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Abstract. We introduce the Sparkle family of permutations operating on 256, 384
and 512 bits. These are combined with the Beetle mode to construct a family of
authenticated ciphers, Schwaemm, with security levels ranging from 120 to 250 bits.
We also use them to build new sponge-based hash functions, Esch256 and Esch384.
Our permutations are among those with the lowest footprint in software, without
sacrificing throughput. These properties are allowed by our use of an ARX component
(the Alzette S-box) as well as a carefully chosen number of rounds. The corresponding
analysis is enabled by the long trail strategy which gives us the tools we need to
efficiently bound the probability of all the differential and linear trails for an arbitrary
number of rounds. We also present a new application of this approach where the only
trails considered are those mapping the rate to the outer part of the internal state,
such trails being the only relevant trails for instance in a differential collision attack.
To further decrease the number of rounds without compromising security, we modify
the message injection in the classical sponge construction to break the alignment
between the rate and our S-box layer.
Keywords: SPARKLE · NIST · Authenticated Encryption · Hash functions ·
Lightweight Cryptography · Long Trail Strategy

1 Introduction
With the advent of the Internet of Things (IoT), a myriad of devices are being connected
to one another in order to exchange information. This information has to be secured.
Symmetric cryptography can ensure that the data those devices share remains confidential,
that it is properly authenticated and that it has not been tampered with.

As such objects have little computing power—and even less that is dedicated to
information security—the cost of the algorithms ensuring these properties has to be as
low as possible. To answer this need, the National Institute of Standards and Technology
(NIST) has called for the design of authenticated ciphers and hash functions providing a
sufficient security level at as small an implementation cost as possible.

We present a suite of algorithms that answer this call. All our algorithms are built
using the same core, namely the Sparkle family of permutations. The authenticated
ciphers, Schwaemm, provide confidentiality of the plaintext as well as both integrity
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and authentication for the plaintext and for additional public associated data. The hash
functions, Esch, are (second) preimage and collision resistant. Our aim for our algorithms
is to use as little CPU cycles as possible to perform their task while retaining strong
security guarantees and a small implementation size. This speed will allow devices to use
much fewer CPU cycles than what is currently needed to ensure the protection of their
data. To give one of many very concrete applications of this gain, the energy demanded
by cryptography for a battery-powered microcontroller will be decreased.

In summary, our goal is to provide fast software encryption for all platforms.

1.1 Our Contribution
In this work, we present the ARX-based cryptographic permutation family Sparkle.
Using that, we specify the cryptographic hash function family Esch and the authenticated
encryption scheme Schwaemm.

Together with the specification of the algorithms (Section 2), we provide a detailed
design rationale that explains the choice of the overall structure and its internal components
(Section 3). Further, we provide a detailed analysis of the security of our schemes with
regard to state-of-the art attacks, in particular differential and linear attacks (Section 4).
We further provide details on how the algorithms allow for optimized implementations
(Section 5).

One of the main innovations that comes with the design is an application of the long
trail strategy (LTS) that allows to give bounds on the security against differential and
linear attacks when employing the permutation in a sponge-based construction. In contrast
to many other sponge-based designs, this approach allows for a sound estimation on the
number of rounds needed in the permutation. Therefore, our algorithms could be designed
with tighter security margins, leading to higher throughputs. We also introduce two simple
modifications to the sponge construction which allow us to cheaply increase our security
margin: indirect injection (used when hashing) and rate whitening (used in AEAD). Both
could be of independent interest.

In the following, we provide some details about the specified algorithms and list their
main features with regard to security and efficiency.

Sparkle is closely related to the block cipher Sparx [DPU+16]. We provide three versions
corresponding to three block sizes, i.e., Sparkle256, Sparkle384, and Sparkle512. The
number of steps used varies with the use case as our design approach is not hermetic.

Esch and Schwaemm are both cryptographic algorithms that were designed to be
lightweight in software (i.e., to have small code size and low RAM footprint) and still
reach high performance on a wide range of 8, 16, and 32-bit microcontrollers. Esch
and Schwaemm can also be well optimized to achieve small silicon area and low power
consumption when implemented in hardware. Our schemes are built from well-understood
principles, i.e., the sponge (resp. duplex-sponge) construction based on a cryptographic
permutation.

We provide two instances of the hash function Esch (i.e., Esch256 which produces
a 256-bit digest, offering a security level of 128 bits, and Esch384 which produces a
384-bit digest and offers a security level of 192 bits). These serve as the basis for two
Extendable-Output Functions (XOFs): XOEsch256 and XOEsch384.

A scheme for authenticated encryption with associated data (AEAD) takes a key
and a nonce of fixed length, as well as a message and associated data of arbitrary size.
The encryption procedure outputs a ciphertext of the message as well as a fixed-size
authentication tag. The decryption procedure takes the key, nonce, associated data and
the ciphertext and tag as input and outputs the decrypted message if the tag is valid,
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otherwise a symbolic error ⊥. An AEAD scheme should fulfill the security notions of
confidentiality and integrity. Users must not reuse nonces for processing messages in a
fixed-key instance.

The main instance of Schwaemm is Schwaemm256-128 which takes a 256-bit nonce,
a 128-bit key and outputs a 128-bit authentication tag. It achieves a security level of 120
bits with regard to confidentiality and integrity. We further provide three other instances,
i.e., Schwaemm128-128, Schwaemm192-192, and Schwaemm256-256 which differ in the
length of key, nonce and tag and in the achieved security level.

