size. Also given in Table 4.7 is the throughput
(in cycles per byte) of the permutations, which is simply the execution time of the
permutation divided by the rate of the main instance of the corresponding AEAD
algorithm (16 bytes for AscoN and GIMLI, 32 bytes for SCHWAEMM256-128, and 24
bytes for Xoodyak). SPARKLE384 achieves the highest throughput, closely followed
by X0o0D0O and ASCON. GIMLI reaches less than half of the throughput of the
other three permutations, but it has to be taken into account that the GimLI AEAD
algorithm aims for 256 bits of security.

64 bytes of data 1536 bytes of data
Instance
Pure C C + asm Pure C C + asm

SCHWAEMM128-128 2444 (156416) 712 (45583) 1421 (2182899) 387 (594898)
SCHWAEMM256-128 2105 (134748) 596 (38166) 1071 (1644606) 302 (464347)
SCHWAEMM192-192 2594 (165994) 727 (46526) 1399 (2148858) 395 (606716)
SCHWAEMM256-256 3014 (192918) 839 (53704) 1574 (2417064) 434 (666554)
EscH256 2714 (173678) 893 (57187) 1978 (3038834) 559 (860071)
Escu384 4732 (302837) 1308 (83725) 2992 (4595649) 830 (161717)

TABLE 4.8: Benchmarking results for the different instances of SCHWAEMM and ESCH
on an AVR ATmegal28 microcontroller when processing 64 and 1536 bytes of data,
respectively (in the case of SCHWAEMM the benchmarked operation is encryption and the
length of the associated data is 0). The results are given in cycles/byte, with the number
inside parentheses representing the total cycle count for processing the specified amount
of data.

Table 4.8 shows the AVR execution times and throughputs of the different instances
of SCHWAEMM and ESCH instances when processing a small amount (64 bytes) and
a large amount (1536 bytes) of data, respectively. As before, all execution times were
obtained with the cycle-accurate simulator of Atmel Studio 7 using an ATmegal28
as target device. The results in the “C + asm” columns refer to a C implementation

"We took the ARM Assembler source code of GIMLI from http://gimli.cr.yp.to/
gimli-20170627.tar.gz and converted it from the GNU syntax to the Keil syntax. The source code
of X0ODOO contained in the eXtended Keccak Code Package (XKCP) at http://github.com/XKCP/
XKCP/tree/master/lib/low/Xoodoo was already in Keil syntax.


http://gimli.cr.yp.to/gimli-20170627.tar.gz
http://gimli.cr.yp.to/gimli-20170627.tar.gz
http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo
http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo
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64 bytes of data 1536 bytes of data
Instance
Pure C C + asm Pure C C + asm

SCHWAEMM128-128 148 (1 9491) 69 (4384) 101 (155495) 46 (70440)
SCHWAEMM256-128 154 ( 9851) 74 (4715) 77 (118917) 37 (57109)
SCHWAEMM192-192 189 (12066) 89 (5698) 100 (153597) 47 (72077)
SCHWAEMM?256-256 219 (14029) 111 (7072) 113 (173051) 56 (86284)
EscH256 198 (12654) 90 ( 5774) 114 (221678) 66 (101454)
EscH384 341 (21847) 165 (10561) 216 (332623) 105 (161717)

TABLE 4.9: Benchmarking results for the different instances of SCHWAEMM and EscH
on an ARM Cortex-M3 microcontroller when processing 64 and 1536 bytes of data, re-
spectively (in the case of SCHWAEMM the benchmarked operation is encryption and the
length of the associated data is 0). The results are given in cycles/byte, with the number
inside parentheses representing the total cycle count for processing the specified amount
of data.

that uses the hand-written assembler code for the SPARKLE permutation. Table 4.9
summarizes the corresponding results for an ARM Cortex-M3 device.

In order to compare the performance of ESCH256 (using the assembler implemen-
tation of SPARKLE as sub-function) with that of other (lightweight) hash functions,
we simulated the time it needs to hash a 500-byte message on an 8-bit AVR AT-
megal28 microcontroller. Indeed, determining the execution time required for hash-
ing a 500-byte message on AVR is a well-established way to generate benchmarks for
a comparison of lightweight hash functions. According to our simulation results, the
mixed C and assembler implementation of ESCH256 has an execution time of 289131
clock cycles, which translates to a hash rate of 578 cycles/byte. The binary code
size of KSCH256 is 1428 bytes. Table 4.10 summarizes the implementation results of
EscH256, SHA-2, SHA-3, some SHA-3 finalists, as well as GIMLI [Ber+17b]. Our
hash rate of 578 cycles/byte for ESCH256 compares favorably with the results of the
SHA-3 finalists and is beaten only by BLAKE-256 and SHA-256. However, it must be
taken into account that the results reported in [Bal+13] were obtained with “pure” as-
sembler implementations, whereas ESCH256 contains hand-optimized assembler code
only for the SPARKLE permutation. We expect that a fully-optimized implementation
of ESCH256 with all its components written in assembler has the potential to be faster
BLAKE-256 and get very close to (or even outperform) SHA-256.

A comparison of the performance of hash functions is easily possible because there
exist a number of implementation results in the literature (e.g. [Bal-+13]) that were
obtained in a consistent fashion, in particular by measuring the execution time re-
quired for hashing a 500-byte message on AVR. Unfortunately, there seems to be no
similarly established way of generating benchmarking results for lightweight authen-
ticated encryption algorithms since the results one can find in the literature were
obtained with completely different lengths of plaintexts/ciphertexts and associated
data.
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Hash function Ref. Throughput (c¢/b) Code size (b)
EscH256 This paper 578 1428
BLAKE-256 [Bal+13] 562 1166
GiMmLI-Hash small [Ber+al 1610 778"
GiMLI-Hash fast [Ber+a)] 725 19218*
GROESTL-256 [Bal+13] 686 1400
JH-256 [Bal+13] 5062 1020
KeccAk| [Bal+13] 1432 868
SHA-256 [Bal+13] 532 1090

* The code size corresponds to the

permutation alone.

T The version of KECCAK considered is KECCAK|[r = 1088, ¢ = 512].

TABLE 4.10: Comparison of ESCH256 with other hash functions producing a 256-bit
digest. The number of cycles and the throughput were obtained by hashing a 500-byte
message on an AVR microcontroller. The implementation of ESCH256 contains hand-
optimized assembler code only for the permutation, whereas the implementations of all

other hash functions were written entirely

in assembler.

4.7 C Implementation of Sparkle

All permutations in the SPARKLE family are implemented by the following function,
where nb is the number of branches (4 for SPARKLE256, 6 for SPARKLE384 and 8 for
SPARKLES12) and where ns is the number of steps.

0 O Tk W
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#define MAX_BRANCHES 8

#define ROT(x, n) (((x) >> (n)) | ((x) << (32-(n))))

#define ELL(x) (ROT(((x) ~ ((x) << 16)), 16))

// Round constants

static comnst uint32_t RCON[MAX_BRANCHES] = { \
0xB7E15162, O0xBF715880, 0x38B4DA56, 0x324E7738, \
O0xBB1185EB, 0x4F7C7B57, OxCFBFA1C8, 0xC2B3293D \

};

void sparkle(uint32_t *state, int nb, int ns)

{

int i, j; // Step and branch counter
uint32_t rc, tmpx, tmpy, x0, yO;
for(i = 0; i < mns; i ++) {
// Counter addition
state[1] ~= RCON[i’MAX_BRANCHES];
state[3] ~= i;
// ARXBox layer
for(j = 0; j < 2*mnb; j += 2) {
rc = RCON[j>>1];
state[j] += ROT(state[j+1], 31);
state[j+1] ~= ROT(statel[jl, 24);
state[j]l ~= rc;
state[j] += ROT(state[j+1], 17);
state[j+1] ~= ROT(statel[jl, 17);

state[j] "= rc;
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state[j] += state[j+1];
state[j+1] ~= ROT(statelj],
state[j] ~= rc;
state[j] += ROT(statel[j+1],
state[j+1] ~= ROT(statel[j],
state[j] ~= rc;

}

// Linear layer

tmpx = x0 = state[0];

tmpy = yoO state [1];

for(j = 2; j < mb; j += 2) {
tmpx "= statel[j];
tmpy ~= statel[j+1];

}

tmpx = ELL(tmpx) ;

tmpy ELL (tmpy) ;

for (j = 2; j < mnb; j
state[j-2] = state[j+nb]
state[j+nb] = statel[j];
state[j-1] = state[j+nb+1]
state [j+nb+1] = state[j+1];

}

state [nb-2] =

state[nb] = x0;

state[nb-1] = statel[nb+1]

state [nb+1] = yO;

}

+= 2) {
state [j]

~ state[j+1] ~

state[nb] ~ x0 ~

yo

31);

24) ;
16) ;

tmpy;

tmpx;

tmpy;

tmpx ;
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This chapter is based on the paper titled “Meet-in-the-filter and dynamic count-
ing with applications do Speck”, which was submitted for review to Asiacrypt 2022
[Ale+22].

My main contribution on this chapter was the base design of the attack based on the clustering
characteristic of the trails, the trail enumeration and search procedures, as well as the necessary
implementations and tools, focused primarily on SPECK64, with no specific optimization for SPECK32.
The key recovery procedure, special trail filtering for SPECK32, and more accurate complexity analysis
was executed by the other authors of the paper. The full paper is available in https://eprint.iacr.
org/2022/673/
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In this paper, we propose a new cryptanalytic tool for differential cryptanalysis,
called meet-in-the-filter (MiF). It is suitable for ciphers with a slow or incomplete
diffusion layer such as the ones based on Addition-Rotation-XOR (ARX). The main
idea of the MiF technique is to stop the difference propagation earlier in the cipher,
allowing to use differentials with higher probability. This comes at the expense of
a deeper analysis phase in the bottom rounds possible due to the slow diffusion
of the target cipher. The MiF technique uses a meet-in-the-middle matching to
construct differential trails connecting the differential’s output and the ciphertext
difference. The proposed trails are used in the key recovery procedure, reducing
time complexity and allowing flexible time-data trade-offs. In addition, we show how
to combine MiF with a dynamic counting technique for key recovery. We illustrate
this in practice by reporting improved attacks on the ARX-based family of block
ciphers SPECK. We improve the time complexities of the best known attacks up to 15
rounds of SPECK32 and 20 rounds of SPECK64/128. Notably, our new attack on 11
rounds of SPECK32 has practical analysis and data complexities of 22466 and 226-70
respectively, and was experimentally verified, recovering the master key in a matter
of seconds. It significantly improves the previous deep learning-based attack by Gohr
from CRYPTO 2019, which has time complexity 23%.

5.1 Introduction

Differential cryptanalysis (DC) is one of the most powerful techniques for analyz-
ing symmetric-key cryptographic algorithms. It has been proposed by Biham and
Shamir in 1991 [BS91] and since then has been used to successfully attack numerous
symmetric-key primitives, including ciphers, hash functions, and MACs. Nowadays,
resistance to DC is one of the basic properties that a symmetric-key algorithm must
satisfy and new cryptographic designs often come with proofs of such resistance.

In DC, the attacker traces the propagation of differences (most commonly expressed
in terms of the XOR operation) between plaintexts through multiple rounds of the
analyzed primitive. By analyzing differences rather than plaintexts, the attacker
effectively cancels out the action of the unknown round keys (also typically mixed in
by an XOR). In this way, a trace of differences over multiple rounds can be computed,
which is called a differential trail. The latter typically holds with certain probability
p > 27" for an n-bit state and acts as a distinguisher of the analyzed cipher from a
random permutation.

A typical DC attack starts with the derivation of a distinguisher on r rounds with
probability p. It is then used to attack r 4+ u rounds of the cipher, where u is some
number of rounds added after the distinguisher. In the attack, the attacker guesses
(at least partially) the last v round keys in order to invert the last u rounds and to
compute the output difference after r rounds. If this difference matches the output
difference of the distinguisher, then, with some probability, the guess for the last
round keys must have been correct. Extra [ rounds are often also added at the top of
the distinguisher resulting in an attack on [ +r+w rounds. DC is a statistical attack,
meaning that the described process has to be repeated for many (at least p~!) chosen
plaintexts with a given input difference in order to successfully recover the last round
keys with a sufficient success probability. Over the years there have been multiple
extensions to the basic DC attack.

In this paper, we propose a new addition to the DC toolkit, which we call meet-
in-the-filter (MiF). This technique is especially suitable for ciphers with a slow or
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incomplete diffusion layer such as the ones based on Addition-Rotation-XOR (ARX).
The main idea of the MiF technique is to stop the difference propagation earlier in
the cipher resulting in a distinguisher on a fewer number of rounds (smaller value of
r) with a relatively high probability p. This comes at the expense of a deeper analysis
phase in the bottom rounds, i.e., a relatively high value of u. More specifically, in
the MiF technique, we split u = s + t into a precomputed cluster of differences for
s rounds, then perform a Matsui-like search from the ciphertext difference, running
backwards for ¢ rounds up to the meeting point with the difference cluster. The
filter discards a pair as wrong if the meeting point (the meet-in-the-filter) does not
produce a valid (s + t)-round trail. For the reverse search, we use the fact that
a differential (o, 5 — <) has the same probability through modular addition and
modular subtraction (see Lemma 3). As a result, MiF produces a set of trails that
can be used with an auxiliary key-recovery procedure.

To illustrate the practical use of the MiF technique we apply it to the ARX-based
family of block ciphers SPECK. After obtaining the set of 4-round trails produced
by MiF, an attacker can use a key recovery procedure similar to the one described
by Dinur in [Dinl4; Dinl4]! by just applying it twice — once for the bottom two
rounds and once for the penultimate two rounds. Dinur suggested that although
counting techniques could be applied to his procedure, it was not likely to improve
the complexity of the attack. However, since MiF proposes trail differences for the
full four rounds, we can use an advanced key recovery method with dynamic counting
to improve time complexity.

Given a set of 4-round trails for SPECK, the dynamic counting procedure returns a set
of candidate subkeys that satisfies at least ¢ trails. Enforcing this requirement ampli-
fies the filtering of subkey candidates, which reduces the key recovery time. Further,
we describe the recursive implementation of the procedure which reduces the memory
overhead of counting. This technique is applied to recover the four bottom subkeys
of SPECK, which are sufficient to recover the full master key by applying SPECK’s
key schedule in reverse. An important distinction of our approach to Dinur’s [Dinl14]
is that the latter analyzes the bottom four rounds of SPECK2n by making 22" key
guesses for the bottom two of the four rounds (since the difference propagation in
these rounds is not known) while in our case, the key-recovery procedure runs on all
the four rounds.

We give a detailed analysis of MiF on 11 rounds of SPECK32, using various 14+r+s-+t
round splits. Notably, we have an 11-round MiF attack with practical analysis and
data complexities of 22466 and 22670 respectively. Our attack is estimated to be 213
times faster than the deep learning approach introduced in CRYPTO 2019 [Goh19]
which has the best-known attack on 11-round SPECK32 with time complexity of 23%
for a 50% success rate. Experimentally, our attack recovers the right key in under
a second on a PC with a success probability of ~ 63%. We provide experimental
verification of the estimated complexities for 11- and 12-round attacks®>. We also
further improve the time complexities of the best attacks reported in the literature
on up to 15 rounds of SPECK32 and up to 20 rounds of SPECK64/128.

The outline of the paper is as follows. Section 5.2 reviews previous attacks on SPECK,

'We refer to [Din14], which is the extended version of [Din14] and which contains a full description
of Dinur’s algorithm.

?Experimental verification of our 11- and 12-round attacks on SPECK32/64 is available at
github.com/1d50f/MiF. Our attack experiments were run on a single core of a laptop with Intel®
Core™ i7-1185G7 CPU clocked at 3.00GHz and 32 GiB RAM.
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Notation Definition

FE Full (SPECK) encryptions (time complexity measure)

n Word size in bits

SPECK-2n/(kn)

SPECK with block size 2n and key size kn

P, A, V, o Bitwise XOR, AND, OR, and NOT

a<&Kb a>>b Cyclic shift of a by b bits to the left and to the right respectively
ADD , + Addition modulo 2"

SUB , — Subtraction modulo 2™

|S] Size of the set S

a; i-th bit in the big-endian word a, where ag is the LSB

R Total number of rounds

I,ryu Number of top, middle, bottom rounds in an [ + r + u attack
u=s+t Split of bottom rounds into s and ¢ rounds

k Number of key recovery rounds/key words

a, B, XOR differences for addition or subtraction modulo 2"

AX XOR difference

AN, Aout Input and output XOR difference to a differential (trail)

7. = (Alv — Aoyr) A differential (trail) on 7 rounds

xdp™, xdp~ XOR differential probability of addition and subtraction

w, weight Negative log, of differential probability, i.e. Pr =27
S(s,ws) or S Cluster of trails on s rounds with Pr > 27%s

T(t,w) or T Set of filtered trails on ¢t rounds with Pr > 27"t

D q Trail (single/differential/cumulative) probabilities

D Number of chosen plaintexts

Tirails Number of trails returned by MiF

d Current depth visited by the dynamic key recovery procedure
B(k;n,p) The binomial distribution, B(k;n,p) = (Z)pk(l —p)nk

TABLE 5.1: Common notations used in this chapter

while Section 5.3 provides basic definitions, theorems, and lemmas used in the paper,
as well as some relevant known results. It also includes a high-level description of
the SPECK family of block ciphers. Section 5.4 presents the Meet-in-the-Filter (MiF)
technique followed by the improved key-recovery framework based on counting. At-
tacks on SPECK32 and SPECK64/128 using the MiF tool are presented in Section 5.5,
Section 5.6 and Section 5.7. Finally, Section 5.8 concludes the paper. The notation
used throughout this paper is given in Table 5.1.

5.2 Previous Work

All previous differential attacks on SPECK start from a differential (trail) on r rounds
to which 1 round is added at the top and u rounds are added at the bottom. In
all cases, we can add this additional round at the top due to the fact that the key
addition with the first round key is executed at the end of the first round, and so does
not influence the attack complexity. Previous attacks on SPECK32 and SPECK64/128
along with the proposed new attacks are listed in Table 5.2. Time complexity is
measured in the number of full encryptions (FE), data complexity in the number of
chosen plaintexts, and memory is in bytes. A brief summary follows next, which covers



5.2. Previous Work 85

classical differential attacks and recently proposed differential-neural approaches.

Variant Rounds Split Pr diff Time Data Mem Ref
SPECK32/64 11/22 1+6+4 2713 246 214 222 [Dinl4]

SPECK32/64 11/22 1+9+1 Neural 238 2149 Goh19]
SPECK32/64 12/22 1+7+4 2718 251 219 222 [Dinl4]
SPECK32/64 12/22 1+49+1 Neural 24340 22297 _ Goh19)
SPECK32/64 12/22 1+10+1 Neural 24489 222 _ Bao+21]

[
[
[
[
SPECK32/64 13/22 1+8+4 22 257 2% 222 [Dinl4]
[
[
[

SPECK32/64 14/22 1+9+4 2730 203 231 222 [Dinl4]

SPECK32/64 14/22 1+9+4 272947 96247 93047 922 [GHY1(]

SPECK32/64 15/22 1+10+4 ~ 273039 206339 93139 922 ] 00 1 1g]
SPECK32/64 11/22 14+0+8+2 - 240-15 91411 92897 this paper
SPECK32/64 11/22 1+0+8+2 - 23487 215.58 924.71 this paper
SPECK32/64 11/22 14+0+8+2 - 224.66 926.70 922.02 this paper
SPECK32/64 12/22 140+9+2 - 245-91 91888 93213 this paper

SPECK32/64 12/22 1+7+2+42 272985  24l97 92245 93046 thig paper
SPECK32/64 12/22 1484142 272 23384 93042 92475 this paper
SPECK32/64 13/22 1+0+10+2 - 256-41 925.27 936.85 thig paper
SPECK32/64 13/22 1+8+42+42 27238 95016 93113 93107 thig paper
SPECK32/64 14/22 1494242 272937 26135 93064 922 this paper
SPECK32/64 14/22 1+9+2+42 272937 26099 93175 94191 thig paper
SPECK32/64 15/22 14+10+2+42 273039 96225 93139 922 this paper

SPECK64/128 13/27 14844 2729 296 930 222
SPECK64/128 15/27 1+13+1 27589 26LL 961 = 932
SPECK64/128 16/27 1+14+1 279902 280~ 963 [BRV14]
[
[

SPECK64/128 19/27 1+14+4 2790 2125 6L 922
SPECK64/128 20/27 141544 276056 212556 961.56 922

SPECK64/128 13/27 1484242 272887 25953 93146 93997 thig paper
SPECK64/128 13/27 1+8+42+42 272887 95245 93214 939.70 thig paper
SPECK64/128 19/27 14144242 275569 910108 961.03 967.30 thig paper
SPECK64/128 20/27 1+15+2+2 276078 912269 963.96 97719 thig paper

TABLE 5.2: Summary of differential attacks on SPECK 32 and SPECK64/128. Rounds
R/R’ denotes that R out of R’ rounds are attacked; Split | + r + k = R denotes that
to an initial differential (trail) on r rounds, | rounds are added at the top and k rounds
are added at the bottom; Pr diff is the probability of the differential (trail) on 7 rounds.
Time, Data, Mem are resp. the time, data and memory complexity of the attack; Ref
is the reference to the publication describing the attack. Highlighted cells indicate the
best attack time complexities.

In SAC 2014, Dinur proposed new attacks on SPECK32 for up to 14 rounds, with the
latter having time 7" and data D complexities of (T, D)14p = (253,231) [Din14]. Later,
in CRYPTO 2019, Gohr showed that neural networks could be trained to be cryp-
tographic distinguishers [Goh19]. His 11-round attack on SPECK32 uses differential-
neural distinguishers that consist of 7-round (and a 6-round) neural distinguisher
appended to a 2-round classical differential. The attack has a success rate of about
50% to recover the final 2 subkeys® with (T, D)j1p = (238,2'4%). Using a similar

3The second subkey was allowed to be wrong for at most 2 bits.
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attack procedure, Gohr also has a 12-round attack with (7, D)jap = (243-40,22297)
but only a 40% success rate. Benamira et al. later delved into the inner workings of
Gohr’s approach from the standpoint of classical differential cryptanalysis [Ben-+21].
They found that these distinguishers rely not only on the ciphertext pair but also
on the difference distributions in the bottom two rounds. Apart from being able to
better interpret the behaviour of the neural distinguishers and improving their ac-
curacy, no new attacks on SPECK32 were reported. In [Bao+21], Bao et al. use a
10-round differential-neural distinguisher to mount a 12-round key recovery attack
on SPECK32 using a similar key recovery framework as Gohr. By using more than
one differential prepended to the neural distinguisher, they reported an attack with
(T, D)12r = (24489,222) and a higher success rate of 86%. Going back to classical
differential cryptanalysis, Song et al. [SHY16] and Lee et al. [Lee+18] reported at-
tacks on 14 and 15 rounds of SPECK32 with resp. (T, D)1ur = (26%47,23047) and
(T, D)15r = (29%39,231:39) by using differentials rather than single trails as their
distinguishers.