1.2 Key Features
High Efficiency. Both Schwaemm and Esch are characterized by a relatively small state
size, which is only 256 bits for the most lightweight instance of Schwaemm and 384 bits
for the lightest variant of Esch. Having a small state is an important asset for lightweight
cryptosystems for several reasons. First and foremost, the size of the state determines to
a large extent the RAM consumption (in the case of software implementation) and the
silicon area (when implemented in hardware) of a symmetric algorithm. In particular,
software implementations for 8 and 16-bit microcontrollers with little register space (e.g.,
Atmel AVR or TI MSP430) can profit significantly from a small state size since it allows a
large fraction of the state to reside in registers, which reduces the number of load and store
operations. On 32-bit microcontrollers (e.g., ARM Cortex-M series) it is even possible to
keep a full 256-bit state in registers, thereby eliminating almost all loads and stores. The
ability to hold the whole state in registers does not only benefit execution time, but also
provides some intrinsic protection against side-channel attacks [BDG16]. Finally, since
Schwaemm and Esch consist of very simple arithmetic/logical operations (which are
cheap in hardware), the overall silicon area of a standard-cell implementation is primarily
determined by storage required for the state.

The Sparkle permutation is a classical ARX design and performs additions, rota-
tions, and XOR operations on 32-bit words. Using a word-size of 32 bits enables high
efficiency in software on 8, 16, and 32-bit platforms; smaller word-sizes (e.g., 16 bits)
would compromise performance on 32-bit platforms, whereas 64-bit words are problematic
for 8-bit microcontrollers [CDG19]. The rotation amounts (16, 17, 24, and 31 bits) have
been carefully chosen to minimize the execution time and code size on microcontrollers
that support only rotations by one bit at a time (see [BBdS+19]). An implementation of
Sparkle for ARM microcontrollers can exploit their ability to combine an addition or
XOR with a rotation into a single instruction with a latency of one clock cycle. On the
other hand, a small-area hardware implementation can take advantage of the fact that
only six arithmetic/logical operations need to be supported: 32-bit XOR, addition modulo
232, and rotations by 16, 17, 24, and 31 bits. A minimalist 32-bit Arithmetic/Logic Unit
(ALU) for these six operations can be well optimized to achieve small silicon area and low
power consumption.

Schwaemm and Esch were designed to be consistent across security levels, which
facilitates a parameterized software implementation of the algorithms and the underlying
permutation. All instances of Schwaemm and Esch can use a single implementation of
Sparkle that is parameterized with respect to the block (i.e., state) size and the number
of steps. Such a parameterized implementation reduces the software development effort
significantly since only a single function for Sparkle needs to be implemented and tested.

The performance of Schwaemm and Esch on processor platforms with vector engines
(e.g., ARM NEON, Intel SSE/AVX) can be significantly increased by taking advantage of
the SIMD-level parallelism they provide, which is possible since all 32-bit words of the
state perform the same operations in the same order. Hardware implementations can trade
performance for silicon area by instantiating several 32-bit ALUs that work in parallel.
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High Security. We have not traded security for efficiency. Our detailed security analysis
finds that our algorithms are safe from all attacks we are aware of with a comfortable
security margin. Overall, the security levels our primitives provide are on par with those
of modern symmetric algorithms but their cost is lower. The security of our schemes is
based on the security of the underlying cryptographic permutations and the security of
sponge-based modes, more precisely the sponge-based hashing mode and the Beetle
mode for authenticated encryption.1

The design of the Sparkle family of permutations is based on an SPN structure which
allows us to decompose its analysis into two stages: first the study of its substitution layer,
and, second, the study of its linear layer. The latter combines the Feistel structure and
a linear permutation with a high (differential and linear) branch number. To combine
these two types of subcomponents, we rely on the design strategy that was used for the
block cipher Sparx: the LTS. Our substitution layer operates on 64-bit branches using
ARX-based S-boxes. The fact that the block size of the ARX component (the ARX-box,
named Alzette [BBdS+19]2) is limited to 64 bits means that it is possible to investigate it
thoroughly using computer assisted methods. The simplicity and particular shape of the
linear layer then allows us to deduce the properties of the full permutation from those of
the 64-bit ARX-box.

When using a permutation in a mode of operation, two approaches are possible. We can
use a “hermetic” approach (see [BDPVA11, Section 8.1.1]), meaning that no distinguishers
are known to exist against the permutation. This security then carries over directly to the
whole function (e.g. to the whole hash function or AEAD scheme). The downside in this
case is that this hermetic strategy requires an expensive permutation which, in the context
of lightweight cryptography, may be too much. At the opposite, we can use a permutation
which, on its own, cannot provide the properties needed. The security is then provided
by the coupling of the permutation and the mode of operation in which it is used. For
example, the recently announced winner of the CAESAR competition Ascon [DEMS16]
and the third-round CAESAR candidate Ketje [BDP+16], both authenticated ciphers,
use such an approach. The advantage in this case is a much higher efficiency as we need
fewer rounds of the permutation. However, the security guarantees are a priori weaker in
this case as it is harder to estimate the strength needed by the permutation. It is necessary
to carefully assess the security of the specific permutation used with the knowledge of the
mode of operation it is intended for.

We use the latter approach: the permutation used has a number of rounds that may
allow the existence of some distinguishers (in the sense that we do not claim that the
permutation behaves like one would expect from a randomly-drawn permutation). However,
using a novel application of the LTS, we are able to prove that our algorithms are safe with
regard to the most important attack vectors (differential attacks, i.e., the method used
to break SHA-1 [SBK+17], and linear attacks) with a comfortable security margin. We
thus get the best of both worlds: we do not have the performance penalty of a hermetic
approach but still obtain security guarantees similar to those of a hermetic design.

2 Specification
We make no distinction between the sets F𝑎+𝑏

2 and F𝑎
2 × F𝑏

2 and interpret those to be the
same. However, we write elements of the second as tuples, while the members of the first
set are bit strings corresponding to the concatenation of the two elements in the tuple.
The empty bitstring is denoted 𝜖. The byte order are assumed to be little-endian.

1The advantage of the Beetle mode compared to a simple duplexed sponge is that it allows us to use
a small internal state together with a high rate to ensure integrity security without a birthday-bound
restriction on the number of forgery attempts (decryption queries) by the adversary.

2Alzette is pronounced [alzEt].
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The specification of the Sparkle permutation and of its various instances is given in
Section 2.1. We use these permutations to specify the hash functions Esch in Section 2.2
and the authenticated ciphers Schwaemm in Section 2.4.

We use “+” to denote the addition modulo 232 and ⊕ to denote the XOR of two
bitstrings of the same size.

2.1 The Sparkle Permutations
The Sparkle family consists of the permutations Sparkle256𝑛𝑠

, Sparkle384𝑛𝑠
and

Sparkle512𝑛𝑠
with block sizes of 256, 384, and 512 bit, respectively. The parameter 𝑛𝑠

refers to the number of steps and a permutation can be defined for any 𝑛𝑠 ∈ N. The
permutations are built using the following main components:

• The ARX-box Alzette [BBdS+19] (denoted 𝐴), i.e., a 64-bit block cipher with a 32-bit
key

𝐴 : (F32
2 × F32

2 )× F32
2 → (F32

2 × F32
2 ), ((𝑥, 𝑦), 𝑐) ↦→ (𝑢, 𝑣) .

We define 𝐴𝑐 to be the permutation (𝑥, 𝑦) ↦→ 𝐴(𝑥, 𝑦, 𝑐) from F32
2 × F32

2 to F32
2 × F32

2 .

• A linear diffusion layer ℒ𝑛𝑏
: F64𝑛𝑏

2 → F64𝑛𝑏
2 , where 𝑛𝑏 denotes the number of 64-bit

branches, i.e., the block size divided by 64. It is necessary that 𝑛𝑏 is even.

Algorithm 1 Sparkle256𝑛𝑠

In/Out:
(︀
(𝑥0, 𝑦0), ..., (𝑥3, 𝑦3)

)︀
, 𝑥𝑖, 𝑦𝑖 ∈ F32

2

(𝑐0, 𝑐1)← (0xB7E15162,0xBF715880)
(𝑐2, 𝑐3)← (0x38B4DA56,0x324E7738)
(𝑐4, 𝑐5)← (0xBB1185EB,0x4F7C7B57)
(𝑐6, 𝑐7)← (0xCFBFA1C8,0xC2B3293D)
for all 𝑠 ∈ [0, 𝑛𝑠 − 1] do

𝑦0 ← 𝑦0 ⊕ 𝑐(𝑠 mod 8)
𝑦1 ← 𝑦1 ⊕ (𝑠 mod 232)
for all 𝑖 ∈ [0, 3] do

(𝑥𝑖, 𝑦𝑖)← 𝐴𝑐𝑖 (𝑥𝑖, 𝑦𝑖)
end for(︀

(𝑥0, 𝑦0), ..., (𝑥3, 𝑦3)
)︀
← ℒ4

(︀
(𝑥0, 𝑦0), ..., (𝑥3, 𝑦3)

)︀
end for
return

(︀
(𝑥0, 𝑦0), ..., (𝑥3, 𝑦3)

)︀

The high-level structure of the
permutations is given in Algorithms 1
(in this section), 9 and 10 (in
Appendix A). It is a classical
Substitution-Permutation Network
(SPN) construction except that func-
tions playing the role of the S-boxes
are different in each branch. More
specifically, each member of the fam-
ily iterates a parallel application
of Alzette under different, branch-
dependent, constants 𝑐𝑖. This small
64-bit block cipher is specified in Sec-
tion 2.1.1. It is followed by an appli-
cation of ℒ𝑛𝑏

, a linear permutation
operating on all branches; it is spec-
ified in Section 2.1.2. We call such a
parallel application of Alzette followed by the linear layer a step. The high-level structure
of a step is represented in Figure 1. Before each step, a sparse step-dependent constant is
XORed to the cipher’s state (i.e., to 𝑦0 and 𝑦1).

A self-contained C implementation of the Sparkle permutation, parameterized by the
number of branches 𝑛𝑏 and the number of steps 𝑛𝑠, can be found in Appendix C. In what
follows, we rely on the definition given below to simplify our descriptions.

Definition 1 (Left/Right branches). We call left branches those that correspond to
the state inputs (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛𝑏/2−1, 𝑦𝑛𝑏/2−1), and we call right branches those
corresponding to (𝑥𝑛𝑏/2, 𝑦𝑛𝑏/2), . . . , (𝑥𝑛𝑏−2, 𝑦𝑛𝑏−2), (𝑥𝑛𝑏−1, 𝑦𝑛𝑏−1).

Specific Instances. The Sparkle permutations are defined for 4,6 and 8 branches and
for any number of steps. Unlike in other sponge algorithms such as, e.g., SHA-3, we use
two versions of the permutations which differ only by the number of steps used. More
precisely, we use a slim and a big instance. Our motivation for this difference is given in
Section 3.5. The slim and big versions of all Sparkle instances are given in Table 1.



Beierle, Biryukov, Cardoso dos Santos, Großschädl, Perrin, Udovenko, Velichkov, Wang 213

z0 z1 z2 ... zhb−1 zhb
zhb+1 zhb+2 ... znb−1

Ac0 Ac1 Ac2 Achb−1
Achb

Achb+1
Achb+2

Acnb−1

Mhb

⊕ ⊕ ⊕
⊕

... ...

Lnb

Figure 1: The overall structure of a step of Sparkle. 𝑧𝑖 denotes the 64-bit input (𝑥𝑖, 𝑦𝑖).