Next, we take a look at past attacks on SPECK64/128. In [Abe+14], Abed et al.
use a differential trail on 13 rounds to which they add one round at the top and
at the bottom to mount a 1+ 13 + 1 attack on SPECK64/128. During the same
period, Biryukov et al. [BRV14] reported an attack with time and data complexities
(T, D)16r = (289, 253) for SPECK64/128. In [Din14], Dinur mounts a 1+ 14 + 4 attack
on SPECK64/128 with (T, D)19r = (2'2°,261). Song et al. [SHY16] attack 20-round
SPECK64/128 with (T, D)yop = (212556 261:56) " This was a 1 + 15 + 4 attack that
used a differential (rather than a single trail) for 15 rounds with Pr = 2760-56 (the
single trail probability is 262). The latter results in a slight improvement, the rest
being the same as in Dinur’s attack. Complexity-wise Song et al. attacks are already
close to biclique attacks which work almost for any cipher.

The proposed MiF technique bears some similarity to earlier results e.g. on DES [DSP07],
AES [DKS10; DFJ13] and LowMC [RST18; LIM21]. In [DSP07], the authors similarly
lower the data complexity of their attack by recovering internal values rather than
key bits (in contrast, we recover internal differences). In [DIKS10], by enumerating the
possible differential input/outputs to active S-boxes, a set of possible differential trails

is recovered. The same idea is built upon in some of the results in [DFJ13]. More
recently, attacks on LowMC [RST18; LIM21] leverage upon a conceptually similar
reconstruction of differential trails but only for probability-one trails.

Techniques for the automatic search for differential trails for SPECK can be broadly
divided into two groups. In the first group the problem is represented in terms of
Mixed Integer Linear Programming (MILP) or Satisfiability Modulo Theory (SMT)
and off-the-shelf MILP or SAT solvers are employed to execute the search. Some
results in this group are by Fu et al. [Fu+16] (MILP) and Song et al. [SHY16]
(SMT) with the latter applying the method proposed by Mouha et al. [MP13] to
construct a long differential trail from two short ones. The second group is composed
of dedicated techniques based on Matsui’s search algorithm [Mat94]. Biryukov et
al. [BVC16] proposed the first adaptation of this algorithm to ARX ciphers and an
optimised version using carry-bit-dependent difference distribution tables (CDDT)
was later developed by Liu et al. [Liu+19]. Huang et al. [HW19] further optimized
the latter using combinatorial DDT (¢cDDT). We note that the differential search
algorithms from [BVC16; HW19; Liu+19] are complete, i.e., given enough time, they
will return all the differential trails with a given differential probability.
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5.3 Preliminaries

We begin with some preliminaries, necessary to understand the main results presented
in subsequent sections. In the following exposition, addition and subtraction modulo
2" are denoted respectively by ADD and SUB.

5.3.1 Differential Cryptanalysis

Differential cryptanalysis analyzes pairs of encryptions P; — C1, P» — C5 by studying
the propagation of the input difference AP = P; @ P, to the output difference AC =
C1 @ C5 through the cipher, which is known as a differential characteristic or trail. A
differential trail consists of a sequence of differences:

AP — 61 — 0y — ... = 61 — AC. (5.1)

To perform an attack, an adversary needs a differential trail with sufficiently high
differential probability:
p= I;r[AP — ... = AC], (5.2)

which is defined as the probability over all plaintexts. However, for simplicity of the
analysis and due to the presence of round keys in ciphers, it is usually approximated
by the probability of the trail over assumed-to-be-independent round keys (the so-
called Markov assumption [[LM91]). In that case, the probability of the trail can be
computed simply as the product of the probabilities of all the individual transitions:

p = PI‘[AP — (51] . Pr[51 — 52} et Pr[&r_l — AC] (53)

A better estimate of the differential probability can be obtained by collecting all
differential trails that have the same input and output differences:

p=Pr[AP - AC]= > Prl[AP =& — ... = 61 — AC]. (5.4)
01...0r1

The weight of a differential (trail) is defined as w = —log,(p). The following variant
of the Markov assumption is used to analyze our attack time complexities.

Assumption 1. For a (possibly truncated) differential trail AP — AC with a weight
w, and a uniformly and independently sampled pair of ciphertexts (C1,C2), the aver-
age fraction of subkeys for which the partial decryption of (C1,C3) follows the trail is
equal to 27%.

5.3.2 The Differential Probability of ADD and SUB

The differential probabilities of addition/subtraction modulo 2" were studied by Lip-
maa and Moriai [LMO1].

Definition 3. xdp' and xdp~ are the probabilities with which input XOR differ-
ences «, 3 propagate to output XOR difference v through the operations ADD and
SUB respectively, computed over all n-bit inputs a, b:

xdp™ (o, 8,7) = 27" [{(a,0) : ((a D) + (b®B) D (a+b) =7},  (55)
xdp~(a,8,7) = 27" [{(a,0): ((a@a) - (0@ B) @ (a=b) =1} .  (56)
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Lemma 1 ([LMO1, Lemma 3]). The probability xdp™ (v, 3,7) is non-zero if and only
if

i i i = 5.7
R {51‘—1 if (i >1)A(im1 = Bic1 = Yi-1) - 57

If the probability xdp™ (o, 3,7) is non-zero (i.e., the differential (c, 3 — ) is possi-
ble), its exact value can be computed with the formula given in Theorem 2.

Theorem 1 ([LMO1, Algorithm 2]). If xdp™ (o, 3,7) > 0 then

xdpt(a,B,7) =2t = [{i<n—1: o =B =} . (5.8)

Note that the maximum possible transition weight through ADD is n — 1. From
Lemma 9 and Theorem 2, we can deduce that the differential probability of transitions
through ADD is equal to those through SUB, and does not depend on the order of
the three differences.

Lemma 2. The probability xdp™ (c, 3,7) is invariant under any permutation of the
inputs «, 8,7, i.e.,

xdp® (o, 3,7) =xdp* (e, 7, 8) = xdp* (B, ,7) = ... . (5.9)

Lemma 3. The differential (o, 3 — ) has the same probability through modular
addition and modular subtraction for any choice of differences o, 3,7, i.e.,

xdp* (e, 8,7) = xdp~ (o, 8,7) . (5.10)

5.3.3 Distribution of Differential Weights and Probabilities of ADD

In this section, we recall and derive properties of the distribution of weights and/or
probabilities of differential transitions through the ADD operation. These properties
will be used in the analysis of the MiF tool and complexities of the attacks. All proofs
can be easily derived from the following lemma by Lipmaa and Moriai [LMO0O1] and
are omitted due to page limitations.

Lemma 4 ([LMO01, Theorem 2|). The fraction of all transitions through ADD (in-
cluding invalid ones) having weight w is given by

n—1
Pr [xdp™(a,8,7) =27"] = L <7) B(w;n — 1,§ (5.11)

By 2\8 7) ’

Lemma 5. Let o, 8 be chosen independently and uniformly at random. The expected
number of differences vy such that the differential transition (a, ) — 7y is valid (i.e.,
xdpt (o, 3,7) > 0) is given by

7 n—1
Ell{y:xdp™ (e, 8,7) > 0}l = <4> — o(n=Dlogs(3) (5.12)

Lemma 6. Let (o, ) — 7y be a transition through ADD sampled uniformly at random
from all valid transitions through ADD. The expected differential transition weight w
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is equal to

6
B [ logy(xdp™(a, 8,7))] = =(n — 1) . (5.13)
xdp™ (a,8,7)>0

Lemma 7. Let (o, B) — 7y be a transition through ADD sampled uniformly at random
from all valid transitions through ADD. The average differential transition probability
p is given by

4 n—1
B kaptasol-(3) (5.14)

a,B,7: 7
xdp™ (a,8,7)>0

Example 1. SPECK32 uses 16-bit additions, for which the differential transitions
have average weight approximately w = 12.86 and average probability approximately
2~ 1211 SpRrcK64 uses 32-bit additions, for which the differential transitions have av-
erage weight approximately w = 26.57 and average probability approximately 272503,

5.3.4 Dinur’s Attack

Since our work draws parallels to Dinur’s attack, we describe it briefly in this section.
In its basic version, Dinur’s attack uses an r round differential to attack r + 2 rounds.
All internal differences and some values in the bottom two rounds are known from the
differential and ciphertexts. To recover the remaining unknown internal values, Dinur
applies a guess-and-determine strategy that works bitwise on the bottom two modular
additions (cf. 1RProcedure, 2RProcedure [Dinl4, Appendix A]). As a result, the last
two round keys are recovered. The basic r+2 attack is then trivially extended to r+4
rounds for any SPECK variant by recovering two additional round keys through an
exhaustive search, which increases the attack complexity by a factor of 22”. Dinur’s
attack applies two filtration procedures, called one-bit and multi-bit filters [Dinl4,
§ 7.2], that exploit the differential properties of modular addition. The one-bit filter
provides the main filtration power and is effectively a check for the conditions of
Lemma 9. It gives filtration efficiency of % - (%)"‘1 ~ 277 for each 32-bit ADD with
known «, 3, differences. The multi-bit filter provides further improvement by a
factor of about 273 for each 32-bit ADD operation.

5.3.5 Description of the Block Cipher Speck

bivm—a [--> oo - ¢;

Ti+1 Yi+1

FI1GURE 5.1: Speck round function and key schedule.

SPECK is a family of lightweight block ciphers proposed by USA National Security
Agency in [Bea+13]. It follows an iterative ARX design, supporting block sizes of
32,48,64,96, and 128 bits and various key sizes. The members of the SPECK family
have been designed to provide good performance in software with their main target
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being microcontrollers. With SPECK2n/(kn) is denoted the instance of SPECK with
a block size of 2n bits composed of two n-bit words and a key size of kn bits, where
k denotes the number of keywords. SPECK2n uses three operations over n-bit words:
bitwise XOR, addition modulo 2" and bitwise rotation. The key-dependant round
function of SPECK2n depicted in Figure 5.1 is a map Rx : {0,1}2" — {0, 1}?" defined
as

Ri(zy)=((z>r)+y) o K, (y <) & (((x>>r,) +y) ®K) , (5.15)

where the rotation values are r, = 7,7, = 2 for n = 16, and r, = 8, r, = 3 for all other
block sizes. The decryption of SPECK uses modular subtraction on the inverted round
function and is naturally derived. The key schedule of SPECK2n takes the master
key and generates R round-key words Ko, K1, -+, Kgr_1, where R is the number of
rounds, using the same round function as used by the encryption. For a detailed
description of SPECK we refer the reader to [Bea+13].

5.4 The Meet-in-the-Filter (MiF) Attack

In this section, we describe the Meet-in-the-Filter (MiF) attack, which is divided into
two main parts — the MiF tool and the key recovery procedure based on dynamic

counting. It is applicable to ciphers with incomplete or relatively slow diffusion such
as ARX.

5.4.1 The MiF Tool

Consider a block cipher with r + u rounds split into r rounds covered by a differential
(trail) and w rounds covered by backward search. The goal of the MiF tool is to
efficiently enumerate trails for the bottom u rounds. We can further split u into two
parts: u = s+ t, in order to obtain a time-memory trade-off. The s and t rounds of
the split are processed separately in search of a meeting point (a matching difference).
An illustration of the MiF filter is shown in Figure 5.2. We start from an r-round
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FIGURE 5.2: Illustration of MiF with an r + u and u = s + ¢ split.

differential with probability p denoted as Ay — Aour. Next we choose a suitable
split of w into s top and ¢ bottom rounds (v = s + t) together with corresponding
probability thresholds 27%s and 27%*. In an offline phase, we apply Huang et al.’s
Matsui-like search [HW19] to prepare the cluster.

Definition 4. The cluster S(s,ws) is the set of all s-round trails 75 starting with the
difference Agyt and having probability at least 27%s:

S(s,ws) = {TS — (Aour 5 AX): Pr[r] > 2—ws} : (5.16)
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The functional notation S(s,ws) stresses the fact that the set S is a function of the
parameters s and ws. We use S as a shorthand for S(s,ws) when the parameters are
clear from the context. Constructing S would usually require negligible precomputa-
tion time compared to the full differential attacks.

In the online phase, a set of ¢ - p~! (for some small constant ¢’ > 1) chosen plaintext
pairs (Py, P, = P} & An) are encrypted for r + u rounds. For each corresponding
ciphertext pair (C1,C2), a reverse search on t rounds starting with the ciphertext
difference AC = Cy & C5 as input is executed. Since the reverse search is performed
on SPECK in decryption mode, the modular addition operation ADD is replaced by
modular subtraction SUB which does not change the probability computation due
to Lemma 3. For a given observed ciphertext pair, the reverse search produces the
filter-set T (¢, wy).

Definition 5. The filter-set T consists of all ¢-round trails 7, starting from AC' in
the reverse direction and having probability at least 2%.

T(t,wy) = {Tt = (AC L AY): Prjr] > z—wt} . (5.17)

Similarly to S(s,ws), the set T (t,w;) is expressed as a function of the parameters ¢
and w;. We use T as a shorthand for 7 (¢,w;) when the parameters are clear from
the context. Of all trails 7+ in 7, we keep only the ones whose output difference
AY matches an output difference AX of a trail 75 in S. A match between a given
7s € S and a given 7, € T results in a u-round trail 7, obtained by the following
concatenation:

Ty = (TtHTS) =AC i} AOUT = <AC i) (AY = AX) i) AOUT) . (5.18)

A ciphertext pair for which a match is found, is recorded as a candidate right pair, i.e.,
a pair whose corresponding plaintexts (Pi, P») have followed the differential (trail)
(AN = Agur). Each such pair comes with a set of suggested u-round trails {7, =

Aour st AC}. The latter contains information for the key-recovery phase and
is passed on to the key-recovery procedure. The set S is referred to as the cluster
while the process of matching the set 7 against S is referred to as the (backward)
filter. The absolute values of the logarithm base-2 probability thresholds — i.e., the
constants w, and w; — are called respectively the cluster weight and the filter weight.
Since the split s+t can be seen as one large u-round filter that passes only candidate
right pairs, the procedure is called meet-in-the-filter or MiF. In general, MiF offers
the attacker a reduction in filtration complexity for the u bottom rounds through a
time-memory trade-off.

5.4.1.1 Efficiency and Loss Factor

Pairs of plaintexts (Py, P») that follow the differential for the top r rounds are called
right pairs or signal while those that do not are wrong pairs or noise. After the
application of MiF, some of this signal may be lost due to the weight thresholds (w
and w;) being applied to the bottom u rounds. Denote the probability that a right
pair follows a u-round trail produced (or filtered) by MiF by ¢. Such a u-round trail
is called a right trail, i.e., a right u-round trail is one that will be followed by the
corresponding right pair after going through the initial r-round differential. We refer
to ¢ as the efficiency of the MiF filter, the inverse of which, ¢~ ', is called the loss
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factor. The latter is the value by which the attacker needs to multiply the initial
data D =2-¢ -p~! to compensate for the decreased filter efficiency. The constant ¢’
maintains the probability of catching at least ¢ right trails in the set of trails (dataset)
produced by MiF, as required by our key recovery technique. Thus the overall data
complexity of the attack is a function of the efficiency of the MiF filter and is equal
to Dg~ .

The efficiency of the MiF filter depends on the choice of the split values s and ¢, and
the corresponding cluster and filter weights, w,; and w;y respectively. To maximize
efficiency, the filter weight must be set large enough to allow all possible difference
propagations in the backward filter. Based on Lemma 6, the average weight of a
random valid ¢-round trail can be estimated as g(n— 1)t, e.g. for t = 2 and n = 16, the
average weight of a 2-round trail is 25.71. To ensure that no trails will be discarded by
the backward filter, the maximum value wy = 2(n — 1) = 30 should be set. If no limit
is imposed on the backward filter, we can estimate ¢ as the cumulative probability of
all trails in the S that comes from one r-round differential:

g= > Prlr]. (5.19)

TsE S

Typically, most trails suggested by MiF will not be right (i.e., are noise). We will
denote the number of trails returned by MiF as nijs. These trails, together with
respective ciphertext pairs, are passed on to the key recovery stage, which we will
describe and analyze in the following section.

5.4.2 Key Recovery using Single-Trail Analysis

In this section, we describe a general key recovery procedure based on single trail
analysis. We recall the general setting — an attacker uses a differential Ay — AouT
over r rounds and queries encryption of a plaintext pair with the difference Ay over
r 4w rounds, obtaining a ciphertext pair (C1, Cq) with a difference AC. MiF suggests
a set of valid trails of the form AC' % Aogyr, with a hypothesis that this set contains
the right trail.

In single-trail analysis, the attacker analyzes each proposed trail independently of
other encryptions and all other trails. The analysis returns a set of candidate subkeys
for analyzed k < w rounds, for which the partial decryption of the ciphertext pair
(C4, Cy) follows first k rounds of the suggested trail AC % Aguyr (i.e., the subtrail

AC B AZ of the trail AC B Az 27F, Aout). These candidate subkeys can then be
used to derive candidates for the master key, to be tested against known encryptions
or to follow the expected differential trail. The full key recovery attack simply consists
of applying a sufficient number of iterations of the above procedure.

This setting follows the direction of Dinur’s work; in fact, the procedure described in
this section is simply a generalization of the analysis stage of Dinur’s attacks. One
of the main advantages of MiF is that this procedure can be applied right from the
beginning due to the knowledge of a set of candidate trails. In addition, we pay closer
attention to the theoretical analysis of the attack’s complexity.

5.4.2.1 Recursive Single-Trail Procedure

The procedure takes as input a ciphertext pair (Cy,C2) and a trail AC LAY\ ; it out-
puts all k-round subkeys for which the partial decryption of the pair (C, C2) follows
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the given trail. The idea is simply to guess the subkeys in chunks and recursively.

Guessing subkeys in (small) chunks allows to quickly filter out wrong guesses, which
are those making the partial decryption of the ciphertext pair (C7,Cy) diverge from
the given differential trail. A simple example is guessing subkeys round-by-round:
after guessing one full subkey, we may decrypt the pair by one round and check
whether the obtained difference follows the trail. Since many ciphers have incomplete
diffusion over a small number of rounds, guessing even a small part of the subkey often
allows partial decryption and computation of a part of the difference in the previous
round, leading to faster discarding of invalid subkeys. For example, guessing even
a single subkey bit in SPECK (starting from least significant bits) yields one bit of
the difference in the previous round. Smaller chunks allow reducing the unnecessary
work, bringing the procedure cost close to the theoretical lower bound arising from
the output size of the procedure — the total number of valid subkey candidates.

Recursive implementation of the procedure aims at minimizing the memory complex-
ity. Indeed, the total number of candidate subkeys can be huge, and keeping all of
them in memory at the same time is unnecessarily costly. Recursive guessing of the
subkey chunks allows reducing the memory footprint of the procedure to negligible.
An alternative formulation of this method is the depth-first traversal of the search
tree (as opposed to breadth-first traversal).

Example 2. In our attacks on SPECK variants, we will set the chunk size to be 1
bit. The recursive procedure thus will simply recover the subkeys round-by-round
and bit-by-bit, checking the conformance to the differential trail after each subkey bit
guess. In SPECK, the n-bit subkey x is XORed right after the ADD operation. When
decrypting, the ADD becomes SUB and this subkey hides one of the inputs. Guessing
1 least significant bits of the subkey k allows computing SUB on 7 least significant bits,
leading to the knowledge of i least significant bits of the difference in the previous
round*, which can be used as a filter discarding wrong subkey guesses.

The following definition formalizes the notion of truncated trails, i.e., parts of the
analyzed trail that can be tested after guessing some subkey chunks.

Definition 6. Given a differential trail 7 over k rounds and an integer d, by the
differential trail 7 truncated at the depth d we will understand 7 restricted to
all bit positions where the difference can be computed from the ciphertext difference
and first d chunks of subkeys guessed. The maximum depth dp.x is defined as the
full number of chunks of subkeys that have to be guessed in the attack.

Example 3. In SPECK, the maximum depth dp.x is simply equal to the number of
key recovery rounds (2, 3 or 4) times the word size, i.e.,

dinax = k - 1. (5.20)

5.4.3 Distributions of Weights in MiF Trails

The complexity of the MiF attack depends significantly on the chosen differential
(especially on its output difference Agyr), the round split, the cluster and filter
weights ws and wy. These parameters affect in particular the properties of the trails
suggested by MiF, namely the distribution of weights of truncated trails (in the sense
of Def. 6), which directly affects the time complexity of the attack. Estimating this

4In fact, guessing i < n bits allows to compute i + 1 bits of the difference. We will use this fact
in Claim 2 to reduce the complexity.
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distribution purely by using theory from Section 5.3.3 is not possible as the evolution
of the weights of truncated trails with depth is not uniform (we will show it on
examples of our attacks). The time complexity of the multiple-trail key recovery is
especially sensitive to intermediate weights, as they will often define the dominating
stages of the attack.

Definition 7. Given an integer d, let ¢4 denote the average probability for the MiF
trails truncated at depth d (the trails are sampled uniformly at random from the
possible output of MiF).

By distributions of weights/probabilities in MiF trails we will mean the values (qo, ¢1, - . -

In addition, the attack’s complexity depends directly on the (expected) number of
trails to be suggested by MiF. It is thus necessary to be able to compute these quanti-
ties in order to compute the time complexity of the attacks. We describe two methods,
a heuristic sampling-based method, and a precise trail enumeration-based method.

5.4.3.1 Method 1: Generic Sampling (Heuristic)

The most straightforward way to obtain the distributions of weights of truncated
trails is to partially simulate the attack and obtain a collection of trails from MiF,
to be used further to compute the necessary distributions. Running a full attack in
most cases can be impractical. However, for sampling, the simulation process can be
optimized significantly. An important observation is that the high complexity of the
attacks stems from the difficulty of catching the signal (right pairs/trails), while most
of the attack time is actually spent on noise (wrong pairs/trails). Since the absence
of a few right trails would not change the distributions noticeably, we can restrict
sampling to noise only. To this end, we propose the following simple procedure:

1. generate a random ciphertext difference AC' (or, for more genuine results, en-
crypt a random plaintext pair following the chosen input difference Apyx);

2. run the MiF tool and obtain a set of suggested trails;
3. update the required distributions from the given set;
4. repeat from Step 1 until sufficient precision is reached.

In our attacks on SPECK32 and SPECK64 we noticed that sampling provides surpris-
ingly stable and precise results. Our usual sampling goal is 1 million trails, or less for
very low cluster weights wg, where a large number of encryptions is needed to pass
through the MiF tool. For these low cluster weight/small cluster scenarios, we can
instead use Method 2. For larger cluster weights wg, one has to ensure that a large
number of different ciphertext differences is involved, since a collection of 1 million
trails suggested from just a couple of encryptions would not be sufficiently repre-
sentative. In addition, sampling allows estimating well the average number of trails
suggested by MiF per one encrypted pair. This is vital for computing the expected
number of trails in a concrete attack, which in turn is needed to compute the time
complexities (Claim 1, 2 and 3 below).