2.1.1 The ARX-box Alzette

Table 1: The versions of each Sparkle instance.
Name 𝑛 # steps slim # steps big

Sparkle256 256 7 10
Sparkle384 384 7 11
Sparkle512 512 8 12

Alzette, shortly denoted 𝐴, is a 64-
bit block cipher which we presented
in [BBdS+19]. It is specified in Algo-
rithm 2 and depicted in Figure 2. It
can be understood as a four-round iter-
ated block cipher for which the rounds
differ in the rotation amounts. After
each round, the 32-bit constant (i.e., the key) is XORed to the left word. Note that, as
Alzette has a simple Feistel-like structure, the computation of the inverse is straightforward.

Its purpose is to provide non-linearity to the whole permutation and to ensure a quick
diffusion within each branch—the diffusion between the branches being ensured by the
linear layer (Section 2.1.2). Its round constants ensure that the computations in each
branch are independent from one another to break the symmetry of the permutation
structure we chose. As the rounds themselves are different (because of different rotation
amounts), we do not rely on the round constant to provide independence between the
rounds of Alzette.

Algorithm 2 𝐴𝑐

Input/Output: (𝑥, 𝑦) ∈ F32
2 × F32

2

𝑥← 𝑥 + (𝑦 ≫ 31)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 24)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥 + (𝑦 ≫ 17)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 17)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥 + (𝑦 ≫ 0)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 31)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥 + (𝑦 ≫ 24)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 16)
𝑥← 𝑥⊕ 𝑐
return (𝑥, 𝑦)

≫ 31

≫ 24

≫ 17

≫ 17

≫ 0

≫ 31

≫ 24

≫ 16

x y

u v

c

c

c

c

Figure 2: The Alzette instance 𝐴𝑐.
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2.1.2 The Diffusion Layer

The diffusion layer has a structure which draws heavily from the one used in Sparx-
128 [DPU+16]. We denote it ℒ𝑛𝑏

. It is a Feistel round with a linear Feistel function ℳℎ𝑏

which permutes
(︀
F64

2
)︀ℎ𝑏 , where ℎ𝑏 = 𝑛𝑏

2 . More formally, ℳℎ𝑏
is defined as follows.

Definition 2. Let 𝑤 > 1 be an integer. We denote ℳ𝑤 the permutation of (F32
2 )𝑤 such

that
ℳ𝑤

(︀
(𝑥0, 𝑦0), . . . , (𝑥𝑤−1, 𝑦𝑤−1)

)︀
=
(︀
(𝑢0, 𝑣0), . . . , (𝑢𝑤−1, 𝑣𝑤−1)

)︀
where each branch (𝑢𝑖, 𝑣𝑖) is obtained via the following equations

𝑢𝑖 ← 𝑥𝑖 ⊕ ℓ

(︃
𝑤−1⨁︁
𝑖=0

𝑦𝑖

)︃
, 𝑣𝑖 ← 𝑦𝑖 ⊕ ℓ

(︃
𝑤−1⨁︁
𝑖=0

𝑥𝑖

)︃
, (1)

where the indices are understood modulo 𝑤, and where ℓ : F32
2 → F32

2 is a permutation
defined by

ℓ(𝑥) = (𝑥 ≪ 16)⊕ (𝑥&0xffff) ,

where 𝑥&𝑦 is a C-style notation denoting the bitwise AND of 𝑥 and 𝑦. Note in particular
that, if 𝑦 and 𝑧 are in F16

2 so that 𝑦||𝑧 ∈ F32
2 , then

ℓ(𝑦||𝑧) = 𝑧||(𝑦 ⊕ 𝑧) .

The diffusion layer ℒ𝑛𝑏
then applies the corresponding Feistel functionℳℎ𝑏

and swaps
the left branches with the right branches. However, before the branches are swapped, we
rotate the branches on the right side by 1 branch to the left. This process is pictured in
Figure 1. Algorithms describing the three diffusion layers used in our permutations are
given in Algorithms 11, 12 and 13.

2.2 The Hash Functions Esch256 and Esch384
We propose two instances for hashing, i.e., Esch256 and Esch384, which allow to process
messages 𝑀 ∈ F*

2 of arbitrary length3 and output a digest 𝐷 of bitlengths 256, and 384,
respectively. They employ the well-known sponge construction, which is instantiated with
Sparkle permutations and parameterized by the rate 𝑟 and the capacity 𝑐. The slim
version is used during both absorption and squeezing. The big one is used in between
the two phases. Table 2 gives an overview of the parameters used in the corresponding
sponges. The maximum length is chosen as 𝑟 × 2𝑐/2 bits, where 𝑐 is both the capacity and
the digest size.

In both Esch256 and Esch384, the rate 𝑟 is fixed to 128. This means that the message
𝑀 has to be padded such that its length in bit becomes a multiple of 128. For this, we use
the simple padding rule that appends 10*. It is formalized in Algorithm 3 which describes
how a block with length strictly smaller that 𝑟 is turned into a block of length 𝑟.

The different digest sizes and the corresponding security levels are obtained using dif-
ferent permutation sizes in the sponge, i.e., Sparkle3847 and Sparkle38411 for Esch256
and Sparkle5128 and Sparkle51212 for Esch384. The algorithms are formally specified
in Algorithm 4 and 14 and Esch256 is depicted in Figure 3. Note that the 128 bits of
message blocks are injected indirectly, i.e., they are first padded with zeros and transformed
via ℳ3 in Esch256, resp., ℳ4 in Esch384, and the resulting image is XORed to the
leftmost branches of the state. We stress that this tweak can still be expressed in the
regular sponge mode. Instead of injecting the messages through ℳℎ𝑏

, one can use an
equivalent representation in which the message is injected as usual and the permutation is
defined by prepending ℳℎ𝑏

and appending ℳ−1
ℎ𝑏

to Sparkle𝑛𝑏
.

3More rigorously, all bitlengths under a given (very large) threshold are supported.
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Table 2: The hashing instances with their security level in bit with regard to collision
resistance and (second) preimage resistance and the limitation on the message size in bytes.
For the security levels of the XOFs, we assume that 𝑡 is smaller than the allowed data
limit.