5.4.3.2 Method 2: Cluster Trail Enumeration (Precise)

While the first method starts from a (random) ciphertext difference AC' (with the
motivation of obtaining representative samples), another option is to start from the
computed cluster §. For small clusters and small numbers of filter rounds, we can

? qdmax ) :
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efficiently enumerate all possible trails that can be suggested by MiF. This proce-
dure can be equivalently described as extending the cluster to cover the backward
filter rounds as well. Since each possible ciphertext difference AC' is equally possible
(for the overwhelming majority of the wrong pairs), each possible trail from MiF is
equally possible to be returned. Therefore, the required distributions can be com-
puted directly from this set of trails as if it was sampled as in Method 1. Here, we
use the linearity of expectation which does not require independence. For example, if
multiple trails end in the same difference AC, they will be always together suggested
(or not) by MiF, but this does not affect the ezpected probabilities of truncated trails.

Similarly, the average number of suggested trails per encrypted pair can be computed
directly as the number of trails in this “extended cluster” divided by the size 2/
of the ciphertext space. Indeed, each such trail adds one suggested trail when the
respective ciphertext difference is hit, and the expected total value of suggested trails
can, by the linearity of expectation, be computed as a sum over all trails, which acts
simply as multiplication by the number of possible trails.

5.4.4 Key Recovery Complexity Analysis

We begin with the complexity analysis of the single-trail case, and we will build the
analysis of the multiple-trail case on top of it. Our estimations will be based on the
MiF trail weight distributions computed using techniques described in Section 5.4.3.
For simplicity and due to relevance for SPECK, we will assume the chunk size of 1
bit. Our key instrument is the following lemma, which connects the distribution gq4
of weights/probabilities of truncated trails and the number of surviving trail-subkey
pairs per depth.

Lemma 8. At depth d of the single-trail procedure, across all branches and Nipajs
initial trails, there are on average

va = Niraits - 27 qa (5.21)
trail-subkey pairs visited.

Proof. Follows as an application of Assumption 1 to the key recovery procedure®. [J

The total time complexity T¢nt of the key recovery procedure splits into two major
parts: the complexity Tenum of enumerating (recursively) the subkey candidates and
the complexity Tiyials of checking the candidates by partial trial decryptions:

Tcnt = Tenum + Ttrials' (522)

5.4.4.1 Estimating T},

The time complexity of the trial decryptions can be easily derived from the number of
the final subkey candidates vq, . suggested by the key recovery procedure. Naturally,
we also assume that the key schedule can be easily inverted and all rounds’ subkeys
can be computed from the recovered subkey candidates (this is the case for most

modern ciphers), at the cost proportional to the number of involved rounds, namely,
Bk R
= .

5Even though Speck is known not to be a Markov cipher, the theory holds well in practice as
confirmed by our experiments.
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In cases when the differential trail is known for at least 1 round longer than the key
recovery requires, it can be used to test a subkey candidate at the lower cost of 2
round decryptions (equal to % FE). Note that one-round trail extension with even a
relatively low weight (say, 5) filters out most of the wrong candidates (31/32) and the
consequent rounds add negligible complexity. This was suggested already in Dinur’s
work [Dinl4, Section 6], but since it did not affect the dominating parts of his attacks,
it was left only as a suggestion. However, this shortcut might not be available if we
have used differential rather than a single trail.

Claim 1. Under the above assumptions,

/

Tirials < Vdmax * FE, (5.23)

= R
where R = 2 if the differential trail is known for at least one more round, and

R' = R — k otherwise.

5.4.4.2 Estimating T,,um (Single-Trail)

In order to estimate Tinum, we will assume that the time complexity of the single-trail
recursive procedure is overwhelmingly dominated by the partial chunk decryptions.
These can be counted by counting all trail-subkey pairs at each depth of the recursion.
This is explained by the fact that each trail is analyzed independently of all other
trails. We emphasize that summing the work done at each depth is needed to obtain
an accurate estimate. Furthermore, we will (pessimistically) assume that one partial
chunk decryption has cost equivalent to 1 round of the primitive (although it in fact
requires just a few logic gates in the case of SPECKY).

Claim 2. Under the above assumptions,

num _—
R

R// dmax_l
Tonumn < — - > va FE, (5.24)
d=0

where R” = 4 in the general case. Furthermore, when the key chunks quessed are used
for partial decryption of the word addition/subtraction, the complexity can be reduced
by a factor of 2. In particular, R” = 2 can be used in the case of SPECK.

Explanation. At depth d, by Assumption 1, each trail suggests on average 2%q, candi-
date truncated subkeys, totalling to nipais - 212%)(—1 2¢¢,4 non-final trail-subkey pairs.
For each such pair, the partial decryptions are performed for each of the two candi-
dates for the next subkey bit and for each of the two associated state values, leading

to the cost of 4/R FE per a non-final trail-subkey pair.

The complexity halving in the SPECK case is based on the fact that, by Lemma 5,
guessing i least significant bits of the (equivalent) key preceding the addition allows
to check the difference for ¢ + 1 least significant bits. Effectively, this means that we
can replace the two checks of the two 1-bit extensions of the current guess by one.
Indeed, a direct application of the general estimation would mean that, for a fixed
i-bit subkey, the two checks for (i + 1)-bit subkey candidates would always return
the same answer because the most significant bit in (truncated) addition does not
affect the difference. Due to our cost estimation of 1 round of the primitive, we may

SBitslice-style optimizations for reducing this crucial constant might significantly improve the
attack time complexity further, compared to [Dinl4].
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perform decryption of states only after guessing each round’s subkey’s most significant
bit. Since this bit propagates linearly through ADD, the two subkey candidates are
related by one bit flip, which has negligible cost. O

5.4.4.3 Estimating T,y (Multiple-Trail)

We will model each subkey suggested by trails as sampled independently and uni-
formly at random. This is formalized by the following assumption.

Assumption 2. The subkeys suggested by each trail at each depth can be modelled as
random uniformly distributed subsets of all possible subkeys, sampled independently
from subkeys for trails suggested by another pair.

The validity of the assumption is not entirely obvious. It is crucial to require indepen-
dence only across different pairs. Indeed, for one ciphertext pair, there would likely
exist multiple trails of the form AC — AZ with prefixes equal up to some depth
d < dpax. This means that the keys suggested by these trails would be counted many
times until the trails will diverge, even though they belong to a single ciphertext pair.
That is why the assumption requires independence only between subkeys suggested
by different pairs. In fact, the described intersections of suggested subkey sets related
to a single pair of ciphertexts only reduce the number of suggested unique subkeys per
pair and (slightly) improve the counting efficiency in practice. As we will show (see
e.g. Section 5.5.3), the analysis relying on this and other used assumptions closely
match experimental data.

Claim 3. For any depth d, 0 < d < dpax, and any integer ¢, 1 < ¢ K 2d, let
Nd = Nirails - 44- Under the above assumptions,

i dmax—1

c—2 4
TSl < - Z 2.y - (1 e Z Z‘f) FE, (5.25)
d=0 i=0

where R" is defined as in Claim 2. In particular, R = 2 in the case of SPECK.

Ezplanation. The high-level structure of this estimation is based on counting the
average total number of trail-subkey pairs processed during the procedure, similarly
to Claim 2 (estimating Tepuym for the case ¢ = 1).

As was shown in Lemma 8, the average number of trail-subkey pairs at depth d for
¢ =1 is equal to Nypails - 24 - qg = 2¢ - n4. By Assumption 2, we can model them as
29 .14 balls thrown into 2¢ bins, with each throw chosen uniformly and independently
at random. Our goal is to compute the expected number of balls (trail-subkey pairs)
landing in bins (subkeys) with at least ¢ balls in each of them. O

Remark 1. Note that the expression (5.25) with ¢ = 1 reduces exactly to the expres-
sion (5.24) from Claim 2, if we define the sum Z;:lo ... to be equal to zero.

5.4.5 Key Recovery Limits and Time-Data Trade-offs

In this section, we analyze the theoretical power and limits of MiF with respect
to weights of involved trails or differentials. Indeed, the MiF attack has several
parameters and the trade-off between the time and data complexities is not very clear.
In particular, one question that we will study is how the values of the cluster/filter
weights affect the time complexity (their effect on the data complexity was analyzed
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in Section 5.4.1.1). Here, we will assume that the key recovery procedure is perfect:
given a trail or even a differential over k rounds, it enumerates all valid candidate
subkeys without any extra overhead (for now, we set ¢ = 1).

We will focus on the following MiF-like setting. Later, we will show that it can be
generalized to cover other MiF variations.

An attacker uses a differential A;xy — Aoyt over 7 rounds with weight w and queries
an (r + k)-round encryption of a plaintext pair (P;, P») with the difference Ay,
obtaining a ciphertext pair (C7,C3) with a difference AC. The MiF tool suggests a

set of valid trails of the form AC % Aour. Note that we require & = u here. The
attacker may run the perfect key recovery and obtain, by Assumption 1, a list of 2F~%
subkeys, where k is the size of the involved subkeys in bits (typically equal to the
size of the master key). These subkeys may then be checked using trial decryptions.
The question arises: should the attacker attempt the key recovery? Or, perhaps, it
is better to wait for another pair?

The key insight to answering these questions lies in studying the probability that
the right subkey is among the suggested subkeys posterior to observing the output
difference AC. Indeed, if the suggested subkeys are not better than fully random
subkey guesses, then the attack is not useful at all. On the opposite, if the suggested
subkeys are g times more likely to match the right subkey, g > 1, then, on average,
the attacker would need to test g times fewer subkeys to find the right one, effectively
reducing the time complexity (more precisely, the T}ias component) by the factor g.

In the following, consider two differentials
7 = A 5 Aours T = Aour = AC, (5.26)

with probabilities Pr[r,.] = p and Pr[r;] = ¢ respectively. Let p be the probability of
the full differential An A

Definition 8. Define the gain g of the pair (7., 7;) as

.
A — Aour

A 2 AC

p

5 (5.27)
Note that this definition of gain is the same as given above: the right key will be sug-
gested by the key recovery if and only if the encrypted pair followed both differentials
7 and Ty; therefore, a suggested key has the probability to be the right key equal
exactly to the probability that it followed the differential 7, (the second differential
is automatic since the attacker already observed AC).

We can upper bound the gain in two ways. First, p > pq follows from the fact that
the trail Ay — Aour %, AC is included in the differential AN RAC

5.5 Attacks on 11 Rounds of Speck32

In this section, we estimate the time complexity of the MiF filtering procedure when
applied to SPECK32 before describing MiF attacks on SPECK32 reduced to 11 rounds.
Our attacks can be divided into two categories (based on the division of the rounds):
Attacks using an r 4+ s + t split, which is a straightforward application of MiF, and
attacks with a MiF filter of a different size. We can vary the number of r, s, ¢ rounds
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depending on the number of rounds being attacked, the availability of a valid differ-
ential or to achieve other time-data trade-offs.

5.5.1 Filtering Speck32 Trails with MiF

We begin by first describing the functionality of MiF when applied to SPECK. Recall
that we only need subkeys for £ = 4 rounds to recover the full master key. Thus a
straightforward application of MiF appends 4 rounds at the bottom of an r-round
differential in the form of a 2 + 2 MiF filter with (s,t) = (2,2). The operation of
this filter configuration is shown in Figure 5.3. The elements in green are fixed values
from the best r-round differential (trail) used in the attack. The elements in dark
yellow come from the pre-computed cluster trails 7, € S. Purple elements correspond
to trails 7, € T generated by the reverse search procedure (the backward filter).

First 16-bit
check

AX

Second 16-
bit check

FIGURE 5.3: Operation of a 2+ 2 MiF filter on the bottom four rounds of an r + 4 round
attack on SPECK2n. The elements in green are fixed values from an r round differential
(trail). The elements in dark yellow come from a pre-computed cluster trail 7, € S.
Purple elements correspond to trails 7, € T generated by the reverse search procedure
(the backward filter).

Since SPECK is a Feistel-like cipher, the match in the middle between the sets S and
T can be done efficiently n bits at a time. Specifically, the first n-bit check is executed
on the right branch of round r + 3 at the bottom (see Figure 5.3). It matches the
differences generated by the ADD operation in the last round to the differences in the
right branch coming from the cluster S. This match is illustrated by the red line in
Figure 5.3 (denoted “First n-bit check”). Only the trails 7 € T that pass the first
check proceed to the second n-bit check. The latter is executed on the left branch
at round r + 2 and is illustrated by a blue line in Figure 5.3 (denoted “Second n-bit
check”).

Denote by T} the time complexity for checking the non-zero probability condition
of Lemma 9 for a single ADD differential. Further, let T, be the time complexity to
generate a single output difference ~y for fixed input differences «, § for one ADD oper-
ation, such that the differential (cv, 3 — 7) is of non-zero probability. The parameters
T, Ty, are all measured in SPECK encryptions. Next, we give the procedure for gen-
erating the bottom 4-round trails for the (1+6+2+2)-round attack. For the sake of
generality, we omit the additional round at the top in our description since it does
not affect the attack complexity.
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1. Encrypt £ chosen plaintext pairs {(P1,» = P; & A)} for r + 2 + 2 rounds
and collect the corresponding ciphertexts {(C1,C2)}. Recall that the data com-
plexity is D =2-¢ -p~!- ¢~! chosen plaintexts.

2. Each ciphertext pair (C7, Cs) from Step 1 is expanded into about 221 ADD dif-
ferentials for the last round modular addition in time 7, SPECK-encryptions
(per pair). This is the maximum number of non-zero ADD differentials for
SPECK32 due to Lemma 5.

3. Of the % - 2121 ADD differentials from Step 2, a fraction of ‘S(stg)“')‘ on average
results in a match with an entry from the cluster S. For each match, check the
non-zero probability condition of Lemma 9 in time Tj,.

4. Each ADD differential from Step 3 has a p, = 273 chance to be of non-zero
probability (cf. Lemma 4). Therefore the total number of possible differentials
surviving the s + ¢t MiF filter is % . 212’1%2_3'9. Fach one represents a
candidate right pair.

5. For each trail 7, = 7,||7; from Step 4 execute the key-recovery procedure .

In Step 2, the reverse search procedure in the backward filter of SPECK32 visits at
most 2121 ADD differentials per round. Note that starting from ciphertext differences
with low Hamming weight will (significantly) reduce this number, while for random
differences we shall generally see all 2!2'! transitions if there is no limit on the per-
missible transition weight. Since the cluster entry at the point of the match is fixed
from the output difference Agyr of the differential (Step 3), the MiF filter checks

at most max (1, ‘S(Zinws)‘) elements (Az,, Ay, — Ax,;1) for the non-zero probability

condition of Lemma 9. For example, entries in a cluster with |S| = 220 elements will
have g%ﬁ = 2% candidates on average, lower than the expected 2'2! ADD transitions
given in the attack procedure. Therefore the number of operations executed in the
above steps is a worst-case estimate.

5.5.1.1 MiF Complexity

The complexity of the MiF filtering procedure, Ti,ir can be estimated as follows:

D 94 D 15118(s,ws)|
Steps 1, 2 Stgg 3
. S (s, ws)|
=D 21T, + TGSTb) : (5.29)

The unit of measurement in (5.28)—(5.29) is FE. For T, and T}, we assume that each
of the three basic arithmetic operations in SPECK (addition, bitwise rotation, XOR)
have the same amortized cost of 1 unit operation (UO). Thus one round of SPECK,
composed of five basic operations, costs 5 UO.

For SPECK32, we estimate the cost to generate a single output difference v for fixed
input differences «, § for one ADD to be equal to 1 UO on average (3 for SPECK64),
since the cDDT is able to generate a new ~ at every table access, after the other
parts of the word were recursively set (in the ¢cDDT, the (a, 3,7)-differentials are
processed in 8-bit chunks). The cost of checking the non-zero probability condition

"The reader is invited to seek the full paper for the key recovery procedure, as it is out of the
scope of this thesis [Ale+22].
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of Lemma 9 is estimated at 11 UO, by counting the number of operations needed to
implement. With the given amortized estimations in UO units, the parameters T,
and Ty, for SPECK32 reduced to R rounds are computed in terms of R-round FE as:
T, = ﬁ FE and T}, = % FE. The 5R in the denominator comes from the fact that
each round has five unit operations, i.e., costs 5 UO. Note that we also assume that
the cluster search can be implemented as (hash) table look-ups requiring 1 UO each.
In most of our attacks, however, MiF’s time complexity is not the dominating term,

especially when larger clusters are in use.

5.5.2 Attacks using Splits (14+6+2+2) and (1+0+8+2)

When using MiF, we are not restricted to having © = s + ¢t rounds appended after
an r-round differential. Instead, the values of 7, s,t can be varied to obtain various
trade-offs. One extreme would be to have all r rounds of the differential as the top
half of the MiF filter, i.e., a 0 4+ s + ¢ split with s = r. Note that when attacking the
same number of rounds, the latter allows using longer differentials than the r 4+ s+
split. We consider two scenarios that according to our findings produced the best
11-round attacks: a (14+6+242) split using 6-round differentials, and a (1+0+8+2)
split using 8-round differentials.

The (1+6+2+2) split follows exactly the basic structure of MiF described in Sec-
tion 5.4. As for the (1+0+8+2) split, the cluster S will instead contain 8-round trails
obtained by applying the Matsui-like search starting from the input difference Ay
of the 8-round differentials rather than their output difference Agyr. This slightly
increases the time required to pre-compute the S but does not affect the online phase
of the attack. We only need to store information about the bottom two rounds of the
8-round trails in § to reconstruct the 4-round trails required for key recovery during
the backward filtering procedure. Apart from using a different round configuration,
the rest of the MiF filtering procedure follows the steps described in Section 5.5.1.
Similarly, Ty can be calculated based on Equations (5.28)—(5.29)

5.5.3 Results

Our strategy to find the best 11-round attacks on SPECK32 (and subsequently, other
variants of SPECK) is as follows: We first identify the best differentials to be used in
our attacks, some of which are listed in Table 5.6. Starting from a conservative value
(usually the weight of the initial differential trail used in the attack), we increment
the cluster weight ws and compute the attack complexities for both (1+6+2+2)and
(140+48+2) splits. Note that we always set w; to the maximum value of 30 as to not
impose any limit on the backward filtering process, thus maximising MiF efficiency.
We repeat the process for all possible differentials to identify the attacks with the best
time and/or data complexities. The results of our search for the (1+0+8+2) split
is shown in Figure 5.4, which consists of only the best attack time complexities T'
for varying amounts of data D. Additionally in Table 5.3, we provide parameters for
several other best attacks, including those using the (1+6+2+2) split, on 11-round
SPECK32.

For 11-round SPECK32, the figure shows that using either ¢ = 3 or ¢ = 4 leads to
optimal time complexity versus data complexity trade-offs, i.e., by spending more
data, we get bigger gains in analysis speed. This is in contrast to using ¢ = 1,
which is analogous to adopting Dinur’s approach [Din14], which barely sees any time
complexity improvements with more data consumption. When optimized for time
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. S(S w )| pq D T if Tcnt Tatt Dlﬁ
No. Split w | VS c mi
P * (logy) (logy) (logy) (logy) (logy) (logy) 1D
1 34 19.28 -13.31 2 15.41 27.49 36.84 36.84 1
2 14+6+2+2 25 3.58 -21.30 3 24 25.13 25.09 26.11 2
3 37 21.27 -12.01 2 14.11 29.87 40.15 40.15 4
4 1+04+8+2 32 17.52 -13.48 2 15.58 25.93 34.87 34.87 5
5 24 0 -24.00 3 26.70 24.24 22.66 24.66 4

TABLE 5.3: Attacks on 11 round SPECK32: The “Diff. ID" column refers to the IDs of
the differentials in Table 5.6 ).

11R Attack (1+0+8+2)

®C=1 @C=2 C=3 ® C=4 * Dinur Gohr

Time complexity, log2
W W W
B O

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Data complexity, log2

FIGURE 5.4: Time and data complexities of the best 1+0+8+2 attacks on 11-round
SPECK32.

complexity, we have an (1+0+8+2) attack with (T, D)11g = (22495,226.7) which is
22134 times faster than the 11-round attacks by Dinur [Din14] and 2334 times faster
than Gohr’s [Goh19]. Recall also that Gohr’s attack successfully recovers 30 bits of
key information 50% of the time, while our attacks recover the full master key with
a success rate of around 63%.

Generally, we found that using lower cluster weights w, lead to better attack time
complexities since the resulting cluster sizes |S| are smaller. A smaller cluster pro-
duces fewer trails for the key recovery procedure since only a fraction of the trails
in the reverse search procedure will find a match in the cluster. Fewer trails in turn
reduce the total number of keys that need to be filtered. Also, a smaller cluster size
allows using the simplified MiF procedure described in Section 5.5.1. We can actually
push this notion to its limits by setting w, to the weight of the corresponding trail
being used in the attack, thus having |S| = 1. For example, our fastest 11-round
attack uses an input difference of (0x0a20, 0x4205) along with an (1+0+8+2) split.
This input difference corresponds to an optimal 8-round trail with probability 2724.
Therefore by setting wgs = 24, this 8-round trail is the only one being stored in the
cluster (|S| =1).

8The time complexity is less than the data complexity since it is measured in full (11-round)
SPECK32 encryptions. Most of 2257 collected pairs are filtered out by MiF with the complexity of
1-round SPECK encryption.
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However, going to these extremes means these attacks require the most data. When
optimized for time complexity, our best attack on 11 rounds requires more (albeit
still practical, D < 227) data than previous 11-round attacks by Dinur and Gohr,
which only require 2'* and 25 chosen plaintexts respectively. This is due to the
lower efficiency g of the MiF filter, which has to be compensated by increasing the
amount of data used. Thus we can reduce the data complexity for MiF attacks by
using larger cluster weights, which increases both |S| and ¢. By having ws = 37, we
have an 11-round attack which is about 56 times faster than Dinur’s attack while
using a similar amount of data (T, D)11z = (24020, 21411) By using ws = 32, we still
end up using twice as much data as Gohr, but now have an attack that is around 8
times faster (T, D)11r = (23706, 215-58) and with better success rate.

5.5.3.1 Experimental Verification of an 11-round Attack

The fastest 11-round attack using the (1+0+8+2) split (Attack #5 from Table 5.3)
was implemented and verified in practice. We provide detailed experiment informa-
tion for ¢ = 3, which is the fastest variant.

The offline MiF phase generates a cluster S with the given parameters: s = 8, w, = 24.

Due to low cluster weight, the only trail in the cluster is the best trail (0x0a20,0x4205) 8

(0x802a,0xd4a8) of weight 24. Next, D = 2257 random pairs with difference AP =
AN = (0x0a20,0x4205) are encrypted. For each ciphertext pair, we run the simpli-
fied MiF procedure from [Ale+22] to bridge the difference Aoyt = (0x802a,0xd4a8)
from the cluster with the ciphertext difference AC, and checking the resulting 2-
round trail for validity (using Lemma 9). Valid trails are recorded together with the
associated ciphertext pairs. Our implementation performs this procedure in several
seconds. As a result, we collect 2!49 trails, which is in line with 27108 trails/pair
obtained using Method 2 from Section 5.4.3.

We run the multi-trail key recovery procedure with ¢ = 3 (in fact, using the secret key
we could see that 5 right trails were actually suggested by MiF). Our implementation
performs this procedure in less than a second, yielding the (only) right secret key. Our
not fully optimized attack demonstrates significant performance improvement over the
previous best attack on 11 rounds from Gohr which takes about 500 seconds [Goh19].

5.6 Attacks on 12 to 15 Rounds of Speck32

In Table 5.4 we summarize the best attacks on 12 to 15 rounds of SPECK32 along
with the attack parameters. For each number of rounds, we list the best attack in
terms of time complexity and optimal attacks that use a similar amount of data
as previous attacks in the literature. For example, the best 12-round attack using
Dinur’s approach [Din14] requires 2'° chosen plaintexts and has a time complexity
of T = 25, In contrast, we can use slightly less data (Table 5.4, #1) for an attack
that is about 34 times faster. We also have a 12-round attack that is faster than the
differential-neural attack by Bao et al. [Bao+21] by a factor of 7.6 by only using 1.5
times more data (Table 5.4, #2). At higher rounds such as 14 and 15, the time-data
trade-offs are no longer possible as we are working with almost the full codebook.
Due to the restriction in data complexity, we are limited to just using ¢ = 1 or 2.
However, we still have 14-round and 15-round attacks that are around two to three
times faster. In all cases, MiF complexity is not the dominant term and does not
affect the overall analysis complexity (Tt ~ Tent)-
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’S(vas” pbq ¢ D Tmif Tcnt Tatt Dift.
(10g2) (logs) (10g2) (10g2) (log2) (10g2) ID

18.88 32.80 45.91 45.91
22.45 30.96 42.02 42.02
30.42 31.42 33.54 33.84
25.27 37.20 56.41 56.41
31.13 36.84 50.16 50.16
30.64 40.95 61.35 61.35
31.75 42.05 60.99 60.99
31.39 41.93 62.25 62.25

No. Rounds Split Wg

12 1404942 38 21.27 -16.17
12 1+7+242 36 15.71 -19.74
12 1484142 31  3.58  -27.30
13 1+0+10+2 43 19.38 -23.16
13 1484242 40 11.69 -28.01
14 1+9+242 50 17.84 -29.65
14 1494242 50 17.84 -29.65
15 1+10+2+2 55 18.18 -30.40

0 O Ui W N -
N RN R WW
= —

S © oo D Nw®

TABLE 5.4: Attacks on 12-15 rounds of SPECK32: The “Diff. ID" column refers to the
IDs of the differentials in Table 5.6 ).

Experimental Verification of a 12-round Attack

The fastest attack on 12-round SPECK32-64 using the round splits 1 + 8 + 1 + 2
(attack #3 from Table 5.4) was implemented and verified in practice. Initially, it was
executed using the split 1 + 04 9 + 2, however, after the inspection of the generated
cluster, it became clear that the split 1 + 8 + 1 + 2 describes it more precisely (see
below). We provide detailed experiment information for ¢ = 4, which is the fastest
variant.

The offline MiF phase generates a cluster .S with the given parameters: s = 9, w; =
31, Ay = (0x7458,0xBOF8). Due to the low cluster weight, the generated clus-
ter contains only 12 trails. Upon a manual inspection, it turned out that the 9-

round cluster in fact consists of a single 8-round trail (namely, (0x7458, 0xBOF8) LN
(0x802A, 0xD4A8) having the best possible trail weight 24), extended by 1 round in
12 different ways. The cluster has efficiency 272730, catching the 27330 fraction of
the signal from the 8-round trail. Next, D = 2242 random pairs with difference
AP = Ay are encrypted. For each ciphertext pair, we run the simplified MiF
procedure to bridge one of the differences AX from the cluster with the ciphertext
difference AC. Our implementation performs this procedure in 11 minutes. As a
result, we collect 223-52 trails, which is in line with 27587 trails/pair obtained using
Method 2 from Section 5.4.3.

We run the multi-trail key recovery procedure’ with ¢ = 4. Using the secret key we
could see that 7 right trails were actually suggested by MiF. The increased number
of right trails was persistent across several executions. We explain this by probability
increase for the cluster due to the differential effect of the underlying trails. This
means that we could, in principle, use higher ¢ with the same data complexity D
while maintaining the target success rate above 63%. Our implementation performed
this procedure in 13 minutes for ¢ = 4 or in 6 minutes for ¢ = 7 (on the same data
set), yielding only the correct secret master key.

Our attack demonstrates significant performance improvement over the previous best
attack on 12 rounds by Gohr (12 hours) [Gohl19]. The illustration of the time com-
plexity evolution of the attack for different values of ¢ (and data complexity adapted
to maintain the success rate of 63%) can be found in Figure 5.5.

9See full paper.
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12R Attack (1+0+9+2)

Trail-subkey pairs at the depth, log2
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FIGURE 5.5: Time complexity analysis of an attack family on 12-round SPECK32 (see
Table 5.4, #3). Lines plotted are the predicted numbers of trail-subkey pairs visited per
each depth 0...64 for attacks with ¢ = 1, 2, 3, 4; data points mark values collected from
real attack runs, one run per each ¢ (full attacks for ¢ = 3,4 and partial samples up to
feasible depths for ¢ = 1,2).

5.7 Attacks on Speck64/128

In Table 5.5 we highlight some of our best attacks on 13, 19 and 20 rounds of
SPECK64/128, all of which adopt a 1 4 r + 2 + 2 split. Contrary to intuition, our re-
sults show that using suboptimal differentials can sometimes produce better attacks
due to having better trail weight distributions for key recovery e.g. 4-round trails
with heavier weights in the top two rounds would suggest fewer keys than those with
less. The time-data trade-offs that are possible with MiF can be clearly observed in
the 13-round and 19-round attacks which both have data complexities that are well
within the codebook. When using 2.5 times the data, we have a 13-round MiF attack
that is around 23496 times faster than Dinur’s approach [Din14]. By further doubling
the amount of data, analysis speed is further improved by a factor of 2589,

. ’S(Sv ws) | pq D Tmif Tcnt Tatt lef
No. Rounds — Split - we =00 )" (logy) © (logs) (logy) (logs) (logy) ID

1 13 1+8+2+2 59 26.13 -29.18 2 31.28 50.96 61.34 61.34 12
2 13 1484242 56 23.71 -29.35 2 31.46 51.06 59.53 59.53 12
3 13 1+8+24+2 55 22.86 -2944 3 32.14 51.75 51.07 52.45 12
4 19 14+144+2+2 86 26.97 -56.46 2 5856 T77.76 114.65 114.65 13
5 19 1+14+2+2 81 22.02 -57.32 6 61.03 79.80 101.08 101.08 13
6 20 1+154+24+2 92 2798 -61.86 2 63.96 &3.22 122.69 122.69 14

TABLE 5.5: Attacks on SPECK64: The “Diff. ID" column refers to the IDs of the differ-
entials in Table 5.6 ).

When using around the same amount of data D ~ 261 as the best attacks in literature,
our attack has an analysis complexity of 219198 which is around 224 faster. Compared
to SPECK32, we clearly see bigger gains when using MiF on SPECK64 because more
noise (wrong trails) can be quickly discarded using the counting technique. This
is due to these trails having a lower differential transition probability (Lemma 7).
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When it comes to 20 rounds of SPECK64/128, we face restrictions in terms of data
complexity as we have almost exhausted the codebook. Thus, we are limited to using
¢ = 2 in our best attack, which is still 7.3 times faster than the best 20-round attack
proposed by Song et al. [SHY16].

5.8 Conclusions

In this paper, we proposed a new cryptanalytic technique called Meet-in-the-Filter
(MiF). It leverages a new time-memory trade-off that reduces the data and time
complexity of the analysis phase of a differential attack. MiF is especially suitable to
ciphers with slow or incomplete diffusion such as the ones from the ARX family.

The main idea behind MiF is the combination of a differential trail with a deeper
filtration procedure in the last rounds of the cipher. The latter employs a reverse
Matsui-like search for the differences (the filter) that have a match (i.e., meet) with
a set of pre-stored differences (the cluster) arising from the output of the differ-
ential trail. A successful match results in candidate trails that are passed on to
our advanced key-recovery procedure. Since key-recovery often dominates the time
complexity of the attack we modified traditional counting techniques to use bitwise
depth-first search which becomes memoryless and very efficient.

We reported improved time and data complexities over the best-known attacks on
SPECK32, reduced to 11 — 15 rounds. Notably our attacks significantly improve over
the best attacks developed using neural networks by Gohr. We also show the best
attacks on 13, 19 and 20 rounds of SPECK64.

The combination of the MiF tool with the dynamic counting can be applied to other
ARX ciphers which is a promising direction for the future work.

5.9 Appendixes

5.9.1 Differentials

ID | r Agy Aout PrT PrD Ref.
1 6 0x0211,0x0A04 0x850A,0x9520 13 - -
2 6 0x0A20,0x4205 0x8000,0x840A 14 - -
3 | 7  0x0A20,0x4205 0x8504,0%9520 18 17.94 -
4 | 8  0x0A20,0x4205 0x802A,0xD4A8 24 23.84 -
5 8 0x0A60,0x4205 0x802A,0xD4A8 24 23.84 -
% 6 8 0x7448,0xBOF8 0x8504,0x9520 24 23.95 -
& 7 | 8 0x7458,0xBOFS 0x802A,0xD4A8 24 23.95 -
& 8| 9 0x0A20,0x4205 0x01A8,0x530B 31 30.37 -
9 9 0x8054,0xA900 0x0040,0x0542 30 29.37 -
10 | 10 0x2800,0x0010 0x0004,0x0014 35 30.39  [Leet18]
11 | 10  0x7448,0xBOFS 0x00a8,0x520B 37 36.30 -
g 12 8 0x00820200,0x00001202 0x20200000,0x01206008 29 28.87 -
% 13 | 14 0x04092400,0x20040104  0x80008004,0x84008020 56  55.69 -
2 14 | 15 0x04092400,0x20040104  0x808080a0,0xA08481A4 62  60.73 -
5]

TABLE 5.6: Differentials used in this paper. Where existing differentials were not avail-
able we used a SAT solver to compute them. Pr T is the probability of the best trail,
and Pr D is the probability of the differential, and both are expressed as — log,(Pr).
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5.9.2 Memory Optimizations for the Multi-Trail Key Recovery Pro-
cedure

e On-the-fly quick filtering. In SPECK, due to a round subkey being added only
to one branch, a large fraction of suggested trails does not have valid keys for
decryption of the associated ciphertext pairs in accordance with the trails. Part
of this filter can be implemented very efficiently using Dinur’s multi-bit filters.
For example, in SPECK32, 6-bit filters applied to the last round’s transition keep
only about 0.25 of all trails.

e On-the-fly deep filtering. In our attacks, the MiF backwards filter covers 2
rounds, and these 2 rounds have very high-weight transitions on average. There-
fore, checking the existence of 2-round keys would allow filtering out more trails.
This can be implemented by running the single-trail recursive procedure up to
2 rounds. Note that this method has negligible time overhead, in contrast to
seemingly similar Dinur’s initial 2- round subkey guessing. This is due to the
availability of the full trail from MiF, allowing search tree cutoffs on each bit
level.

e Larger first recursion step. The multi-trail procedure keeps a list of trails per
each depth level in the recursion. These lists have quickly decreasing sizes
(according to Lemma 7, the expected factor per bit of a random differential
transition through ADD is {/(4/7)"~1 < 2707 for n > 16. Therefore, the total
storage size expansion (compared to the size of the input list of trails) is below
the sum of this geometric progression, equal to 1/(1 —27%7) ~ 2.47. Tt can be
effectively reduced to 1 by increasing the first recursion step’s guess to several
bits. This would chop off the heaviest lists of trails on the recursion path. For
example, guessing 8 bits instead of 1 would replace the factor

142707 po71b 497225 L L9764 97607 1~ 9247 (5.30)

by
1427642767 1 ~1.039. (5.31)

We remark that this step is very similar to Dinur’s initial 2-round subkey guess-
ing. However, by guessing a smaller number of bits (which is possible due to the
availability of the trail) we can minimize the memory overhead without visibly
affecting the time complexity.

e Compact storage. In our attacks on SPECK, the backwards filter covers 2 rounds.
Due to the Feistel-like structure, input and output differences of 2 rounds of
SPECK completely determine the intermediate differences, i.e., the full 2-round
trail. Therefore, instead of storing full 4-round trails as required for the key
recovery, we could initially store trails in a compressed form: the ciphertext
difference AC and the cluster difference AX. The last 2 rounds of the trail can
be recovered due to the aforementioned property of the Feistel structure, and
the preceding rounds can be recovered from the cluster.

Note that the (de)compression overhead on time complexity would be negligible
on first depths. At a particular depth, when the size of the list of trails is
sufficiently small, all the necessary auxiliary information required to minimize
the time complexity can be computed and stored for subsequent computations,
causing only a negligible memory overhead.
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This chapter is based on the paper titled “Automated Truncation of Differential Trails
and Trail Clustering in ARX” [Bir+-22].

We propose a tool for automated truncation of differential trails in ciphers using mod-
ular addition, bitwise rotation, and XOR (ARX). The tool takes as input a differential
trail and produces as output a set of truncated differential trails. The set represents
all possible truncations of the input trail according to certain predefined rules. A
linear-time algorithm for the exact computation of the differential probability of a
truncated trail that follows the truncation rules is proposed. We further describe a
method to merge the set of truncated trails into a compact set of non-overlapping
truncated trails with associated probability and we demonstrate the application of
the tool on block cipher SPECK64.

My main collaboration on this chapter was on the generation of the trails, as well as the procedure
for merging the trails, and clustering around suboptimal trails, namelly Sections 6.3, 6.4, and 6.5.
The relaxed rules for truncation and best distinguisher for Speck64 were done by my co-authors and
are presented here for the sake of completeness.
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We have also investigated the effect of clustering of differential trails around a fixed
input trail. The best cluster that we have found for 15 rounds has probability 2725-03
(consisting of 389 unique output differences) which allows us to build a distinguisher
using 128 times less data than the one based on just the single best trail, which has
probability 2762, Moreover, we show examples for SPECK64 where a cluster of trails
around a suboptimal (in terms of probability) input trail results in higher overall
probability compared to a cluster obtained around the best differential trail.

6.1 Introduction

Truncated differential cryptanalysis (TC) is a technique for analysing symmetric-
key cryptosystems proposed in [Knu94]. It is a variant of differential cryptanalysis
(DC) [BS91] and has been used successfully against a number of cryptographic algo-
rithms such as IDEA | SKIPJACK and SALSA20 among others. Similarly to differential
cryptanalysis, truncated cryptanalysis traces the propagation of differences through
multiple rounds of a cipher. In contrast to DC, TC does not analyse full but truncated
differences. A truncated difference is one in which only some of the bits are specified
i.e. fixed to given value 0 or 1, while the rest are truncated i.e. not specified. A
truncated bit is typically denoted by a % symbol implying that it may take any value.

In differential cryptanalysis a sequence of differences through several rounds of a
cipher is called a differential trail (or differential characteristic). When only the
input and output differences (and not the intermediate differences) of a differential
trail are specified the resulting object is called a differential. The analogous concepts
in truncated differential cryptanalysis are truncated differential trails and truncated
differentials, both being composed of truncated differences.

As in DC, the objective of TC is to find a truncated differential (trail) with a suf-
ficiently high probability p over R rounds. The latter is called a distinguisher as it
distinguishes the cipher from a random permutation, which has probability lower than
p. In its most general form, the attack principle of TC is the same as in DC. Namely,
the distinguisher is used to attack R 4 r rounds for some value of r, by guessing the
last r round keys, inverting the permutation and checking if the output truncated
difference after R rounds matches the one computed after the inversion under the
guessed key/s. The success and complexity of a TC attack crucially depends on the
ability to find high probability truncated trails and differentials.

ARX (standing for Addition-Rotation-XOR) is a class of cryptographic algorithms
designed using three simple arithmetic operations: modular addition, bitwise rotation
and XOR. These algorithms are typically easy to describe and implement and are very
efficient, especially in software. At the same time they have been notoriously difficult
to analyse due to intricate dependencies between the various operations [Leul2]. As
a result a significant body of research has been dedicated to the development of tools
and techniques for the automated analysis of ARX.

One of the first automated techniques for constructing differential trails for ARX-
based designs is due to De Canniére et al. [DR0OG]. It uses the idea of generalized
bit conditions to find collisions in the hash function SHA1. A few related automated
techniques have been subsequently proposed by Leurent [Leul3], Stevens [Stel3] and
Mendel et al. [MNS11]. Similarly, all of them have been applied to hash functions.
Dedicated tools for searching for differential paths in (pure) ARX ciphers have been
proposed by Liu et al. [Liu+19], Huang et al. [HW19] and Biryukov et al. [BV14;
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BVC16]. Finally, several authors have modelled the differential search problem in
terms of Boolean satisfiability or mixed-integer linear programming and have pro-
posed the use of off-the-shelf SAT or MILP solvers to find solutions in an automated
way. Some results in this direction are by Mouha et al. [Mou+11], Fu et al. [Fu+16],
Sun et al. [Sun+14; Sun+15; Sun+15] and Song et al. [SHY16]. The problem of clus-
tering of differential characteristics has been researched in [AK18; SHY16; BRV14],
where the authors apply SMT solvers or dedicated tools to enumerate characteristics
belonging to a given differential.

In this paper we extend the set of existing tools for analysis of ARX. More specifically,
we propose a new automated tool for constructing truncated differential trails for
ARX from existing non-truncated ones and computing their exact probability. The
main idea is to truncate every bit from the input non-truncated trail (i.e. transforming
all 0 and 1 bits into a *), according to certain predefined propagation rules. The rules
ensure that the truncated * bit will propagate until the last round of the input trail
so that the resulting truncated trail will remain valid and of non-zero probability for
any assignment of the *. As a result, from an input trail we obtain a set of trails
represented by a single truncated trail that has probability at least as high as the
probability of the initial trail. In addition, we propose a method to construct a cluster
of non-overlapping truncated trails composed of all possible truncations of the input
(up to the propagation rules) together with its associated probability. In contrast
to [AK18; SHY16; BRV14] the trails in the constructed clusters do not necessarily
belong to the same differential. They have compact representation due to which the
analyst is able to trace the propagation of multiple trails at the same time.

We propose two sets of truncation rules: simple rules (Section 6.3) and relaxed rules
(Section 6.6). The simple rules do not consider dependencies between consecutive
bits within the same round (i.e. within the same modular addition operation). Con-
sequently, with the simple rules, truncated bits with different labels are independent
from each other and can take values 0 and 1 with equal probability. In contrast, the
relaxed rules are a generalization of the simple rules that is applicable also in cases in
which bits within the same round are dependent on each other. In that case truncated
bits with different labels are dependent on each other (often in complex ways) and
may take values 0 and 1 with different probability.

Both for the simple and for the relaxed truncation rules the only assumption we rely
on is the Markov assumption i.e. treating rounds as independent. In particular, we
do not assume that individual non-truncated trails belonging to the same truncated
trail have equal probability. Indeed, in general they don’t and this is taken care of
by the proposed tool.

The tool is useful for constructing truncated differential distinguishers which have
lower data complexity than the traditional ones based on the best non-truncated
trail. Its application is demonstrated on block cipher SPECK64, for which we report
clusters of truncated trails produced from the optimal non-truncated trails on up to
15 rounds. The latter is the highest number of rounds covered by a single trail with
probability 272 higher than random 2794, For 15 rounds in particular, we report
a set of 24 truncated trails, encoding 135 non-truncated trails, the top 22 of which
have probability > 27 and cumulative probability 277?05, The latter improves
the probability of the single optimal trail by a factor of about 8 at the expense of
considering multiple trails. A summary of those results is given in Table 6.1.
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In the context of the existing tools mentioned earlier, the proposed tool bears similar-
ity to the generalized conditions idea introduced in [DR06] and extended in [Leul3).
Indeed the set of truncated and fixed bits is a subset of the full set of (extended) gen-
eralized conditions. Several features set our tool apart from [DR06; Leul3]. First, by
limiting ourselves to just a very small subset of the generalized conditions we are able
to compute the exact probability of a single truncated trail in linear time in its length.
Second, due to the same reason we are also able to transform a set of overlapping
truncated trails into a set of disjoint truncated trails. The latter is critical for being
able to compute the probability of a cluster of truncated trails, which on its turn is
critical in estimating the data complexity of an attack. Finally, ours is a dedicated
tool for finding truncated trails, while the mentioned tools have been applied in the
context of collision search in hash functions.

The source code of the tool for the simple rules (Sect. 6.3,6.4 and 6.5) will be made
publicly available as part of the YAARX Toolkit [Vel].