𝑛 𝑟 𝑐 collision 2nd preimage preimage data limit

Esch256 384 128 256 128 128 128 2132

Esch384 512 128 384 192 192 192 2196

XOEsch256 384 128 256 min{128, 𝑡
2} min{128, 𝑡} min{128, 𝑡} 2132

XOEsch384 512 128 384 min{192, 𝑡
2} min{192, 𝑡} min{192, 𝑡} 2196

Algorithm 3 pad𝑟

Input/Output: 𝑀 ∈ F*
2, with |𝑀 | < 𝑟

𝑖← (−|𝑀 | − 1) mod 𝑟
𝑀 ←𝑀‖1‖0𝑖

return 𝑀

For generating the digest, we use the simple
truncation function trunc𝑡 which returns the 𝑡
leftmost bits of the internal state.

A message with a length that is a multiple
of 𝑟 is not padded. To prevent trivial collisions,
we borrow the technique introduced in [Hir16]
and xor ConstM in the capacity, where ConstM
is different depending on whether the message
was padded or not.
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Figure 3: Esch256 with rate 𝑟 = 128 and capacity 𝑐 = 256. The constant 𝑐𝑀 is equal to
(0, 0, . . . , 0, 1) ∈ F192

2 if the last block was padded and (0, 0, . . . , 0, 1, 0) ∈ F192
2 otherwise.

2.3 The Extendable-Output Functions XOEsch256 and XOEsch384

The hash functions Esch256 and Esch384 can easily be adapted to provide outputs of
arbitrary length. We define the extendable-output functions (XOFs) XOEsch256 and
XOEsch384, which are very similar to their hashing counterparts. Besides that other
values for the constants ConstM are used in order to separate between the different use-cases,
the only difference is that the XOFs obtain an additional input parameter 𝑡 which defines
the size of the output string. The squeezing phase is extended in order to provide the
output of the required length. XOEsch256 and XOEsch384 are formally described in
Algorithms 5 and 15, respectively. The parameters and security levels are given in Table 2.
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Algorithm 4 Esch256
Input: 𝑀 ∈ F*

2 Output: 𝐷 ∈ F256
2

◁ Padding the message
if 𝑀 ̸= 𝜖 then

𝑃0‖𝑃1‖ . . . ‖𝑃ℓ−1 ←𝑀
with ∀𝑖<ℓ−1: |𝑃𝑖|=128 and 1≤|𝑃ℓ−1|≤128
else

ℓ← 1
𝑃0 ← 𝜖

end if
if |𝑃ℓ−1| < 128 then

𝑃ℓ−1 ← pad128(𝑃ℓ−1)
ConstM ← (1≪ 192)

else
ConstM ← (2≪ 192)

end if
◁ Absorption

𝑆 ← 0 ∈ F384
2

for all 𝑗 = 0, . . . , ℓ− 2 do
𝑃 ′

𝑗 ←ℳ3(𝑃𝑗‖064)
𝑆←Sparkle3847

(︀
𝑆 ⊕ (𝑃 ′

𝑗‖0
192)
)︀

end for
𝑃 ′

ℓ−1 ←ℳ3(𝑃ℓ−1‖064)
𝑆←Sparkle38411

(︀
𝑆⊕ (𝑃 ′

ℓ−1‖0
192)⊕ConstM

)︀
◁ Squeezing

𝐷0 ← trunc128(𝑆)
𝑆 ← Sparkle3847

(︀
𝑆
)︀

𝐷1 ← trunc128(𝑆)
return 𝐷0‖𝐷1

Algorithm 5 XOEsch256
Input: 𝑀 ∈ F*

2, 𝑡 ∈ N Output: 𝐷 ∈ F𝑡
2

◁ Padding the message
if 𝑀 ̸= 𝜖 then

𝑃0‖𝑃1‖ . . . ‖𝑃ℓ−1 ←𝑀
with ∀𝑖<ℓ−1: |𝑃𝑖|=128 and 1≤|𝑃ℓ−1|≤128
else

ℓ← 1
𝑃0 ← 𝜖

end if
if |𝑃ℓ−1| < 128 then

𝑃ℓ−1 ← pad128(𝑃ℓ−1)
ConstM ← (1≪ 192)⊕ (4≪ 192)

else
ConstM ← (2≪ 192)⊕ (4≪ 192)

end if
◁ Absorption

𝑆 ← 0 ∈ F384
2

for all 𝑗 = 0, . . . , ℓ− 2 do
𝑃 ′

𝑗 ←ℳ3(𝑃𝑗‖064)
𝑆←Sparkle3847

(︀
𝑆 ⊕ (𝑃 ′

𝑗‖0
192)
)︀

end for
𝑃 ′

ℓ−1 ←ℳ3(𝑃ℓ−1‖064)
𝑆←Sparkle38411

(︀
𝑆⊕ (𝑃 ′

ℓ−1‖0
192)⊕ConstM

)︀
◁ Squeezing

𝐷0 ← trunc128(𝑆)
for all 𝑗 = 1, . . . , ⌈𝑡/128⌉ − 1 do

𝑆 ← Sparkle3847
(︀

𝑆
)︀

𝐷𝑗 ← trunc128(𝑆)
end for
return trunc𝑡(𝐷0‖𝐷1‖ . . . ‖𝐷⌈𝑡/128⌉−1)