R Ain (#) #Ttr #Tntr Phin Prax P, S/N mat-S/N mat. Py
(logy)  (logy) (logy) (log,) (log,) (logy)

5 02000012 02000002 (1) 3 20 —15 —10 —7.58 52.10 33.13 —3.70
6 00008202 00001202 (1) 6 48 —23 —15 —12.02 46.40 32.31 —6.46
6 00401042 00400240 (1) 3 20 —20 —15 —12.58 47.10 33.37 —8.92
7 92400040 10420040 (1) 3 40 —27 —21 —18.00 40.68 2442  —13.10
7 40924000 40104200 (1) 6 48 —-29 21 —18.02 40.40 24.47 —13.05
7 0924000 40104200 (1) 6 48 —29 —21 —18.02 40.40 24.49 —13.06
8 00008202 00001202 (2) 6 144 —42 —29 —25.00 31.83 20.94 —16.63
8 92400040 10420040 (3) 28 576 —40 —-29 —23.37 31.46 21.28 —16.23
8 40924000 40104200 (3) 25 544 —41 —29 —23.40 31.51 21.28 —16.23
9 00008202 00001202 (1) 3 48 —44 —34 —30.65 27.76 20.25 —23.33
9 80240000 00040080 (1) 3 20 -39 —34 —31.58 28.10 20.87 —27.39
9 80208080 00048080 (1) 2 12 —43 —34 —32.24 28.18 20.93 —28.85
9 00802400 80000400 (1) 6 30 —46 —34 —31.58 27.51 20.86 —27.33
10 80208080 00048080 (1) 6 30 —50 —38 —35.58 23.51 20.35 —32.69
11 00000090 00000010 (1) 3 5 —45 —42 —40.75 20.93 20.19  —40.00
12 00000090 00000010 (1) 5 24 —53 —46 —43.60 15.81 11.07 —40.12
12 00008202 00001202 (1) 3 5 —49 —46 —44.75 16.93 11.59 —42.35
13 00008202 00001202 (1) 5 24 —57 —50 —47.60 11.81 10.22  —45.57
14 20200008 20200001 (1) 6 48 —64 —56 —53.02 5.40 5.06 —51.07
14 00008202 00001202 (1) 15 112 (99) —67 —-56  (—52.41) (4.79) 4.70  —50.68
14 92400040 10420040 (1) 6 24 —63 —56 —53.60 5.81 5.70  —51.37
14 40924000 40104200 (1) 5 24 —63 —56 —53.60 5.81 497 —52.06
15 92400040 10420040 (1) 24 135 (22) -4 —62  (—59.05) (0.49) 0.37 —58.54
15 40924000 40104200 (1) 15 112 (22) -73 —62  (—59.05) (0.49) 0.37 —58.54
15 00040924 20040104 (1) 6 48 (16) =70 —62  (—59.42) (0.58) 0.50 —58.79

TABLE 6.1: Truncation of optimal trails for SPECK64. Legend: R number of rounds;
Ai, (#) input differences to the ADD at first round (# number of trails with such input);
#T;, number of truncated trails produced by the tool; #7T,,; number of non-truncated
trails in the truncated cluster Ti, (in brackets are the number of trails with Pr > 2764);
Poin and Ppax resp. minimum and maximum trail Pr in the set Ty, (logy scale); Py
total Pr of the truncated cluster (log, scale); log,(S/N) = 64 — |logy(Piy)| — logs (#Tntr);
Numbers in brackets in col. 7,8 based on top trails in Ty, with Pr > 27%4. The columns
mat.S/N and mat.P;, are the signal-noise and probabilities of the optimal truncation,
approximated with a Matsui-search tool, whose probability limit was chosen in such a
way as to make computation time feasible on a small scale server PC with a few hours of
computation.

The outline of the paper is as follows. We begin with preliminaries in Sect. 6.2,
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followed by exposition of the rules for truncation in Sect. 6.3. In Sect. 6.4 and
Sect. 6.5 is presented respectively a tool for automated truncation of differential trails
in ARX and a tool for merging a set of truncated trails into a set of non-overlapping
truncated trails. A set of relaxed truncation rules is described in Sect. 6.6. Results
from the application of those tools to block cipher SPECK64 are given in Sect. 6.7.
Statistical analysis of the distinguishing advantage using truncated distinguishers is
given in Sect. 6.8. In Sect. 6.9 we discuss an improved truncated distinguisher for
15 rounds of SPECK64. The exposition concludes with Sect. 6.10. Notations and
abbreviations are listed in Table 6.2.

Symbol  Meaning

n Word size in bits
B or ADD Addition modulo 2™
&, >  Left, right bitwise rotation

A,V Logical AND, OR

T or mx  Logical NOT

® Binary exclusive-OR (XOR)

a, B,y n-bit XOR or truncated differences

Q; The i-th bit of a (e is LSB, «,—1 is MSB)

() The i-th bits of «, 5,7 as 3-bit string

* Truncated bit (can be both 0 and 1)

* Dependent truncated bit (can be both 0 and 1)
. Fixed bit (can be either 0 or 1)

T, r Truncated trail

Tt Sets of truncated trails

#% or || Size of the set ¥

Pr Probability

DP Differential probability

S/N Signal-to-Noise Ratio

TABLE 6.2: Symbols and notations used in this chapter.

6.2 Preliminaries

In this section we present notations, definitions and theorems that are relevant to the
subsequent parts of the paper.

By xdp™ is denoted the XOR differential probability (DP) of ADD and is defined
below.

Definition 9. xdp™ is the probability with which input XOR differences «, 3 propa-
gate to output XOR difference « through the operation ADD, computed over all n-bit
inputs a, b:

xdp™(a, 8,7) = 277" #{(a,b) : (a®a) + (0 ® B)) @ (a+b) =7} . (6.1)

The following lemma provides the condition under which xdp™ is non-zero:
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Lemma 9 (Lemma 3 [LMO1]). The probability xdp™ (c, 3,7) is non-zero if:

o fo i (=0,
4L S = {%‘—1 if (ajo1=0Bic1=7-1)A(>0) (6.2)

Proof. Lemma 3 [LMO1]. O

The next theorem provides a formula for the computation of xdp™.

Theorem 2 (Algorithm 2 [LMO1]). If xdp™(a, 3,7) is non-zero then its exact value
is computed according to the following formula:

xdpt (o, B,7) =27 k= #{i>1: (i =Bici =)} (6.3)
Proof. Algorithm 2 [LMO1]. O

Theorem 2 essentially states that the probability xdp™ decreases by a factor of 1/2
for every bit position ¢ at which the three bits of the differences «;, 8; and ~; are not
equal, excluding the most significant bit (MSB) (hence the +1 in the power).

A bit in a truncated differential trail can either be fized, denoted by the dot symbol
- or truncated, denoted by the star symbol *. A fixed bit has value either 0 or 1. A
truncated bit can take on both values 0 and 1. More precisely, if a bit in a truncated
differential trail is truncated, then the trail is valid (i.e. of non-zero probability) for
both assignments of this bit.

6.3 Rules for Truncation

Truncation is performed according to three simple rules. They make truncation fea-
sible over multiple rounds of a cipher, where the ARX operations are sequentially
applied one after another. We describe those rules next, together with the rationale
behind them.

Rule 4. Let (a,,7) be a differential through ADD. Allow at most one truncated
bit in (a57); at all bit positions i except the least significant bit (LSB) and allow no
truncated bits at the LSB:

{(')} , 1=10,

(o ComCr) (e} n>i>0 (64)

(aBv)i € {

The rationale behind Rule 4 is to make truncation feasible over multiple ADD op-
erations iterated in sequence as in an ARX algorithm. If we allow more than one
truncated bit per bit position in Rule 4 then the number of * bits quickly explodes
in the number of rounds. Consequently it becomes infeasible to keep track of the
truncated bits across multiple rounds i.e. to maintain information as to which * bit
at round r is related to which * bit/s at round r — 1. Note that the final goal is to
end up with a truncated differential trail which results in non-zero probability non-
truncated trail for any assignment of the * bits. Finally and most importantly due to
Rule 4 it is possible to efficiently (in linear time) compute the differential probability
of a truncated differential through a single ADD.
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Rule 5. Let («, 3,7) be input/output differences through XOR so that a @ g = 7.
Allow at most one truncated bit in («f3); at all bit positions:

(aB)i € {(-+),(:*),(%)}: n>i>0. (6.5)

Similarly to Rule 4, the rationale behind Rule 5 is to make it feasible to keep track
of the dependency between * bits over sequences of XOR operations. For example if
a; = - and ; = * then the output of XOR is a; @ * = *. Thus the output star * is
either equal to the input star * or to its negation depending on the value of «; which
is fixed. In contrast, if both input bits are truncated i.e. a; = * and 8; = * then the
output is a * bit that is dependent on the inputs in a (relatively) complex way.

Rule 6.  Let (o, 3,7) be a truncated differential through ADD respecting Rule 4.
If, at position ¢ — 1, two bits are fixed and equal while the third is truncated or all
three bits are fixed and equal to each other, then all bits at position ¢ must be fixed:

((qvie1 = Bic1 =) A (yi-1 = %)) V
((Bi—1 =7i—1="+) A(@im1 = %)) V
((ic1 = i1 =) A (Bic1 = %)) V
(i1 =Bic1 =71 =) = (aBy)i=(--") . (6.6)

Rule 6 is a consequence of the xdp™ non-zero condition (Lemma 9). It ensures
that a non-zero probability differential (trail) remains of non-zero probability for all
assignments of the * bits after truncation. More specifically, if e.g. a;—1 = 8;-1 = -
and v;_1 = * then we treat the * value of ;1 as being equal to «;_1 in order to
check that this is a valid truncation i.e. that the differential remains of non-zero Pr
for both assignments of ;1. This is the case only if a; B 3; By; B a;—1 = 0, otherwise
the truncation is invalid (cf. Lemma 9).

The described rules allow stars in all bit positions (even several stars per round) and
in all rounds, except in the input differences. In practice however a star at a given
position, for example round j, bit 4, might violate one of the rules as it propagates
to the last round. If that is the case, then bit (j,4) remains fixed. As a result the
number of * bits is relatively small. Another related consequence is that more stars
appear in the last rounds since at those positions there is smaller chance to break any
of the rules.

Rule 4, Rule 5 and Rule 6, when used in combination, make it possible to compute
the DP of a truncated differential trail in linear time in the length of the trail.

We note that the proposed rules can be relaxed in several directions. In particular,
one may relax Rule 5 by allowing two * bits to enter the XOR operation. Rule 6
can be relaxed to allow a * bit at a position that follows a position with equal fixed
bits. Indeed we describe such a set of relaxed rules in Section 6.6. Such relaxations
naturally allow to capture more signal (larger cluster of differential trails) at the
expense of added complexity for keeping track of * dependencies across rounds.
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6.4 Differential Trail Truncation

The truncation algorithm takes a non-truncated trail as input and produces as output
all its truncated variants that comply to Rules 4, 5 and 6. The input trail can be found
by using one of the existing tools mentioned earlier e.g. [Liu+19; HW19; BVCI6].

Denote the input trail by 7. The ¢-th bit at round j is denoted Tij for 0 < i < n,
0 < j < R and it can either be truncated or not. The algorithm explores both
possibilities recursively in a depth-first search manner. Once a bit is truncated i.e.
7] <+ %, it is propagated to the last round of the trail. The propagation through
the ADD and XOR operations is performed according to Rules 4, 5, 6. Propagation
through the bitwise rotation operation is done by simply rotating the * bit by the
corresponding rotation amount. If propagation fails for a given bit (i.e. a rule is
violated), the algorithm backtracks and explores the next possibility or the next bit

position. A pseudocode description of this procedure is given in the full paper.!.

The differential probability (DP) of a truncated differential trail that follows Rules
4,5, 6 through a single ADD operation can be computed in linear time. The procedure
represents a slight modification of the one for xdp™ (Theorem 2) and is outlined next.

Let (v, 8,7) be a differential through ADD. In the non-truncated case the probability
p of this differential decreases by a factor of 1/2 for every bit position i at which
aj—1 = PBi—1 = 7i—1 does not hold (cf. Theorem 2). The modification of this rule
concerns the cases in which there is a % at some bit positions. Let ¢ — 1 be such
a position other than the MSB i.e. (af87)i—1 € {(- - *),(-*+),(x - )} and i # n.
Without loss of generality assume that (a8vy);—1 = (*--) i.e. @;—1 = *. By Rule 6 it
is ensured that the bits at the next position are all fixed i.e. (af7); = (---). Two cases
are possible. In the first case 8;_1 = ;1 and the probability is multiplied by 1 if
a;—1 = fi—1 and by 1/2 if a;_1 # Bi—1 Therefore the total probability p is multiplied
by 1+ 1/2 = 3/2 in this case. In the second case f5;—1 # 7;—1 and the probability
decreases by 1/2 for both values of ;1. Thus the total probability p is multiplied
by 1/241/2 =1 (i.e. p remains unchanged) in this case. When i = n and there is a
x at ¢ — 1 (MSB), the probability p is multiplied by 2 as the value at the MSB does
not change the (non-truncated) DP (cf. Theorem 2).

The differential probability of a truncated trail that follows Rules 4, 5, 6 can be
computed in linear time in the length of the trail. Consider a conceptual ARX cipher
with round function composed of a single ADD operation followed by a linear part
composed of XOR-s and bitwise rotations. Let 7 = (79...7%7!) be a truncated
differential trail over R rounds such that the differential transition at round 0 < j < R
represents input/output differences to ADD i.e. 77 = (a7, 37,47). The DP of a single
non-truncated differential (a/, 37,47) at round j can be computed bitwise with bit 4
conditioned on bit ¢ — 1 using Theorem 2 as follows:

n—1
xdp* (o, 87,77) = p} [[ v} : »] =DPl(aBy) | (eBy)]_1] (6.7)
=1

where p% = DP[(aﬂq/)g)]. Therefore, under the Markov assumption, the probability of
the trail 7 is computed as DP[r] = Hf:_()l P H?;ll pl.

Notice that the probabilities pg in the expression for DP[r] can be computed in any

'Full pseudocode for the simple rules is available as part of the YAARX Toolkit at
https://github.com/vesselinux/yaarx/blob/master/txt/arxtrunc.pdf .
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order (for a fixed 7). When computing the DP of a truncated trail 7, we are ordering
the terms p! by the dependency of the * bits in consecutive rounds. Then we compute
each term for both possible values 0 and 1 of the * bit denoted resp. (pZ)o and (pf)l
and we sum the two products.

For example suppose that 7 = % for some round k and bit 7 and that this * bit
propagates to subsequent rounds, up to the final one, at positions Tf“, e TtR_l.

Suppose also that these are the only * bits in 7. The truncated DP of 7 then is
computed as:

[T (@D e o Do+ i o) (69)

(1,5)¢
{(k,r),(k+1,5)...(R—1,)}

In equation (6.8), we are essentially splitting the trail 7 into bitwise subtrails, where
each subtrail contains * bits that are directly dependent on each other. Note that
Rules 4, 5, 6 ensure that there are no dependencies between the * bits belonging to
different subtrails. In other words, if a * bit is part of a given subtrail, then it can
not be part of other subtrails.

An example 6 round truncated trail on SPECK32 generated with Algorithm 22 is
shown in Appendix 6.11.4, Table 6.3. It has probability 271116 and has been pro-
duced from an optimal 6 round trail on SPECK32 with probability 2713, The shown
truncated trail has 4 independent * bits and therefore encodes 16 non-truncated trails.
The dependency between the % bits is shown in the equivalent label representation
in the third column of the table. The 4 independent truncated bits are denoted by
the labels a,b,c,d. Another example of a strongly truncated trail produced from
a suboptimal trail for SPECK32 and encoding 512 non-truncated trails is shown in
Appendix 6.11.4 Table 6.4.

6.5 Merging of Truncated Trails

In the general case an input non-truncated trail may have more than one possible
truncation. Therefore the set of all possible (up to Rules 4, 5, 6) truncated trails
produced from a given non-truncated trail by Algorithm 22 may contain duplicate
non-truncated trails. In this section we describe a method to transform this set into
a set of truncated trails that are disjoint i.e. do not contain any duplicates.

As described earlier, a truncated difference (TD) « represents a set of non-truncated
differences defined by the * bit positions in its truncated representation. We say that
two TD « and o are disjoint, denoted as a N o’ = (), if their corresponding sets are
disjoint i.e. if they do not have any common non-truncated differences. Note that «
and o are disjoint if there is at least one bit that is fixed and of opposite value in
each TDie. Ji: 0<i<n: (y="+)A(a, =-)A (v # ).

K3 K3

If the set represented by « is fully contained in the set represented by o’ then we say
that « is a subset of o/ denoted as o C o/. If a and ' are not subsets of each other
and are not disjoint i.e. if (& & /) A (o 5 ) and a N’ # () then we say that «
and o' are partially overlapping (PO). The latter implies that some, but strictly not
all, differences that are in « are also in o’ and vice versa. Note that if « and o’ are
PO then there exists at least one bit position i at which (a; = %) A (o = -) and there

)

exists at least one bit position j at which (a; =) A (a;- = %), where clearly i # j.
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The terms disjoint, subset and partially overlapping have analogous meaning for the
cases of truncated differentials through ADD («, 3,7) and of truncated trails 7 =
((a®,8°,99), (at, B, 41) . ..) composed of ADD truncated differentials.

The merging algorithm takes as input a set ¥ of truncated trails T that are all pairwise
disjoint and a truncated trail 7 to be merged with . The output is an updated set T
composed of disjoint truncated trails and containing all (non-truncated) trails from
7 that were not initially in ¥. For each truncated trail T in ¥, the algorithm checks
three cases. If 7 is already in T i.e. 7 C T then output ¥ and terminate. If 7 and
T are disjoint i.e. 7NT = () then move on to the next trail in T or add 7 to T if
all trails in T have been processed. Finally, if T is a subset of 7 i.e. T C 7 or if T
and 7 are partially overlapping, then split 7 into a set of truncated trails t (explained
below). The set t is such that all its elements are pairwise disjoint and each trail from
t is disjoint to T. With this the procedure is finished for the trail T and moves on to
the next trail in T where it performs the same steps for each trail in the set t. The
process terminates either when the set t becomes empty (i.e. the initial trail 7 has
been fully absorbed into ¥) or when all trails from ¥ have been processed, in which
case the set t is added to €. In both cases the updated set ¥ is returned. Pseudocode
description of this procedure is given in Algorithm 23.

A step that needs clarification in the described procedure is how the trail 7
is split into pairwise disjoint trails t that are also disjoint to T. Let T =
(%, 8% 4Y), (at, BL,41)...) and 7 = ((a®,8°, V), (at, b, ct)...). By design we know
that either T C 7 or T, 7: PO. In either case there must be at least one bit position
i and round j for which the bit in T is fixed and the same bit in 7 is truncated. Let
a be one such bit i.e. (Ozg =-)A (a] = x). We construct a new trail 7/ by setting a’
to the opposite value of o ie. a] =1@® oaj Note that this makes 7’ disjoint from T
since it differs in one ﬁxed bit. We add 7’ to t and we discard the original trail 7. By
doing so we don’t lose any 1nformat10n since 7 for a] = o is already in T and 7 for
the opposite value a] = 1® «] is in t If T and 7 happen to dlffer also in another bit,
say (BF =) A (b} = *) then we set a] to the value in T: a] = o and we set b} to the
negated value in T: bk =16 Bl We add this new trail 7" to t. Novv t contains 7/ and
7" which are pairwise disjoint since they differ in ag . At the same time they are also
disjoint from T since they differ from T respectively in ag and bf . This procedure is
executed iteratively for all positions in which 7 is fixed and T is truncated.

In Algorithm 23 there are two nested for-loops — the outer over ¥, the inner over {,
where the size of t is at most the number of non-truncated trails in 7. Therefore the
complexity of the algorithm is quadratic in max(#%, #t), where #% is the number
of truncated trails in ¥ and #t is the number of non-truncated trails in 7.

6.6 Relaxed Rules

It is possible to generalize the truncation rules from Section 6.3 by allowing trunca-
tions with dependent truncated bits *, i.e. bits whose value depends (non-linearly) on
previous bits’ assignments and for which Lipmaa-Moriai conditions are automatically
satisfied. Those relaxed rules are out of the scope of this thesis, and can be found in
the full paper [Bir+22].
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6.7 Application to SPECKG64

SPECK is a family of lightweight block ciphers proposed in [Bea+13]. The family has
five members corresponding resp. to the block sizes 32,48, 64,96 and 128 bits and
denoted by SPECKN, where N/2 is the word size in bits. In the remaining part of this
exposition we shall be concerned with SPECK64 i.e. the variant with 32-bit words.
SPECKG64 has two variants: 96-bit key and 26 rounds, and 128-bit key and 27 rounds.

AXI AY)
|
> 8
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)
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yany
A\
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FIGURE 6.1: The round function of SPECK64 with differential inputs.

Denote by X7 and Y7 the left and right 32-bit input words to the j-th round of
SPECK64 (0 < j < R) and by K7 the 32-bit round key applied at round j (0 < j < R).
The output X7+, Y7*! from round j is computed as follows:

X = (X9 > 8)BY') o K7 | (6.9)
Vit = (V7 « 3) @ XIT | (6.10)

where B denotes addition modulo 2" for n = N/2 = 32. The round function of
SPECK64 with differential inputs is shown in Fig. 6.1.

We have applied the tool for automated truncation (Algorithm 22) and merging of
truncated trails (Algorithm 23) to the optimal (non-truncated) differential trails of
SPECKG64 for up to 15 rounds. The results are shown in Table 6.1. Explanation and
analysis of the data in the table follows.

The first column of Table 6.1 gives the number of rounds R. The second column
shows the input difference Aj, of the input optimal trail followed by the number
of such trails with this input difference (in brackets). From the input trail/s 2, a
set of #T}; non-overlapping truncated trails (column 3) is computed by applying all
possible truncations (up to Rules 4, 5, 6) and merging them. The set T, contains
#Thr number of distinct non-truncated trails (column 4) with probabilities ranging
from Ppax and Puiy (columns 5,6). The total probability of the truncated set T}, is
Py (column 7). The last column of Table 6.1 shows the log, of the signal-to-noise
ratio (S/N) computed as logy(S/N) = 64 — |logy(Piy)| — logy(#Tner) (we elaborate
further on this parameter below). Numbers in brackets in the #7, column show
the number of trails in the set Ty, that have Pr > 2764 (the probability of a random
output difference). Correspondingly, the numbers in brackets in the last two columns
are based on this subset of trails of Ty, (as opposed to the full set Ty, ).

2There can be more than one input trail, provided that they share the same input difference
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The S/N ratio shown in the last column of Table 6.1 is the ratio between the proba-
bility of the truncated set distinguisher P, and the probability of choosing at random
a ciphertext difference that belongs to the set Tyt #Thtr - 2764 Note that all cipher-
text differences composing the distinguisher are unique. To ensure this, trails with
the same output difference are "merged" in one and their probabilities are summed.
The S/N ratio is an indicator of the strength of the truncated differential set distin-
guisher. In particular, when S/N > 1 the distinguisher can be used to distinguish
the cipher from a random permutation.

The data in Table 6.1 indicates that the probability of the truncated differential set
P, is strictly higher than the probability of the underlying optimal non-truncated
trail Ppax. Consequently a truncated differential set distinguisher built around the
optimal non-truncated trail is better than just single optimal trail in most cases (see
next) in terms of data complexity.

The above conclusion has to be applied with caution. In particular, one has to be
careful when the probability of the truncated distinguisher approaches the probability
of the random event i.e. when Pry, ~ #Th - 27 as then the S /N can easily drop
below 1. This indeed happens in the case of the 15 round truncated distinguishers for
SPECKG64 (see Table 6.1). If the full truncated sets are used as distinguishers in those
cases, the corresponding three S/N ratios are 27142, 27121 and 27060 all of which
are below 1. To increase them, one has to consider only those non-truncated trails
from the sets that have probability > 274, For the three 15 round distinguishers
from the table, these are the top 22, 22 and 16 trails respectively (as indicated by
the numbers in brackets in the T, column). By discarding all trails with Pr < 9-64
in those cases, the S/N ratios are increased respectively to 2049, 2049 and 2059 as
shown in the table.

Another observation from the data in Table 6.1 is that some input trails have higher
truncation rate (more number of truncated bits) than others. The reason for this is
the specific structure of the trails with respect to Rules 4, 5 and 6. More specifically,
for some trails the rules are contradicted in smaller number of bit positions (higher
truncation rate) than in others.

For example from the input trail on 11 rounds, 3 truncated trails are produced con-
taining (only) 5 non-truncated ones. At the same time the first input trail on 12
rounds (starting with the same input difference as the 11 round one) is truncated
into a set of 5 truncated trails containing 24 non-truncated. Upon inspection we
could see that the trail on 11 rounds has a very thick (i.e. low probability) transition
at round 5 (counting from 0) that costs 2713, followed by thin (i.e. high probability)
transitions until the end. So one explanation of the mentioned effect is that the thick
transition breaks all rules up to round 5, while the following thin transitions don’t
offer many options for truncation. Interestingly the trail on 12 rounds is an extension
of the one on 11 and the better truncation rate there is due to the extra round added
at the end.

In the following section we provide a more detailed statistical analysis of the distin-
guishing advantage of distinguishers built from clusters of differential trails.

6.8 Distinguishing Advantage

Distinguishing from Random In this section we provide a probabilistic model
for distinguishers for SPECK built from clusters of trails. In this setting, the attacker
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does some pre-processing by analysing the cipher (i.e. collects trails, computes their
differential weights and clusters them by weights) and then queries an oracle black-
box, that can either be a speck-box, which returns SPECK encryptions for a uniformly
chosen key, or a random-box, which returns random values.

Assume that in the pre-processing phase the attacker has collected disjoint clusters
of trails {C;}i—o,. 1 where C; has weight w; (i.e. probability 27"%) so that a random
trail belongs to it with probability pc;.

Thus, if we'’re in

e random-box then pc, = |2c;i|;

 speck-box then pc, = |C;|- 27" = |C}] 22~ (wotd) 5 — 0. 1,...,1, where wy is the
weight of the best differential trail.> We consider trails with weight increasing
from the optimal one. Thus we express trail weights w; as w; = wg + ¢ where
wy is the optimal weight and ¢ ranges from 0 to a given bound.

The probability p to hit at least 1 ciphertext in a collection of clusters after 2V queries
to the oracle is then equal to

l
p =1 — Pr(none of the ciphertexts is in any cluster) =1 — (1 — chi)
i=0

2N
By approximating (1 - %)n ~ e ™* we can rewrite this probability as
N+logy (Zé:o Pci) oN-+k

) 7T )

Where for the speck-box we have

l l
kspeck = lOgQ (ch’i> = —wo + 10g2 (Z ’Cz| : 21)

1=0 i=0
while for the random-box we have

l l
krand = 10g2 (Zp0i> = 1Og2 (Z |Cl’> — 64
i=0

=0

It follows that if the attacker wants to hit with probability p a ciphertext in any
cluster, he then needs to make 2V queries, where N is equal to

N =logy (—log(l —p)) — k
and k is either kgpecr, or kpgng depending on his guess for the oracle box.

Note that both models random-box and speck-box are similar and differ only in their
terms k,: in fact, the more these two values differ, the easier would be to distinguish

3In practical attacks the differential effect would increase these probabilities and make the distin-
guisher better.
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points belonging to one model or the other. We then define

l l
Kspeck — krand = —wo + log, (Z Ci| - 22‘) — log, (Z |Ci|> +64=S/N

i=0 =0

(which corresponds to the S/N definition we introduced in previous Sections) and the
higher this value is, the better we distinguish the two boxes. We assume that there
exists at least one trail of weight less than 64 for the reduced SPECK64 (i.e. wo < 64)
and in order for the distinguisher to work we require S/N > 1 thus:

! l
S/N; = 64 — wo + log, <Z|ci|-2i> — log, <Zyci|> > 1

i=0 =0

From this inequality and given the histogram of cluster sizes |C;| we can derive the
optimal [ up to which we can grow our collection of signal ciphertexts. The main
criteria for the attacker is to minimize the amount of data for the distinguisher, i.e.
minimizing N = logy (—1log(1 — p)) — kspect (which is equivalent to maximizing the
collection weight 1), while keeping S/N = Kkspeck — krand > 1. The larger the gap
64 — wq the higher [ the attacker can afford.

Statistical Distinguisher. Here we provide a statistical test to distinguish with a
certain confidence level « if the queried box is the random-box or the speck-box.
We can model our experiments using geometric distribution of parameter p, i.e.
Xrandv Xspeck ~ Geo(p). 4

The two statistical alternative hypothesis can be then formulated as follows:
o Ho: D= Dspeck = »_; |Ci] - 27", i.e. encryptions come from the speck-box.
o Hi: p=0prana=>_,;|Ci|- 2764 ie. encryptions come from the random-box.

Given a certain confidence level a (e.g. o = 0.05) we want to compute a threshold ¢,
so that if the first matching ciphertext is found after X, = 2%V encryptions, we accept
H, if 2V < t,,, otherwise if 2V > t,, we accept H;. We then have the following

oo

Pr(Reject HO | HO) = PT(X > 1o |p = pspeck) = Z (1 - pspeck)k_lpspeck
k=to+1

00
= (1 - pspeck)tapspeck : Z(l - pspeck)l = (1 - pspeck)ta
=0

By requiring Pr(Reject Hy | Hy) < a, we have at least

p { Ina —‘
“ In (1 — Dspeck)

Thus, given such threshold t¢,, the probability of accepting Hy while being in H;
would then be equal to

Pr(Accept HO | HI) = PT(X <ta ‘p = prand) =1- (1 - prand)ta

4For Speck, this is a consequence of the assumed Markov assumption.
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Best distinguishing confidence level a. We are interested in achieving the high-
est distinguishing power possible within the statistical model outlined above. In prac-
tice, for a given distinguisher with probabilities p,qna; Pspeck; Wwe would like to choose
a confidence level o which maximizes

f(a) = Pr(Accept Hy | Hy) — Pr(Accept Hy | Hy)

where we assume at least f(«) > 0. By expanding this definition, we get

In o

f(a) = (1 - prand)ta - (1 - pspeck)ta = (1 - prand)ln(l_pSPECk) —a=a -«

where ¢ = W. So, a solution for f’(«) = 0, would then be a = (%)711 and
1

this is a local maximum if f”(a) = c¢- (¢ — 1)a®"2 < 0. Thus, since ¢ > 0, a = c¢T—< is
a local maximum when ¢ < 1 or, equivalently, when pgpeck > Prand-

Experimental verification. We have experimentally verified the above proba-
bilistic and statistical model. More precisely, we have run a distinguishing attack on
Speck32 reduced to 9 rounds. We have collected a cluster of differentials with the
input difference (0211, 0a04) with a cumulative probability of at least 27254, These
were gathered by first finding optimal full trails until weight 32, of which there were
30 unique input/output pairs, and then calculating all the possible trails until weight
40 on these input/output pairs to accommodate for the differential effect. This re-
sulted in a S/N ratio of 1.7. Then, using the formula from the previous section we can
calculate the highest distinguishing a;, which in this case is a = 0.1825, which results
in the threshold ¢, = 22616, Using t, we can also calculate the probability of false
positives for the random permutation box given ¢, samples, i.e. Pr(Accept Hy | H1),
which is equal to 0.408. The distinguishing gap is 0.8175 — 0.408 = 0.4095 which is
clearly significant.

In our experiment we have used two boxes (Speck32 with 9 rounds and the random
permutation). For the test with the Speck box, we encrypt t, random input pairs
with the fixed input difference, and record a success if any of the output differences is
equal to one specified by our differentials. For the random box we use Speckey32 with
40 rounds (as that should emulate a random permutation), and similarly we encrypt
t, pairs of samples with the same input difference, and record a success if any of the
two differences are in our set of output differences.

We ran both the Speck32 and the random experiment 1000 times, and received 892
successes for Speck32 (hinting at an even higher real differential probability), and 404
successes for the random variant, verifying our statistical model.

6.9 Best Distinguisher for Speck64

In this Section we will discuss the best distinguisher we have found for 15 rounds of
SPECK64. Aiming at finding the most suitable one, we considered 4 optimal trails
of weight —62 found with Matsui’s search with input differences Ag = (Azg, Ayo)
equal to (40004092, 10420040), (04092400, 20040104), (92400040, 40104200),
(924000c0, 40104200), respectively.

Given an optimal 15 rounds trail, we split it in n + k rounds; by iteratively setting
k = 3,4,5 we compute the best feasible approximation of the differential probability
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for the first n rounds while maximizing the S/N ratio obtained from freely varying
the difference transitions in the last k rounds.

Since computing the differential probability over n = 12,11,10 rounds (depending
on the value of k set) quickly becomes prohibitive as the minimum trail weight limit
decreases, we split the first n rounds in two chunks of j and n — j rounds, respectively.
Hence, by iteratively setting j = 3,...,n — 3 we independently compute the two
differential probabilities of these two chunks and we select the best index j so that
Pr(Ag — Aj) +Pr(A; — A,) is minimum.

In order to approximate the differential probability of the two sub-trails Ag — A; and
Aj; = Ay, we use an SMT solver to find all trails with such input/output differences
and weight exceeding at most —25 with respect to their optimal weight.

The trail that performed better within this framework is the one we report in Ap-
pendix 6.11.6 Table 6.6 with parameters £ = 3, n = 12 and j = 3. More precisely,
for the differential Ag — Az we found 6 trails of total probability —10.954, while for
Az — Ao we found 21022 trails of total probability —37.418. Thus

Pr (AO — Alg) > 9—48.372

We then proceed by collecting all possible k = 3 rounds trails with input difference
equal to Ay and weight less equal —12, as long as the total S/N remains greater
than 0: for Aj2 = (00080000,00080000) we obtained 389 unique Ajs of weight at
least —16 with total weight —6.731 and S/N = 0.361. We further slightly improve
the total weight to —6.657 by computing the differential probability of each 3 round
trail found Alg — A15.

— 2—48.372—6.657 — 2—55.029

This, gives us a distinguisher of probability pgpeck consist-

ing of 389 unique ciphertexts.

Given that preng = g%? _ 9—55.396

best confidence level o = ci = 0.322 with ¢ = M = 0.775 which in turn
spec

= 255576 and distinguishing gap of 0.094,

, in light of the previous section, we obtain the

correspond to a distinguishing threshold %,
small but non-negligible.

Best cluster around sub-optimal trail. It is natural to use the best trail as
a starting point for a trail cluster. However one may wonder if it always produces
the cluster with the highest total probability for a given S/N ratio. Interestingly the
answer is 'no". In some cases the cluster around sub-optimal trail will have higher
distinguishing power than the one starting from the best trail. In Appendix 6.11.3
we show this behaviour for clusters collected for SPECK 64 reduced to 11 and 14
rounds. The plots showing this behaviour are in Figures 6.2 and 6.3. For 11 rounds
there is one best trail and there are numerous sub-optimal trails with better clusters.
For 14 rounds there are three best trails and there are two sub-optimal trails which
are better than two of them and very close to the very best cluster. For 15 rounds
sub-optimal trails always have weaker clusters but the four available best trails differ
significantly. This fact has helped us to build the best distinguisher for 15 rounds
SPECK 64 described above.

These results were obtained by exploring sub-optimal trails up to certain weight
bound beyond the best trail. This analysis shows that when deciding on a number
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of rounds of a cipher it might be important to consider not only the best differential,
but the best differential cluster.

6.10 Conclusion

In this paper we described a new tool for the automated truncation of differential
trails in ARX. The tool generates all possible truncations of an input non-truncated
trail (up to certain pre-defined rules) and outputs a set of non-overlapping truncated
trails with associated probability. The latter is strictly greater than the probability
of the input trail. The proposed tool is useful for constructing truncated differential
distinguishers which have lower data complexity than the traditional ones based on
the best non-truncated differential. Interestingly, in some cases differential cluster
around sub-optimal trail gives better resulting distinguisher then when starting from
the best trail.

The application of the tool was demonstrated on block cipher SPECK64. More specif-
ically, truncated differential set distinguishers based on the optimal trail/s on up to
15 (out of 24) rounds were reported. A natural future direction is the application of
the tool to other ARX algorithms. Beside other ciphers, the tool could potentially be
used in the area of ARX-based hash functions and sponge permutations. In partic-
ular, it may be worth exploring its use in an initial pre-processing phase that would
facilitate the subsequent application of advanced collision search tools such as e.g.
[Ste13; MNS11; Leul3; LP20].
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6.11 Appendix

6.11.1 Differential Trail Truncation Algorithm

Algorithm 22 Truncation of Differential Trails in ARX
Input: i: 0 <17 < n: bit position; 7 : 1 < j < R: round position
7: non-truncated trail on R rounds, where Tij is the ¢-th bit at round j
Output: {7}: all truncations of 7 that follow Rule 1, Rule 2 and Rule 3
procedure truncate__ trail
if j < R then
for truncate = true, false do
// truncate bit 77
if truncate = true and Tz-j # % then
Truncate bit Tij + * and propagate torounds j+1,...,R—1
if Rules 1,2 and 3 are not violated for any round then
Update 7 with 77, 77+ . TJR_l
Call truncate__trail for next bit ¢ + 1 or next round j + 1
end if
end if A
// do not truncate 77: move to next bit
if truncate = false then
Call truncate__trail for next bit ¢ + 1 or next round j + 1
end if
end for
else
// Last round: return a truncated version of 7
return 7
end if
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6.11.2 Trail Absorption Algorithm

Algorithm 23 Absorb a new TD trail T into exisiting set of trails T
Input: T: set of disjoint TD trails; 7: new TD trail (possibly 7 € T)
Output: T': updated set of disjoint TD trails that contains all new (non-
truncated) trails from 7 (possibly T = T')
procedure tdiff _absorb_ new_ trail(¥, )
// initialize a set t of TD trails with the input trail =
t+ (;add 7 to t
for all T € ¥ do

if t=( then
// all trails in ¢ have been fully absorbed; return
return T

end if

// absorb t into T and store the remainder in ¢

t' 0

for all T € t do
// if T contains trails not already in T, then split 7 into TD trail subsets to
exclude duplicates using
if (TC7)V (T, 7:PO) then
tiemp < tdiff _madd_ trails__make_ disjoint(T, 7)
add tiemp to ¥/
end if
// if 7, T: disjoint, then all trails in 7 are new, so add it
if (7, T): disjoint then
add T to ¢/
end if
// if T is a subset of T == it contains no new trails, so do nothing
if (r C T) then
continue
end if
end for
// overwrite t with the part of it that was not absorbed i.e. ¥
tt
end for
// t contains all trails not absorbed in ¥ — add them to ¥ and return
T+ TUL

return ¥’
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6.11.3 Clustering Around Sub-optimal Trails

Best trails over 11 rounds
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FIGURE 6.2: Trail probability and signal to noise ratio of clustering around 10 round
seed trails. The solid-lines are those of the best seed trails, while the dotted ones are
sub-optimal. The number near each vertex is the weight of the cluster up to this point.
Notice that some trails, after clustering around them, result in better probabilities than
the clustering around the best trail (for example, -42 near the start of the dotted green
line shows that there are two trails of weight -43 at this point). The legend indicates the
input differences to the cluster, in hexadecimal, with the probability of the seed trail in
parenthesis.
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Best trails over 14 rounds
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FIGURE 6.3: Trail probability and signal to noise ratio of clustering around 10 round
seed trails. The solid-lines are those of the best seed trails, while the dotted ones are
sub-optimal. The legend indicates the input differences to the cluster, in hexadecimal,
with the probability of the seed trail in parenthesis (log,).

6.11.4 Examples of 6 Round Truncated Trails for Speck32

In Table 6.4 is shown an example of a strongly truncated trail (i.e. relatively many
truncated bits) on 6 rounds SPECK32 produced from an initial suboptimal trail. Cap-
ital letter labels represent the negated value of the corresponding small letter label
eg. A=16a.
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Star representation  Label representation Pr
0010001000000100 0010001000000100 (—4.00)
0000101000000100 0000101000000100
0010100000000000 0010100000000000
0000000001010000 0000000001010000 (—6.00)
0000000000010000  0000000000010000
0000000001000000 0000000001000000
1000000000000000 1000000000000000 (—6.00)
0000000000000000  0000000000000000
1000000000000000  1000000000000000
0000000100000000 0000000100000000 (—6.42)
1000000000000000 1000000000000000
100000%100000000 100000a100000000
0000000100000%10 0000000100000a10 (—8.83)
100000*100000010 100000a100000010
1000000000000000  1000000000000000
0000000100000000 0000000100000000 (—11.16)
1000%x10000001010 1000a10000001010
100001*1000*1%x10 100001d41000c1b10

TABLE 6.3: Example of a 6 round truncated trail for SPECK32 with Pr = 2711:16 obtained
from the optimal non-truncated trail with Pr = 2713, The labelled representation (right)
indicates the dependency between the stars in the star representation (left). Numbers in
brackets are the cumulative probabilities up to the corresponding round (log, scale). The
trail is expressed in terms of a sequence of three 16-bit values representing the two inputs
and one output of the modular addition operation at each round.
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Star representation

Label representation

Pr

0000000000000000
1000000000000000
1000000000000000

0000000100000000
1000000000000010
1000000100000*10

0000%10100000010
1000000100001*00
1000010000*1%110

0%1%x110100001000
1000000000***100
*110110100010100

0010100%11011010
*1101101%*%x00110
00111011001 ***00

01%x*x*x00001110110
10001 1%*k*Q1k*k*1
*%11010110111001

0000000000000000
1000000000000000
1000000000000000

0000000100000000
1000000000000010
1000000100000a10

0000a10100000010
1000000100001a00
1000010000c1b110

0c1b110100001000
1000000000CAb100
d110110100010100

0010100d411011010
d1101101CAb00110
00111011001gfe00

01gfe00001110110
100011cab01GFed1
ih11010110111001

(0.00)

(—1.42)

(—6.09)

(—14.09)

(—22.51)

(—33.34)

TABLE 6.4: Example of a 6 round truncated trail for SPECK32. The labelled representa-
tion (right) indicates the dependency between the stars in the star representation (left).
Numbers in brackets are the cumulative probabilities up to the corresponding round.
Capital letter labels represent the negated value of the corresponding small letter label
e.g. A=1® a. The trail is expressed in terms of a sequence of three 16-bit values repre-
senting the two inputs and one output of the modular addition operation at each round.
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6.11.5 Best 15 Round Distinguisher for Speck64 using Simple Trun-

cation Rules

For completeness we list the output differences that correspond to the 22 non-
truncated trails with Pr > 2764 that compose the 15 round truncated set distinguisher
for SPECK64 with probability 279995 (Table 6.1) in Table 6.5.

i Aour = (Y| BY)  logyPr; 3. log, Pr;
0 0A080808 02084008 —62 —62.00
1 0A088808 02084008 —63 —61.42
2 O0E080808 02084008 —63 —61.00
3 0A180808 02084008 —63 —60.69
4 1A080808 02084008 —63 —60.42
5 0A081808 02084008 —63 —60.19
6 0A080818 02084008 —63 —60.00
7 1A088808 02084008 —64 —59.91
8 0A089808 02084008 —64 —59.83
9 0A181808 02084008 —64 —59.75
10 0A081818 02084008 —64 —59.68
11 1E080808 02084008 —64 —59.61
12 0A188808 02084008 —64 —59.54
13 1A081808 02084008 —64 —59.48
14 OE081808 02084008 —64 —59.42
15 0A180818 02084008 —64 —59.36
16 1A080818 02084008 —64 —59.30
17 0A088818 02084008 —64 —59.25
18 1A180808 02084008 —64 —59.19
19 O0E180808 02084008 —64 —59.14
20 OE080818 02084008 —64 —59.09
21 OE088808 02084008 —64 —59.05

TABLE 6.5: Output differences (in hexadecimal) corresponding to the 22 non-truncated
trails for 15 rounds of SPECK64 with input difference (to the first round ADD) o =
92400040 9 = 10420040. These trails are a subset of the 135 trails in the set Ty in the

third to last line of Table 6.1.
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6.11.6 Optimal 15 rounds Trail for best Speck64 Distinguisher

0 40004092 10420040
1 82020000 00120200 —5 )
2 00900000 00001000 —4 -9
3 00008000 00000000 —2 —11
4 00000080 00000080 —1 —12
5 80000080 80000480 -1 —13
6 00800480 00802084 —3 —16
7 80806080 848164a0 —6 —22
8 040f2400 20040104 -—13 —-35
9 20000820 20200001 —8 —43
10 00000009 01000000 —4 —47
11 08000000 00000000 —2 —49
12 00080000 00080000 —1 —50
13 00080800 00480800 —2 —52
14 00480008 02084008 —4 —56
15 0a080808 1a4a0848 —6 —62

TABLE 6.6: Optimal 15 round trail for SPECK64.

In Table 6.6 we report the optimal trail for SPECK64 reduced to 15 rounds we used
in Section 6.9 to build a distinguisher with S/N > 1 and data complexity equal to

2—55.03
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This chapter is based on the paper titled “Rivain-Prouff on Steroids: Faster and
Stronger Masking of the AES”, currently under review for publication.

This paper proposes a new method to efficiently compute a side-channel protected
AES using the masking scheme described by Rivain and Prouff. The crucial part of
this work is an improvement of the table-based multiplication in the field Fys used
as a building block of the secure multiplication over shared values. Since the secure
multiplication is performed multiple times to compute the inversion required by the
non-linear layer of the scheme, any speed improvement has a strong impact on the
overall performance of the masked scheme. Furthermore, we modify the sequence of
secure multiplication to compute the inversion such that the number of table look-ups
and the amount of randomness needed is minimized. To confirm the theoretical im-
provement, we study the scheme on an ARM Cortex-M4 microcontroller. We propose
an assembly optimized implementation of the SubByte operation which result in a
fully masked AES that is approximately two times faster than the results published
at Eurocrypt 2017 by Goudarzi and Rivain. Since the primary goal of a masking
scheme is not to be fast, but to be secure, we also performed a t-test on power traces
measured on a real device in order to confirm that the method is sound.

On this chapter, my main contribution was the table-based multiplication, as well the optimiza-
tion of the implementation using the new gadgets. I contributed with the practical aspect of the leak-
age assessment. The mathematical proofs of the gadgets were investigated mainly by my co-authors.
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7.1 Introduction

Twenty years ago, the block cipher Rijndael was selected by NIST to become the
encryption standard called AES. Since then, a lot of effort has been put into making
efficient and secure implementations on various platforms. A common attack vector
on concrete implementations is the exploitation of the physical behaviors of the de-
vice running the cryptographic algorithm. These so-called side-channel attacks (SCA)
have been one of the focus of attention from cryptographers over the last two decades.
While SCA is a broad term encompassing a large number of techniques used to extract
information from a device, a well-studied sub-field is the statistical analysis of power
consumption and electromagnetic emanations to find a correlation between the phys-
ical measurements and the secret values manipulated when performing cryptographic
operations. A popular mitigation against such an attack is called masking, it aims
to break the link between the internal intermediate values and the measurements by
applying secret sharing techniques internally throughout the execution.