2.4 The Authenticated Cipher Family Schwaemm
We propose four instances for AEAD, i.e. Schwaemm128-128, Schwaemm256-128,
Schwaemm192-192 and Schwaemm256-256 which, for a given key 𝐾 and nonce 𝑁
allow to process associated data 𝐴 and messages 𝑀 of arbitrary length4 and output a
ciphertext 𝐶 with |𝐶| = |𝑀 | and an authentication tag 𝑇 . For given (𝐾, 𝑁, 𝐴, 𝐶, 𝑇 ), the
decryption procedure returns the decryption 𝑀 of 𝐶 if the tag 𝑇 is valid, otherwise it
returns the error symbol ⊥. All instances use (a slight variation of) the Beetle mode
of operation presented in [CDNY18], which is based on the well-known SpongeWrap
AEAD mode [BDPA11]. The differences between the instances are the version of the
underlying Sparkle permutation (and thus the rate and the capacity is different) and
the size of the tag. As a naming convention, we used Schwaemmr-c, where 𝑟 refers to
the size of the rate and 𝑐 to the size of the capacity in bits. We use the big version of
Sparkle for initialization, separation between processing of associated data and secret
message, and finalization, and the slim version of Sparkle for updating the intermediate
state otherwise. Table 3 gives an overview of the parameters of the Schwaemm instances.
The data limits correspond to 264 blocks of 𝑟 bits rounded up to the closest power of two,
except for the high security Schwaemm256-256 for which it is 𝑟 × 2128 bits.

The main difference between the Beetle mode and duplexed sponge modes is the
usage of a combined feedback 𝜌 to differentiate the ciphertext blocks and the outer part of
the states. This combined feedback is created by applying the function FeistelSwap to the

4As for the hash function, the length can be chosen arbitrarily but it has do be under thresholds that
are given in Table 3.
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Table 3: The AEAD instances with their (joint) security level in bit with regard to
confidentiality and integrity and the limitation in the data to be processed.

𝑛 𝑟 𝑐 |𝐾| |𝑁 | |𝑇 | security data limit (bytes)
Schwaemm256-128 384 256 128 128 256 128 120 268

Schwaemm192-192 384 192 192 192 192 192 184 268

Schwaemm128-128 256 128 128 128 128 128 120 268

Schwaemm256-256 512 256 256 256 256 256 248 2133

outer part of the state, which is computed as

FeistelSwap(𝑆) = 𝑆2‖(𝑆2 ⊕ 𝑆1) ,

where 𝑆 ∈ F𝑟
2 and 𝑆1‖𝑆2 = 𝑆 with |𝑆1| = |𝑆2| = 𝑟

2 . The feedback function 𝜌 : (F𝑟
2 × F𝑟

2)→
(F𝑟

2 × F𝑟
2) is defined as 𝜌(𝑆, 𝐷) = (𝜌1(𝑆, 𝐷), 𝜌2(𝑆, 𝐷)), where

𝜌1 : (𝑆, 𝐷) ↦→ FeistelSwap(𝑆)⊕𝐷, 𝜌2 : (𝑆, 𝐷) ↦→ 𝑆 ⊕𝐷 .

For decryption, we have to use the inverse feedback function 𝜌′ : (F𝑟
2 × F𝑟

2)→ (F𝑟
2 × F𝑟

2)
defined as 𝜌′(𝑆, 𝐷) = (𝜌′

1(𝑆, 𝐷), 𝜌′
2(𝑆, 𝐷)), where

𝜌′
1 : (𝑆, 𝐷) ↦→ FeistelSwap(𝑆)⊕ 𝑆 ⊕𝐷, 𝜌′

2 : (𝑆, 𝐷) ↦→ 𝑆 ⊕𝐷 .

After each application of 𝜌 and the additions of the domain separation constants, i.e.,
before each call to the Sparkle permutation except the one for initialization, we prepend a
rate whitening layer which XORs the value of 𝒲𝑐,𝑟(𝑆𝑅) to the rate, where 𝑆𝑅 denotes the
internal state corresponding to the inner part. For the Schwaemm instances with 𝑟 = 𝑐,
we define 𝒲𝑐,𝑟 : F𝑐

2 → F𝑟
2 as the identity (i.e., we just XOR the inner part to the outer

part). For Schwaemm256-128, we define 𝒲128,256(𝑥, 𝑦) = (𝑥, 𝑦, 𝑥, 𝑦), where 𝑥, 𝑦 ∈ F64
2 .

Note that this tweak can still be described in the Beetle framework as the prepended rate
whitening can be considered to be part of the definition of the underlying permutation.

Figure 4 depicts the mode for Schwaemm256-128. The formal specifications of the
encryption and decryption of the four family members are given in Algorithms 6-21.
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Figure 4: The AEAD Algorithm Schwaemm256-128 with 𝑟 = 256 and 𝑐 = 128.
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Algorithm 6 Schwaemm256-128-Enc
Input: (𝐾, 𝑁, 𝐴, 𝑀) where 𝐾 ∈ F128

2 is a key, 𝑁 ∈ F256
2 is a nonce and 𝐴, 𝑀 ∈ F*

2
Output: (𝐶, 𝑇 ), where 𝐶 ∈ F*

2 is the ciphertext and 𝑇 ∈ F128
2 is the authentication tag

◁ Padding the associated data and message
if 𝐴 ̸= 𝜖 then

𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴 − 2} : |𝐴𝑖| = 256 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 256
if |𝐴ℓ𝐴−1| < 256 then

𝐴ℓ𝐴−1 ← pad256(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 2)

else
Const𝐴 ← 1⊕ (1≪ 2)

end if
end if
if 𝑀 ̸= 𝜖 then

𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1 ←𝑀 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝑀𝑖| = 256 and 1 ≤ |𝑀ℓ𝑀 −1| ≤ 256
𝑡← |𝑀ℓ𝑀 −1|
if |𝑀ℓ𝑀 −1| < 256 then

𝑀ℓ𝑀 −1 ← pad256(𝑀ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 2)

else
Const𝑀 ← 3⊕ (1≪ 2)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 256 and |𝑆𝑅| = 128