In masking, a secret value s is split into several statistically independent shares
(s0,81,--.,8q) which hold the relation s = s9g ® s; ® -+ ® sq for some operation
®. We call d the masking order. The main challenge is finding an efficient algo-
rithm that takes as input values split into shares and that computes correctly the
result of the cryptographic transformations without ever recombining those shares
(in the case of decryption, even the output still needs to be in shares form). Due
to its popularity as a standard and widespread use, masking schemes for the AES
have been developed and studied in the literature. Out of the four main operations
of AES, three of them are trivial to mask, mainly due to linear nature. Indeed if
f(50)© f(s1) O+ © f(sq) = f(so @510+ ®sq) holds for a cryptographic operation
f, the non-masked version of the function can simply be applied independently to
each share. Hence, the bulk of the work consists in finding an efficient way to com-
pute the non-linear operation of AES (SubBytes) over the shares. Algebraically, this
operation is an inversion in the field Fys (followed by an affine transformation which
is trivial to mask), with the caveat that 0 is a valid input that is mapped to itself.

In this work, we aim to improve the practical performance of a technique proposed in
2010 by Rivain and Prouff ([RP10]) to compute the nonlinear substitution by com-
puting x — 2% in Fos that has been more recently studied by Goudarzi and Rivain
([GR17]). The efficiency of this technique is mainly driven by the efficiency of the
multiplication in the field. Those multiplications are usually performed using the so-
called Antilog and Log tables, which map elements to their order in the multiplicative
group of the field and vice versa. To multiply two elements, one first maps them to
their orders, adds the orders, and maps the result back to an element corresponding
to their product. Unfortunately, since the work is done in the multiplicative group,
multiplications by 0 need to be treated as special cases since 0 is not in the group. We
remove this source of inefficiency by attributing a value corresponding to the element
0 in the Antilog table containing the orders. Using this trick, the field multiplication
has no special case anymore and some instructions are saved. Furthermore, we use
an alternate sequence of multiplications to compute the exponentiation to 254 that
minimizes the number of look-ups in the Log and Antilog tables and that also requires
less randomness to be secure in the probing model.

Related works. The main starting point is the paper of Rivain and Prouff [RP10].
In their work, they generalize the secure AND gate of Ishai, Sahai, and Wagner[[SW03]
to perform a secure multiplication in Fes. Using this multiplication, they construct
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an efficient algorithm to raise an element to the power 254. In [GR17], Goudarzi and
Rivain study multiple techniques to mask AES from a practical point of view on the
ARM architecture. Among others, they give results for implementations of AES using
the method of Rivain and Prouff. Other masked implementations of AES on ARM
can be found in [SS17; FPS17; JS17; Gro+19; AP20]. However, they use different
masking techniques and/or are not possible to generalize to any order. Furthermore,
there has been recent results indicating that a large amount of those existing masked
AES implementations are actually flawed [Bec+22].

Our contribution. In this paper, we significantly improve the speed of the Rivain-
Prouff masking scheme by proposing a more efficient table-based multiplication in
Fos and by modifying the exponentiation in order to strongly synergize with our
multiplication. In particular, we save some computation by completely removing the
zero check for the inversion and we propose a new sequence of multiplications to
compute 22°* needing less randomness and requiring less table look-ups. We provide
an assembly implementation and concrete speed measurements at order 1 as well as
an experimental evaluation of the side-channel resistance of our implementation using
a t-test on real traces. Our experimental results show that our code is almost twice
as fast as the fastest version of Rivain-Prouff presented in [GR17] while exhibiting no
leakage over 5000 traces.

7.2 Preliminaries

7.2.1 Advanced Encryption Standard

AES is essentially a substitution permutation network, where a 4 x 4 byte array
(called state) is modified in a series of consecutive rounds. Specifically, each round is
a composition of the following operations:

1. SubBytes: is the only non-linear transformation of the cipher. This transforma-
tion consists of a specific S-box applied to the state. Such S-box was designed to
achieve non-linearity (minimizing the maximum input-output correlation ampli-
tude and the maximum difference propagation probability) and algebraic com-
plexity. The S-box is defined by the following function in Fos: Affg(Invg(a)),
where Invg is the inversion in the field and Affg is an invertible affine transfor-
mation.

2. ShiftRows: is a byte transposition that cyclically shifts the rows of the state
over different offsets (respectively 0, 1, 2 and 3 for the first, second, third and
fourth row).

3. MixColumns: is a permutation of the state column by column. The columns of
the state are multiplied by the polynomial 323 + 22 + z +2 mod z* + 1.

4. AddRoundKey: is a XORing operation between the state and round key, namely
each round uses its own round key. The array of round keys (called ExpandedKey|])
comes from a key schedule procedure taking as input the key of the cipher. The
size of the ExpandedKey is equal to the block length multiplied by the number
of rounds. In fact, the number of rounds depends on the key size (for a 128-bit
key, 10 rounds are performed).

Hence, let us shortly outline the high-level structure of AES. An AES encryption
consists in expanding the key followed by a first XOR between the the initial state
and the cipher key. Afterward, the algorithm iterates the round procedure for N, — 1
times, since the last round is composed slightly differently. Namely, for the last round
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the MixColumn is removed, as it adds no security to the cipher since it can be trivially
inverted. See algorithm 24 the details.

Algorithm 24 AES - Encryption protocol
Rijndael(State,CipherKey)
KeyExpansion(CipherKey, ExpandedKey)
AddRoundKey(State, ExpandedKey|0])
fori=1to N, —1do
SubBytes(State)
ShiftRows(State)
MixColumn(State)
AddRoundKey(State, ExpandedKeyfi])
SubBytes(State)
ShiftRows(State)
AddRoundKey(State, ExpandedKey[V;])

Algorithm 24 is only describing the encryption procedure since the decryption is
straightforward. In fact, note that each of the above operations is invertible and we
refer the reader to [DR02] for the decryption and the security proofs.

7.2.2 Provably-Secure Masking of the AES

Ishai, Sahai, and Wegner, in [I[SWO03], introduced and formalized a new model to
ensure the security of any binary circuits against probing attacks. Their constructions
exploit a (d + 1)-out-of-(d + 1) secret sharing scheme, where observing any subset of
d shares reveals nothing about the original value. Such technique has been called
binary masking and each intermediate variable x is mapped into a set of d + 1 shares
such that t =20 @ x1 ® - - - ® x4, where 1,9, ..., x4 are generated at random while
x0 is computed accordingly '. Moreover, each share x; is processed along the circuit
separately and they proved security against any attacker probing ¢t = (d—1)/2. Since
[[SW03] has been proposed, the probing model has been widely studied and improved.
In 2010, Rivain and Prouff in [RP10] showed how to securely mask AES, adapting the
ISW construction to securely work in Fys. For completeness, let us briefly mention
the basics of the Rivain-Prouff masking of AES.

The AES block cipher is structured as multiple rounds transformation, consisting of
a key addition, a linear and a non-linear layer. The masking of latter operation, i.e
the masking of the S-box, is the trickiest part of the implementation. In particu-
lar, their main challenge was to provide a secure method to mask the power-to-254
function for any order d. The exponentiation to 254, as described in [DR02], con-
sists of 4 multiplications over Fos and 7 squarings®. Hence, to securely compute such
exponentiation, they had to implement a secure method for the squaring and the
multiplication. While the former is straightforward (due to its linearity it is secure to
square each share separately and independently), for the multiplication they proposed

In order to not confuse the readers, we would like to point out that in our paper we adopted the
Rivain-Prouff notation, namely: we refer to d + 1 as the number of shares and to d as the masking
order, as a consequence of that the indices for the shares will go from 0 to d. Please note that this
is slightly different from the notation used in the Goudarzi-Rivain paper.

2Considering exponentiation to the power of 4 and 16, respectively, as 2 and 4 consequent squar-
ings.
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the following secure algorithm?:

Algorithm 25 SecMult - dth-order secure multiplication over Fyx

Input: shares a; satisfying a = @f:[) a;, shares b; satisfying b = @?:0 b;
Output: shares ¢; satisfying ¢ = 69?:0 c; = ab
1: for i =0 to d do

for j=i+1toddo

ri; < rand(k)

Tji < (7“7;73' S, aibj) S, ajbi
: for i =0 to d do
C; < aibi
for (j=0tod) A (i # j) do

Ci— C D Tij

Unfortunately as argued in [RP10], the secure computation of the squaring and the
multiplication are not enough to guarantee the security for the whole exponentiation.
In order to do that the masks of the inputs given to the SecMult needs to be mu-
tually independent and this means they need to be refreshed in some point during
the exponentiation. This operation is processed by the following secure refreshing
algorithm:

Algorithm 26 RefreshMasks

Input: shares z; satisfying z = @?:0 xz;

Output: shares z; satisfying x = @5:0 X
1: fort=1to d do
2:  tmp < rand(k)
3: xg < To D tmp
4: T; < x; D tmp

Thus, finally, let’s recall their secure algorithm for the power-to-254 function in Algo-
rithm 27. Note that from the following secure exponentiation one can easily extend
the security notion to the whole S-box. This is due to the fact the affine transfor-
mation called after the exponentiation is linear and it can be computed (securely)
dealing with each share separately, namely:

Af(x) if d is even,
Af@0) & Af(@1) & - © Af(wa) = {Af(m) ©0x63 if d is odd.
Concerning the remaining AES operations, their implementation is quite straightfor-
ward and we refer the readers to look at the original Rivain-Prouff paper. While
Algorithm 27 is secure at order 1, it should be noted that a flaw has been found
and described in [Cor+14] for higher orders. Since we propose a new exponentiation
together with a security proof, Algorithm 27 is only recalled to ease the exposition
and we can ignore this issue.

3We refer the readers to [RP10] for the security proof.
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Algorithm 27 SecExp254 - dth-order secure exponentiation to the 254 over Fyx

Input: shares zg,x1,...,zq satisfying x = @g:o x;
Output: shares yg,y1,...,¥yq satisfying y = @?:0 y; = 2%
cfori=0toddoz < 2 /| P,z = *

(xo,x1,...,24) < RefreshMask(zg, z1, ..., zq)

(Yo, Y1, - - ,yd) + SecMult((zo, 21, . - .,zd), (zo,71,...,24)) /| B, vi = 2°
for i =0 to d do w; < y} // @, w; = z*?

(wo, w1, ..., wq) < RefreshMask(wp, w1, ..., wq)

(40, Y1, - - - Ya) < SecMult((yo, y1, - - -, Ya), (wo, w1, ..., wq)) // B,y = x'
for i =0to ddo y; + y® // B,y = 2**°

(40, Y1, - - - > Ya) < SecMult((yo, y1, - - -, Ya), (wo, w1, ..., wq)) // B, yi = 2?72
(40,1, - - - ya) < SecMult((yo, y1, - - -, ¥a), (20,21, - - -+ 2a)) // D, yi = 2***

7.3 Low-Level Field Arithmetic

A masked implementation of the AES based on the RP technique performs the inver-
sion in Fys, which is part of the SubBytes transformation, through exponentiation by
the exponent 254 according to Fermat’s theorem. Consequently, the inversion boils
down to a sequence of multiplications and squarings in Fes. In essence, a multipli-
cation of two elements of Fos consists of a multiplication of binary polynomials of a
degree of up to 7, yielding a product-polynomial with a maximum degree of 14, fol-
lowed by a reduction modulo the irreducible polynomial p(x) = 28 + 2% + 23 + 2 + 1.
Modern x64 processors provide the GF2P8MULB instruction for multiplication in Fos,
but such an instruction is lacking on our target platform, the ARM Cortex-M3, and
also on all other 8, 16, and 32-bit microcontrollers. Therefore, implementers have
to resort to either the so-called shift-and-XOR method, which is relatively slow, or
performs the multiplication with the help of look-up tables.

7.3.1 Table-Based Multiplication

In its most simple form, a table-based multiplication of elements of F,s uses two
look-up tables, namely a so-called Log table that contains the order of the 255 non-0
elements of the field (based on the generator g(x) = x + 1) and an AntiLog table
containing the elements corresponding to the orders in the range of [0,254]. Each
of the tables consists of 255 entries, but for efficiency reasons a Log table with 256
entries is used so that the integer representation of a field element can be directly
used as an index for the look-up into the table. Note that only the elements of the
multiplicative group of Fys (i.e. the non-0 elements of Fys) actually have an order.
However, by assigning 255 to the Log-table entry with index 0 and by assigning 0 to
the AntiLog-table entry with index 255, it is guaranteed that Antilog[Log[al]l = a
holds for any a(x) € Fas, including the special case a(x) = 0. When implemented in
this way, both the Log table and the AntiLog table have a size of 256 bytes, which
amounts to 512 bytes altogether. The computation of the product ¢(z) = a(x)b(x)
consists of three basic steps. At first, the Log table is used to obtain u = ord(a(x))
and v = ord(b(z)). Then, the modular sum s = u+ v mod 255 is computed by means
of a conventional 8-bit addition followed by a conditional subtraction of 255. Finally,
the field-element c(z) corresponding to the order s is determined with the help of the
AntiLog table. Consequently, the multiplication requires three table look-ups and a
modular addition [DR02; Gla07].
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It is possible to speed up the multiplication by replacing the modular addition with
an ordinary addition, but this requires a larger AntiLog table [Gla07]. Concretely,
when the AntilLog table is duplicated so that AntiLog[255+i] = AntiLogl[i] for
i € [0,254], then the conditional subtraction of 255 from u + v is not necessary any-
more. Thanks to this simple optimization, the cost of the table-based multiplication
is reduced to three table look-ups and an ordinary addition. The size of the AntiLog
table doubles, and both tables amount to 768 bytes altogether. Note that, since the
two tables are static, they can be kept in non-volatile memory (i.e. ROM or flash)
and do not necessarily occupy precious space in RAM. However, there is a further
implementation detail that requires special attention, namely the treatment of the
case a(t) = 0 or b(t) = 0, which we ignored until now. Unfortunately, the table-based
multiplication as described above does not yield the correct result when one of the
operands is 0. A simple mathematical explanation for this observation is the fact that
0 is not an element of the multiplicative group of the finite field F9s and, therefore, it
does not have a multiplicative order. Software implementations usually treat the oc-
currence of 0-operands as a special case and explicitly set the result to 0 when one of
the two operands is 0. Hence, a table-based multiplication involves besides the three
steps already mentioned above a fourth step in which the operands are checked for
0 and the result is corrected if needed. A pseudo-code description of the table-based
multiplication in Fys can be found at the end of Subsection 7.2 of [Gla07].

Listing 7.1: ARM Assembler macro for table-based multiplication in Fas (see [GR17]).

.macro F2P8MUL res:req, opA:req, opB:req, tmp:req, ptLog:reg, ptALog:req
2// step 1: tmp <- LoglopAl, res <- Logl[opB]

31drb \tmp, [\ptLog, \opAl

41drb \res, [\ptLog, \opB]

5// step 2: tmp <- tmp + sum

6add \tmp, \tmp, \sum

7// step 3: res <- ALog[tmp]

81drb \res, [\ptALog, \tmp]

9// step 4: treat (opA = 0) or (opB = 0) case

10rsb \tmp, \opA, #0 // tmp <- 0 - opA

11 and \tmp, \opB, \tmp, asr #32 // tmp <- opB & (tmp >> 32)
12rsb \tmp, \tmp, #0 // tmp <- 0 - tmp

13 and \res, \res, \tmp, asr #32 // res <- res & (tmp >> 32)
14ndm

Listing 7.1 contains an optimized implementation of the table-based multiplication in
ARMv7M Assembly language (GNU syntax) that can be executed on e.g. Cortex-M3
and Cortex-M4 microcontrollers. This implementation is based on the assembly code
provided in Appendix A (concretely in Figure 24) of [GR17], which is an extended
version of the EUROCRYPT 2017 paper of Goudarzi and Rivain [GR17]. It follows
the four basic steps described above but differs slightly from the original Assembler
code of Goudarzi and Rivain. For example, our version does not contain the reduction
of the sum of the orders modulo 255 since we take advantage of the “duplicated”
AntiLog table, which saves an add as well as an and instruction. Furthermore, our
implementation does not contain the 1dr (“load register”) instruction at the start of
Goudarzi and Rivain’s Assembler macro (used to initialize the register ptLog with the
pointer to the Log table) since we assume that ptLog already contains the Log-table
address whenever the macro is executed. The last four instructions do a O-testing
of the operands and set the result in register res to 0 when (at least) one of the
operands is 0. These four instructions are exactly the same as in Subsection 3.2 of
[GR17; GR17] and in Figure 24 of [GR17]. The result of the rsb (“reverse subtract”)
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instruction at line 10 is either 0 (when register opA was 0) or the two’s complement
of opA, in which case its most-significant bit is 1. Note that the second operand of
the subsequent and instruction (i.e. register tmp) is arithmetically shifted to the right
before the actual AND operation. Hence, the second operand is either 0 or the “all-1”
word 232 —1, i.e. Oxffffffff in hex notation, and the content of register tmp is either
0 or opB. After execution of the other two rsb and and instructions in line 12 and 13,
respectively, the content of res is either 0 or the multiplication result from line 8.

The 1drb (“load register with byte”) instruction has a latency of two clock cycles*
on our target device, which is a VL Discovery development board from STMicroelec-
tronics housing a STM32F100RBT6B Cortex-M3 microcontroller that is clocked with
a nominal frequency of 24 MHz [STMI16]. All other instructions in Listing 7.1 have
a latency of one cycle. Hence, the F2PSMUL macro has an overall execution time of
11 cycles, of which four are spent for the special treatment of 0-operands. These four
clock cycles constitute a whopping 36.4% of the execution time and have a massive
impact on the performance of the RP masking scheme. Namely, as we will see in
Section 7.5 using first-order masking as case study, the inversion of the SubBytes
transformation represents about 90% of the execution time of an AES round. The
execution time of the inversion depends heavily on that of the masked multiplication
(i.e. SecMul operation), which, in turn, is dominated by ordinary multiplication in
Fos (i.e. the F2P8MUL macro). Therefore, getting rid of the special treatment of 0-
operands in Listing 7.1 would lead to a significant reduction of the execution time of
an RP-masked AES. However, this seems to be a non-trivial problem since neither
Goudarzi and Rivain nor Rivain and Prouff found a solution.

Eliminating the Special Treatment of 0-Operands. In the following, we show
that it is possible to completely avoid the special treatment of 0-elements, thereby
improving the efficiency of RP masking by a massive extent, at the cost of an increased
size of both the Log table and the AntiLog table. Although our idea is surprisingly
simple, did not see it published anywhere, neither in the landmark paper of Rivain and
Prouff [RP10], nor in any subsequent paper on optimized software implementation of
the RP masking scheme such as [GR17]. Recall that the very first entry of our Log
table (i.e. the entry with the index 0) is 255. Furthermore, as also explained before,
the entry with index 255 of the original (un-duplicated) AntiLog table is 0 to ensure
Antilog[Log[0]] = 0. Our idea is based on the fact that the sum of the order of
two non-0 elements of Fys is strictly less than 509. Namely, when we modify the Log
table by setting the very first entry to 509 (which could be interpreted as assigning the
field-element 0 the order 509, although this makes no sense from a mathematical point
of view), the special treatment of 0-operands can be simply avoided if the AntiLog
table is modified accordingly. This means we have to extend the AntiLog table from
512 to 1024 entries, whereby the upper half of this extended table (i.e. all entries with
index 509 to index 1023) contain 0. Note that these modifications do not impact the
multiplication of non-0 elements since it still works in exactly the same way as before
and yield the correct result. However, when one of the two operands is 0, the sum of
the orders is at least 509, which implies an entry in the upper part of the AntiLog
table is accessed and the result of the multiplication is 0.

These simple modifications of the Log and AntiLog table make it possible to remove
the last four instructions from Listing 7.1, which reduces the overall execution time

40n certain Cortex-M models, neighboring load and store instructions can pipeline their address
and data phases, which enables these instructions to complete in a single execution cycle.
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of the F2PS8MUL macro by 36.4%. However, this speed-up comes at the expense of
larger look-up tables. The Log table still consists of 256 entries, but needs to be
able to accommodate the 9-bit integer 509, which means it has to be of 16-bit type
hword instead of 8-bit type byte. Furthermore, the AntilLog table requires 1024
entries instead of 512, whereby all entries in the upper half (i.e. index 509 and above)
are 0. Hence, the two tables become twice as large, i.e. the size of both tables
amounts to 1536 bytes altogether, which is still relatively small compared to the non-
volatile memory consumption of other masked AES implementations (as we will see
in Section 7.5).

5

Reducing the Number of Table Look-Ups. The exponentiation-based secure
inversion from the Rivain-Prouff paper [RP10], provided in Algorithm 27, consists of
four masked multiplications (so-called SecMult gadgets), three other masked arith-
metic operations in Fos (i.e. squaring, fourth-power, 16th-power®), and two mask
refreshings. However, the three other arithmetic operations are all linear in Fys and
can, therefore, be performed separately on each of the d + 1 shares. In addition,
the three operations have in common that each of them can be implemented with
a 256-byte look-up table. For example, the squaring is an ordinary table look-up,
which, given any a € Fos, simply returns the field-element b = a? as result, i.e. it
is not necessary to obtain the order of a first like in the multiplication. When we
ignore the mask refreshings, the first two steps of the inversion in Algorithm 27 are
a squaring followed by a multiplication”, and this operation sequence (i.e. a multi-
plication preceded by a linear operation that requires just an ordinary table look-up)
appears two further times, namely in lines 4 and 6, and in lines 7 and 8. Based on
this observation, it is possible to reduce the total number of table look-ups during
an exponentiation by modifying the squaring table (resp. fourth-power/16th-power
table) to contain the order of the square ord (b) instead of the actual square b. This
modification does not increase the size of the table, but allows one to accelerate the
exponentiation by using the order read from the table as operand in a subsequent
multiplication, which saves a look-up into the Log table. In the ideal case, i.e. when
both operands are given as orders, the multiplication only consists of an addition and
a single table look-up.

This optimization to reduce the number of table look-up is not particularly effective
when applied to the original masked exponentiation given in Algorithm 26 because
of the mask refreshings between the squaring and multiplication at line 2 and line 5
(which we ignored in the above description of our idea). However, in Section 7.4, we
will introduce a modified variant of the exponentiation that is much better suited for
our optimization and, therefore, faster than the original exponentiation of Rivain and
Prouft.

5The modified Log and AntiLog table as well as a C implementation of the optimized multiplication
(without special treatment of 0-operands) can be found in the full paper and online, after the paper
is over the anonymous evaluation phase.

6 As mentioned in Section 7.2, the fourth-power function z — z* and 16th-power function s ¢
can be implemented via squarings, in which case seven squarings have to be performed in an inversion.