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕𝒲128,256(𝑆𝑅))‖𝑆𝑅

)︀
end for

◁ Finalization if message is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕𝒲128,256(𝑆𝑅 ⊕ Const𝐴))‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Encrypting
if 𝑀 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝐶𝑗 ← 𝜌2(𝑆𝐿, 𝑀𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝑀𝑗)⊕𝒲128,256(𝑆𝑅))‖𝑆𝑅

)︀
end for
𝐶ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌2(𝑆𝐿, 𝑀ℓ𝑀 −1)

)︀
◁ Finalization

𝑆𝐿‖𝑆𝑅 ← Sparkle38411
(︀
(𝜌1(𝑆𝐿, 𝑀ℓ𝑀 −1)⊕𝒲128,256(𝑆𝑅 ⊕ Const𝑀 ))‖(𝑆𝑅 ⊕ Const𝑀 )

)︀
end if

return (𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1, 𝑆𝑅 ⊕𝐾)
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Algorithm 7 Schwaemm256-128-Dec
Input: (𝐾, 𝑁, 𝐴, 𝐶, 𝑇 ) where 𝐾 ∈ F128

2 is a key, 𝑁 ∈ F256
2 is a nonce, 𝐴, 𝐶 ∈ F*

2 and
𝑇 ∈ F128

2
Output: Decryption 𝑀 of 𝐶 if the tag 𝑇 is valid, ⊥ otherwise

if 𝐴 ̸= 𝜖 then
𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴 − 2} : |𝐴𝑖| = 256 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 256
if |𝐴ℓ𝐴−1| < 256 then

𝐴ℓ𝐴−1 ← pad256(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 2)

else
Const𝐴 ← 1⊕ (1≪ 2)

end if
end if
if 𝐶 ̸= 𝜖 then

𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1 ← 𝐶 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝐶𝑖| = 256 and 1 ≤ |𝐶ℓ𝑀 −1| ≤ 256
𝑡← |𝐶ℓ𝑀 −1|
if |𝐶ℓ𝑀 −1| < 256 then

𝐶ℓ𝑀 −1 ← pad256(𝐶ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 2)

else
Const𝑀 ← 3⊕ (1≪ 2)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 256 and |𝑆𝑅| = 128

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕𝒲128,256(𝑆𝑅))‖𝑆𝑅

)︀
end for

◁ Finalization if ciphertext is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕𝒲128,256(𝑆𝑅 ⊕ Const𝐴))‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Decrypting
if 𝐶 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝑀𝑗 ← 𝜌′

2(𝑆𝐿, 𝐶𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌′

1(𝑆𝐿, 𝐶𝑗)⊕𝒲128,256(𝑆𝑅))‖𝑆𝑅

)︀
end for
𝑀ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌′

2(𝑆𝐿, 𝐶ℓ𝑀 −1)
)︀

◁ Finalization and tag verification
if 𝑡 < 256 then

𝑆𝐿‖𝑆𝑅 ← Sparkle38411
(︀
(𝜌1(𝑆𝐿, pad256(𝑀ℓ𝑀 −1)) ⊕ 𝒲128,256(𝑆𝑅 ⊕ Const𝑀 ))‖(𝑆𝑅 ⊕

Const𝑀 )
)︀

else
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌′

1(𝑆𝐿, 𝐶ℓ𝑀 −1)⊕𝒲128,256(𝑆𝑅 ⊕ Const𝑀 ))‖(𝑆𝑅 ⊕ Const𝑀 )
)︀

end if
end if
if 𝑆𝑅 ⊕𝐾 = 𝑇 then

return (𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1)
else

return ⊥
end if
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3 Design Rationale
In this section, we explain why and how we chose the various components of our algorithms.
First, we justify the choice of a sponge construction (Section 3.1). Then, we present the
motivation behind the overall structure of the permutation in Section 3.2. In particular, we
recall the Long Trail Strategy (LTS) as it was introduced in the design of Sparx [DPU+16]
and explain how it can be adapted to design sponges that are not hermetic but retain
very strong security guarantees. Finally, we describe the rationale behind the choice of
our two main subcomponents: the ARX-box Alzette5 (Section 3.3) and the linear layer
(Section 3.4). The section will be concluded by a statement on the number of steps used
in the permutations (Section 3.5).

Remark on the Notion of a Distinguisher By specifying a fixed cryptographic per-
mutation, generic distinguishers that distinguish the permutation from a random one
trivially exist (e.g., the property of being efficiently implementable). When using the term
distinguisher, we actually refer to structural distinguishers. In a nutshell, a structural
distinguisher allows to obtain information about the internal structure of the permutation
or the ability to reverse-engineer it given (a reasonable) number of input-output pairs.
Such distinguishers include differential and linear attacks, integral attacks, meet-in-the
middle attacks or attacks based on symmetries.

3.1 The Sponge Structure
We decided to use the well-known sponge construction [BDPVA07, BDPVA11] based on a
cryptographic permutation. We explain the reasoning behind this decision in this section.

3.1.1 Modes of Operation

For hashing, we use the classical sponge mode of operation, similar to that of the NIST
standard SHA-3 [Dwo15]. However, we slightly adapt it to allow a minimum-size padding,
by employing a similar domain extension scheme as proposed in [Hir16]. In the idealized
model, Hirose proved that the corresponding sponge is indifferentiable from a random
oracle up to the birthday bound [Hir18].