"The be precise, these two steps are a masked squaring and masked multiplication. However, for
the explanation of our optimization, it does not matter whether these operations are masked or not.
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7.3.2 Basic First-Order Gadgets

As explained in Section 7.2, the RP masking scheme is generic in the sense that it
can be used to achieve arbitrary masking orders, thereby enabling different trade-offs
between execution time and security, i.e. resistance to DPA attacks. However, in the
rest of this section, we focus on first-order masking, i.e. we assume d + 1 = 2 shares,
to simplify the description of how we implemented the basic gadgets for masked
operations in Fos. We emphasize that all optimizations described in this section
translate over to higher orders in a natural fashion.

In the case of first-order masking (i.e. d = 1), all sensitive variables are to be split up
into d4+ 1 = 2 shares. Consequently, the two operands a,b € Fys that are input to the
secure (i.e. masked) multiplication given in Algorithm 25 have the form a = ag ® a1
and b = by @ by, respectively. For d = 1, the computation of the two shares ¢y and ¢;
of the product ¢ = ab = ¢y @ c; involves four conventional multiplications in Fos as
follows.

ro,1 = rand(8bit), L0 = (?”0’1 D aobl) @ a1bg
co = apbo B o1, 1 =aib1 ©rip (7.1)

As explained in the last subsection, it is possible to have a Log table and AntiLog table
so that AntiLog[Log[all = a holds for any a € Fys (including 0) and not just the
non-0 elements. Consequently, it is possible to define a bijective mapping between the
elements of Fys and their orders, even though, strictly speaking, the element 0 does
not have an order in a mathematical sense. This means it is possible to represent
any element by its order and vice versa, and we can easily convert between these
representations, which we call the normal domain and the order domain, with the
help of look-up tables.

Listing 7.2: ARM Assembler macro of a two-share SecMult gadget (the shares ag,a;
and bg, b; of the operands a and b are in the order domain, whereas the shares cg, c; of
the product ¢ = ab are in the normal domain).

.macro SECMULT cO:req,cl:req, aO:req,al:req, bO:req,bl:req, rn:req, ptALog:req
2// products in order domain

3add \c0, \a0, \bO
4add \c1, \al, \bl
5add \a0, \a0, \bil
6 add \a1, \ail, \bO

7// products in normal domain
81drb \cO0, [ptALog, \cO]
91drb \c1, [ptALog, \c1]
101drb \a0, [ptALog, \a0]
111drb \al, [ptALog, \aill
12// compute masked result cO,cl

13 eor \c0, \cO, \rn
14 eor \rn, \a0, \rn
15 eor \rn, \al, \rn
16 eor \c1, \c1, \rn
18ndm

Listing 7.2 shows an ARM Assembly macro that implements a SecMult gadget for the
first-order case, i.e. d = 1, based on Equation (7.1). This implementation incorporates
the two optimizations we presented in the last subsection, i.e. it does not treat O-
operands in a special way and it assumes the two operands (or, more precisely, the
shares of the operands) to be in the order domain, whereas the shares of the result
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are in the normal domain so as to reduce the overall number of table look-ups in a
masked inversion. Since the macro is based on Equation (7.1), it basically performs
four multiplications in Fys and four XOR operations. However, since the operands
are given in the order domain, the multiplications to produce agbg, a1bg, agbi, and
a1b; are simply additions of the orders (i.e. the add instructions from line 3 to 6).
The subsequent 1drb instructions convert the four products from the order domain to
the normal domain through look-ups into the AntiLog table (similar to Listing 7.1,
the register ptALog contains the start address of the table). Finally, the four eor
instructions compute the two shares cg, c¢; of the result ¢ in the normal domain,
whereby register rn holds a random byte.

The 12 instructions of the SECMULT macro have an execution time of 16 clock cycles
when assuming that each 1drb has a latency of two cycles. On the other hand, a
first-order SecMult gadget implemented as described in [GR17; GR17] would carry
out the multiplication in Fes with help of the F2P8MUL macro shown in Listing 7.1,
which has an execution time of 11 cycles. Four executions of F2PS8MUL along with
four eor instructions would result in an overall execution time of 48 cycles. Hence,
the two optimizations we proposed in the last subsection, which eliminate the special
treatment of 0-operands and reduce the overall number of table look-ups, make the
first-order SecMult gadget three times faster compared to the best implementation in
the literature.

In addition to SecMult, a masked inversion in Fes requires a few further gadgets, all
of which perform linear operations and are, therefore, relatively easy to implement.
The most important ones® are those for the masked squaring and 16th-power function;
we call these gadgets SecSquare and SecPow16, respectively. Both have in common
that the two shares of the input are in the normal domain, while the shares of the
output are in the order domain such that they can be directly fed into a subsequent
SecMult gadget. The underlying squaring table has to contain the order of the squares
instead of the actual squares, and this also applies to the 16th-power table. Since
the operations are linear, we can simply perform them on each share separately, i.e.
the corresponding Assembly code consists of just two load instructions. A further
gadget needed by the exponentiation is RefeshMasks, which injects fresh randomness
to the masked representation of a sensitive variable. Finally, we also implemented a
few auxiliary gadgets for such functions like the conversion of operands between the
normal domain and the order domain.

7.4 New Exponentiation-Based Inversion

The exponentiation  — 2% is the main operation of our masking scheme. It is

crucial to find the most efficient way to compute it using the Fos multiplication
technique described in the previous section, that is to say, minimizing the number
table look-ups by minimizing the number of conversions between the normal domain
and the order domain. There are four main operations (“gadgets”) that are used
in a secure exponentiation: SecMult, SecSquare, SecPow16, and RefreshMasks. The
optimal representation for those operations is as follows:

1. RefreshMasks: As mentioned before, this operations injects fresh randomness
into the shares. Since there is no trivial way to do it from the order domain,

8 An efficient implementation of the original exponentiation in Algorithm 27 also needs a gadget
for the 4th-power function, but this is not the case for the new exponentiation we present in the next
section.
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the inputs and the outputs should be in the normal domain.

2. SecMult: Since the first operations in the SecMult algorithm are ordinary mul-
tiplications in Fys, the order domain is preferred for the inputs. Conversely, the
last step is somewhat similar to a mask refreshing and, thus, the outputs are in
the normal domain.

3. SecSquare and SecPowl6: These are the most flexible operations. Since the
tables are pre-computed and the look-ups are performed share by share, there
is no efficiency difference between the two representations and and implementer
is free to chose them for inputs and outputs, but of course the look-up tables
have to be generated accordingly.

Algorithm 28 new_ SecExp254 computation

Input: shares zg,x1,...,zq satisfying x = @g:o T;

Output: shares ey, eq,...,eq satisfying e = @?:0 e; = x>
L (2i)o<i<a < SecSquare((z)o<i<a) // @, 2 = =°
2: (Zi)OSiSd — Refreshl\/lasks((zi)ggigd)
3: (yi)o<ic<d <+ SecMult((z;)o<i<ds (Ti)o<i<d) // B, vi = a* - x = 2*
4: (2i)o<i<d < SecSquare((yi)o<i<a) // B,z = (¢°)? =
5: (Yi)oi<d + SecMult((zi)o<i<d, (zi)o<i<d) // @, yi = 2% - & = 2T
6: (21)o<i<a ¢ SecSquare((yi)o<i<a) // B, 2 = (7)* = 2™
7 (Yi)o<i<d < SecMult((zi)o<i<d, (i)o<i<a) // B,y = a** -z = a'd
8 (yi)o<ica + SecPowlb((yi)o<i<a) // @;yi = (¢'°)'0 = 2?4
9: (ei)o<iza + SecMult((yi)o<i<d, (zi)o<i<d) // @;ei = 2> - a't = 2

In the original Rivain-Prouff exponentiation, the order of operations is such that,
when using our gadgets, some extra conversions between representations would be
needed. For example, at the end of Algorithm 27, the two SecMult operations are
sequential, which means that a conversion from normal to order domain is required
in between. To improve efficiency, we propose a new exponentiation algorithm in
Algorithm 28. In this algorithm, we can see that the four SecMult operations are
separated by SecSquare (resp. SecPow16) operations, which means that, when the
squaring and 16th-power table are pre-computed to output the result in the order
domain, no extra conversions are needed except after the RefreshMasks. Furthermore,
one less RefreshMasks is carried out compared to the original exponentiation, which
saves one byte of randomness and a couple of XORs.

The t-SNI property of our new exponentiation algorithm is out of the scope of this
thesis, and the reader is invited to read the full paper for the proof [San+22].

7.5 Masked AES

In this section we provide a brief description of how we implemented the first-order
masked round transformations of AES128 and report the execution time of each
transformation on a Cortex-M3 microcontroller. Thereafter, we compare our results
with that of some other masked AES implementations for the 32-bit ARM platform.
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7.5.1 Round Transformations

We implemented all four round transformations, including the simple ones like ShiftRows
and AddRoundKey, entirely in Assembly language to exclude the theoretical possibility
that the compiler introduces leakage of sensitive data. Unlike some other implemen-
tations reported in the literature, we did not solely strive for high speed, but tried to
achieve a reasonable trade-off between execution time and (binary) code size. There-
fore, we refrained from certain optimization techniques like full loop-unrolling, which
often produce only modest speed-ups at the expense of an unreasonably large increase
of code size.

SubBytes is, from an implementers perspective, by far the most challenging round
transformation because it has a significant impact on the overall execution time and
is particularly leakage-sensitive due to its non-linear nature. The SubBytes transfor-
mation consists of 16 S-box operations, which, in turn, are composed of inversion in
Fos along with an affine operation. Our masked inversion is based on the exponen-
tiation technique we presented in Section 7.4 and uses (variants of) the optimized
low-level gadgets introduced in Section 7.3. The proposed exponentiation has three
of advantages over the original exponentiation method of Rivain and Prouff. First,
it allows us to better exploit our optimization to reduce the overall number of table
look-ups and is, therefore, faster. Second, it needs only one RefreshMasks gadget
instead of two, thereby reducing the number of random bytes from six to five. Third,
as explained in the last section, it achieves SNI, which is a stronger notion of probing
security that is not met by the original (i.e. flawed) exponentiation algorithm from
[RP10].

Even though our implementation of the masked exponentiation is, in essence, based
on Algorithm 28, there are two aspects that deserve further explanations. First, for
the sake of brevity, Algorithm 28 provides only a high-level description of our expo-
nentiation using the four main gadgets (i.e. SecMult, SecSquare, SecPow16, and Re-
freshMasks), but omits gadgets for auxiliary operations like the conversion of operands
between the normal domain and the order domain. For example, at the very begin-
ning of the exponentiation, the shares x; of the input operand = have to be converted
from the normal domain to the order domain so that they can be fed into the SecMult
gadgets at line 3, 5, and 7. In addition, as explained in the last section, the Refresh-
Masks gadget operates in the normal domain, and therefore its output masks have to
be converted from the normal domain to the order domain because they are used as
input for the first SecMult gadget in line 3. The input of RefreshMasks is the output
of the first SecSquare gadget in line 1, which would normally be given in the order
domain. However, instead of converting the SecSquare output from order domain to
normal domain, we implemented a second SecSquare gadget that operates fully in the
normal domain, i.e. both its inputs and outputs are elements of Fys and not orders.

A second aspect we have not discussed until now concerns the actual implementation
of the gadgets. For reasons of efficiency, the SecMult gadget is “duplicated” and ac-
tually performs two masked multiplications instead of one, which means the SECMULT
macro in Listing 7.2 consists of twice as many add, 1drb, and eor instructions, namely
eight instead of four. The concrete reason why this can be beneficial speed-wise can
be found in the pipeline structure of ARM Cortex-M microcontrollers. Namely, on
certain Cortex models, neighboring load and store instructions can pipeline their
address and data phases, which enables them to execute in a single cycle instead of
two. Therefore, it is potentially beneficial to have sequence of eight 1drb instructions
instead of four. Besides SecMult, we also duplicated the SecSquare and SecPow16
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gadget, which means they always perform two masked squarings and two masked
16th-power operations. This duplications propagate to further up the exponentia-
tion, i.e. we compute the secure exponentiation “pair-wise” on two masked bytes of
the state.

Besides the inversion in Fgs, and S-box operation also involves and affine transfor-
mation, which is a linear operation and can be performed share-by-share using a
256-byte look-up table. At the highest level, our implementation of the first-order
masked SubBytes transformation consists of a simple loop that is iterated eight times
and executes in each iteration a pair of two masked S-box operations (i.e. two inver-
sions followed by two affine transformations). Each first-order masked S-box requires
five bytes of randomness (four for the SecMult gadgets and one for RefreshMasks),
which amounts to 80 random bytes for the complete SubBytes. On our target device,
which is a VL Discovery development board equipped with a STM32F100RBT6B
Cortex-M3 microcontroller clocked at 24 MHz [STM16], the first-order masked Sub-
Bytes transformation has an execution time of 2299 clock cycles. This cycle count
includes the loading of random bytes from an array in RAM, but not the generation
of the random bytes itself.

The other three round transformations are relatively easy to implement since they
consist solely of linear operations and can be performed share-by-share, indepen-
dently from each other. Our implementation of the MixColumns transformation fol-
lows the approach of Bertoni et al [Ber+02], which is very efficient on 32-bit platforms.
The execution time (including full function-call overhead) of our first-order masked
ShiftRows, MixColumns, and AddRoundKey transformation on Cortex-M3 is 37, 133,
and 78 clock cycles, respectively, which is almost negligible in relation to masked
SubBytes. A single round of the masked AES executes in 2552 clock cycles, and the
full masked AES encryption has an execution time of 25413 cycles.

7.5.2 Results and Comparison

We give in Table 7.1 a comparison between our work and the previous implemen-
tations on a similar architecture. It is somewhat hard to make a direct comparison
since even if the platforms are similar, the techniques used for the masking schemes
are quite different and might not offer similar level of security neither in theory nor
in practice.

The most straightforward scheme to compare to is naturally the Rivain-Prouff mask-
ing scheme studied in [GR17] since it is the starting point of our work. We can see
that the techniques described in Sections 7.3 and 7.4 largely improve the masking
scheme as the cycle count is almost divided by two. Besides, our implementation is
significantly more compact with a code size improvement of over 30%. On the affine
masking side, the ANSSI implementation is beaten on both metrics when considering
first order security. The contenders are thus the bitsliced/fixsliced implementations
offering better speed results than ours and that are capable to process two blocks
in parallel. We can firstly observe that their code is larger. However, we should
fairly assume that large implementations were unrolled and that they did not try
optimize this metric. Regarding security, [Gro+19] and [AP20] are reducing to the
bare minimum the amount of randomness required to mask the whole scheme (only
2 bits). While they used a formal verification tool to assess the security in the prob-
ing model, using such an aggressive technique is quite naturally raising concerns for
the practical security of the scheme and would not fit in our theoretical framework.
Also, their technique does not generalize to arbitrary orders. More importantly, all
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the bitsliced /fixsliced schemes are actually leaking according to the recent analysis in
[Bec+22]. This means that all those schemes need to be fixed before proper bench-
marking can be performed. Since it is impossible to tell beforehand how large the
performance penalty incurred by this fix will be, the cycle count reported do not offer
the possibility to compare to our result.

Reference Implementation Exec. time Code size | Theoretical Practical

details (cycles) (kB) security security

[GR17] RP masking | 49,329 (ARMT7) 4.8 Probing unknown
[SS17] Bitsliced 17,500 (M4) 39.9! Probing?  t-test (failed [Bec+22])
[Gro+19] Bitsliced 6,800 (M4) 25.2 Probing t-test (failed [Bec+22])
[AP20] Fixsliced 6,200 (M4) 22 or 42 Probing t-test (failed [Bec+22])
ANSSI (compact) Affine? 53,072 (M4) 5.5 Affine  Attacked ([BS20; MS21])
ANSSI (unrolled) Affine? 29,920 (M4) 25.0 Affine Attacked ([BS20; MS21])

Our work RP masking 25,413 (M3) 3.2 SNI t-test (passed)

TABLE 7.1: Comparison of masked AES implementations for ARM Cortex-M3/M4 mi-
crocontrollers. 'Schwabe et al. size is given for a full AES-CTR implementation, no
size for AES block was given in their paper.? [AP20] indicates 2 versions of similar per-
formances but [Bec+22] does not report which one was used for the benchmarks.® See
[Fum-+10] for a discussion about the security of affine masking.

7.6 Practical Leakage Assessment

As shown in the work by Beckers et al. [Bec+22], there is an important and seldom
explored discrepancy between the theoretical and practical aspects of the security
pertaining masking schemes. Theoretical proofs have their importance, but many
works lack a practical demonstration of their claims.

Taking that into consideration, in this paper we aim to not only have good theoretical
guarantees but also apply a practical test of those guaranties. The leakage assessment
test is not a definitive tool to test and qualify an implementation of a masking scheme.
Nonetheless, such tests are an important sanity test and demonstrate that there are
no obvious mistakes in the masking scheme and its implementation. In this section,
we will briefly talk about the implementation techniques and the TVLA test.

For testing the implementation described in this paper, we have used the general
Test Vector Leakage Assessment (TVLA) test. The general test compares power
measurements on a device with a fixed key, across datasets with random and fixed
plaintext. To evaluate the leakage, the two datasets are compared for significant
statistical differences using Welch’s t-test.

Welch’s t-test, comparing the measured traces from two subsets, F' and R is done by
computing: X g and Xpg, which is the average of all traces in each subset; and S and
SRr, as the sample standard deviation of all traces in each subset. Given that each
measured trace is a vector of measured values across time, the average and standard
deviation are also vectors over time. The t-value is then computed point-wise as:

Xrp—Xgr
52, 5%
Ny T Ng

Welch’s t-test returns a threshold, expressed as standard deviations, that corresponds
to the confidence that the difference between the two sets is not a random event. It
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FIGURE 7.1: Graph showing the t-test result of the masked implementation. In lighter
color, the normal execution, showing that the results stay within the +4.50 boundary. In
a darker color, the same experiment, but with one of the masks set to zero.

is usual to set this confidence value, in the context of leakage assessment, to 4.5
standard deviations —equivalent to 99.999% confidence. Furthermore, the test should
be run twice on independent datasets, and if a point in both tests exceeds the +4.50,
the device is leaking data-related information.

For the test platform, we have used a ChipWhisperer-Lite 32-Bit, produced by NewAE
Technology Inc. This is a single-board solution, fully open source side-channel (and
power analysis and glitching) platform. The device features an integrated STM32F303
32-bit Arm Cortex M4 target and a 10-bit OpenADC scope. The CW-Lite was chosen
due to its ease of use and low price point, together with the fact that it is bundled
to a relevant target. Our tests were executed on the default build configuration for
the ChipWhisperer, which sets the target’s flash latency to zero. This eliminates
waitstates, which might cause code-layout dependant behaviors.

One limitation of the ChipWhisperer-lite platform is the size of the scope buffer, being
capable of measuring spans of around 5000 cycles in our tests (which corresponds to
a bit more than two full AES rounds). This fact makes it more difficult to generate
a measurement vector for a full round AES. On the other hand, due to the round
structure of the cipher, measuring a full round should be enough demonstration of the
behavior of the masked implementation, as long as it, as well, has a round structure.

The results of the TVLA test of our implementation are shown in Figure 7.1. Our
implementation stays within the set boundaries of +4.50, and shows leakage when
one of the masks is set to zero. Notice that the y-axis is cropped, and the zero-
mask, in some points, show a confidence in excess of 1000. The experiment consists
of 5000 pairs of power traces. It is not to say that our implementation is without
shortcomings. Our implementation is optimized for first-order masking: our method
can work for higher-order masking, but it is not trivial to implement, as special care
will need to be taken with register allocation, for example.
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Limitations of our Implementation. Our prototype implementation of the im-
proved RP masking scheme serves mainly two purposes, namely (i) to evaluate the
execution time so that we can demonstrate a significant speed-up compared to the
work of Goudarzi and Rivain [GR17], and (ii) to be able to assess the security of our
masking scheme in the real world by carrying out a t-test-based leakage evaluation.
Even though the t-test confirms that our implementation is sound —in the sense that
it does not contain an obvious flaw—, it still suffers from two shortcomings. First, our
current implementation only supports first-order masking, which means it will most
likely succumb under a second-order DPA, where an attacker tries to combine the
leakages resulting from the manipulation of the two shares. However, we emphasize
that the vulnerability to second-order DPA is not related to the optimizations we
introduced in this paper since, in principle, any first-order masking scheme succumbs
to a second-order DPA if the attacker is able to collect a sufficiently large number of
traces. Hence, it is very likely that our masked AES implementation can be broken
through a second-order DPA attack. However, we plan to tackle this issue together
with the second shortcoming described below as part of our future work.

The second shortcoming of our current implementation is that we did not attempt
to reduce or eliminate so-called micro-architectural leakages, which can be broadly
defined as leakages introduced by certain micro-architectural effects and/or features
like pipelining. It has been shown that, for example, the pipeline registers can cause a
violation of the fundamental assumption that the processed shares leak separately and
independently from each other so that there is no combined leakage. Even if a masking
scheme has been correctly implemented, it can still leak secret information because
of the micro-architecture, as was demonstrated in e.g. [CGD18; MMT20; MPW22;
GOP21]. The literature contains a few techniques to reduce micro-architectural leak-
age, but getting fully rid of it requires detailed information about the concrete im-
plementation of the micro-architecture; in the ideal case the HDL description of the
target processor is available. Unfortunately, since the STM32F100RBT6B Cortex-
M3 is a proprietary microcontroller, its HDL description is not publicly available. In
our future work, we will therefore switch our target platform from ARM to RISC-
V and we plan to develop first and higher-order masked AES implementations with
countermeasures against micro-architectural leakages.

7.7 Conclusions

The masking scheme of Rivain and Prouff, introduced roughly 12 years ago, has at-
tracted a lot of interest in the cryptographic research community because it stands on
a solid theoretical foundation and supports arbitrary masking orders. Unfortunately,
it has turned out that these features come at the expense of relatively poor per-
formance; for example, currently the best implementation of a first-order protected
AES has an execution time of almost 50,000 clock cycles on a 32-bit ARM microcon-
troller, which is prohibitively expensive for many applications. We demonstrated in
this paper that the masking scheme of Rivain and Prouff can be made much faster,
namely by almost a factor of two in comparison with the, to this date, best imple-
mentation in the literature. We achieved this speed-up by (i) an optimization of the
multiplication in Fys that allows one to overcome the special treatment of O-operands
and avoid branch-and-compare instructions, and (ii) a new exponentiation technique
that reduces the overall number of table look-ups. Our masking scheme is not only
(almost) twice as fast as the original Rivain-Prouff scheme, it also satisfies strong non-
interference, which is a stronger notion of probing security. In addition, our masked
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AES does not rely solely on theoretical security properties since we performed a test-
vector-based leakage evaluation as a “sanity test” to confirm our implementation is
not flawed. As part of our future work, we plan to develop higher-order masked AES
implementations for the RISC-V platform with integrated countermeasures against
micro-architectural leakages.
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