For authenticated encryption, we use the mode of operation recently proposed by
the designers of Beetle [CDNY18]. It is a variant of a duplexed sponge [BDPA11].
The reasoning for using this mode is that it guarantees a security level with regard to
confidentiality and integrity (close to) its capacity size in bits instead of an integrity
security level of half of the capacity size. It therefore allows us to process more data
per permutation call for a given security level and thus to increase the efficiency of our
algorithms. We slightly adapted the Beetle mode by shortening the key to the size of the
capacity 𝑐, which only adds a term of 𝑞

2𝑐 in the bound on the advantage of the adversary
(where 𝑞 denotes the number of permutation queries). We further shortened the tag to the
size of the capacity to limit the increase in the ciphertext size and adapted the handling in
case of empty associated data and message. We further XOR the key before outputting the
tag. We finally changed the particular constants ConstA and ConstM for domain extension
by encoding the capacity size into them. This differentiates the Schwaemm instances that
use the same underlying Sparkle permutations.

Note that, for the hashing mode as well as for authenticated encryption we use different
permutations within each sponge (i.e., slim and big version of Sparkle). Therefore, the
generic provable security argument does not technically apply.

5In this paper, we just briefly summarize the properties of Alzette. A detailed design rationale can be
found in [BBdS+19].
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3.1.2 Improving Sponge-based Modes

As our approach is not hermetic, our choices are guided by the best attack that can be
found against the permutations in a mode. In order to mitigate some of them, we propose
some simple modifications to the sponge-based modes we use. These changes are equivalent
to alterations of the permutation used, meaning that they are compatible with the sponge
structure.

Rate Whitening In a sponge-based authenticated cipher, the security of the primitive is
based on the secrecy of the capacity. Hence, we can safely allow the adversary to read the
content of the rate. However, in practice, this can allow the attacker to compute a part
of the permutation. Indeed, if the rate is aligned with the S-box layer then the attacker
can evaluate said S-box layer on the outer part. In our case, as half of the linear layer is
the identity function, it would allow the attacker to partially evaluate two steps of the
permutation. It is not clear what advantage they could derive from such observations as
the content of the capacity remains secret in this case. However, it is easy to prevent this
phenomenon using what we call rate whitening. It simply consists in XORing branches
from the capacity into the rate just before the permutation call. That way, the attacker
cannot evaluate a part of the permutation without first guessing parts of the capacity.

This modification to the mode can be instead interpreted as the use of an altered
permutation which contains the rate whitening. Thus, this improvement to a sponge-based
mode is compatible with said mode.

Indirect Injection In a sponge-based hash function, an 𝑟-bit message block is XORed
into the rate. In Esch, it is not exactly the case. Instead, the 𝑟-bit message block is first
expanded into a larger message using a linear function and the result is injected into the
state of the sponge. We call this pre-processing of the message blocks “indirect injection”.

As with rate whitening, the purpose of this modification is to alleviate potential issues
arising when the rate is aligned with the S-box layer. Indeed, in such a case, the attacker
does not need to find a differential trail covering the whole permutation to find a collision.
Instead, they can find a differential covering all but the first and last layers of S-boxes
which will propagate through this layer with probability 1.

In order to prevent such attacks, it is sufficient to modify the injection procedure
so that the space in which the injected message lies is not aligned with the S-box layer.
To this end, we reuse the linear Feistel function used in our Sparkle instances. For
example, in Esch256, we do not inject message branches 𝑥 and 𝑦 directly but, instead,
inject the 3-branch message ℳ3(𝑥, 𝑦, 0). This is equivalent to using a regular injection
while composing the permutation with an application of ℳ3 in the input and one of ℳ−1

3
in the output, so that this modification still yields a “regular sponge”.

This simple modification to the injection procedure efficiently disrupts the alignment
between the rate and the Alzette layer. Furthermore, because the linear functions we
use for the indirect injection (ℳ3 and ℳ4) have a (differential, resp., linear) branch
number of 4, and because only two branches are injected through them, we know that
at least two double Alzette instances are activated during message injection. Similarly,
a differential trail yielding a possible cancellation by an indirectly injected message in
the output of a permutation implies that two double Alzette instances are active in the
end of the trail. Because this pattern cannot be truncated, it means that a differential
trail mapping an indirectly injected difference to an indirectly injected difference has
a probability upper-bounded by the double ARX-box bound to the power 4. As was
established in [BBdS+19], the best differential trail covering a double ARX-box has a
probability at most equal to 2−32. We deduce the following lemma.6

6In the specific cases of the Esch functions, an attacker could try and leverage the padding scheme and
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Lemma 1. The probability (taken over all inputs) of a differential trail that is introduced
and then cancelled via indirectly injected messages after at least one iteration of Sparkle384
or Sparkle512 is at most equal to 2−128.

The general principle consisting in applying a linear code to the message block before
injection is reminiscent of the technique used to input the message blocks in the SHA-3
candidate Hamsi [Küç09].

In our case, messages that have a length multiple of 𝑟 are not padded, instead, a
constant is added into the state of the sponge that is outside the control of the adversary.
This constant is added on the left part of the state to ensure its diffusion but, at first
glance, we might think that it could be cancelled via a difference in a message block since
the indirect injection XORs data into the whole left part of the state. However, since
the constant is only over a single word, a difference cancelling it would have to span 3
(respectively 4) input branches of the linear permutation used for indirect injection in
Esch256 (resp. Esch384). Because we fix 1 (resp. 2) inputs of this linear permutation to
0, a direct application of Theorem 1 (in Section 3.4.1) shows that no message difference
can cancel this constant.

3.2 A Permutation Structure Favouring Rigorous Security Arguments
After settling on the design of a permutation, we need to decide how to build it. The
structure used must allow strong arguments to be made for the security it offers against
various attacks while being amenable to very efficient implementations in terms of code
size, RAM usage and speed. First, we present the mathematical framework of provable
security against differential and linear attacks (Section 3.2.1). Then we present the Long
Trail Strategy (LTS) as introduced in the design of Sparx7 (Section 3.2.2). Finally, we
argue that the use of the LTS allows us to bound the probability of all differential/linear
trails, including those that are obtained by absorbing (possibly many) blocks into a sponge
(Section 3.2.3). Thus, it allows us to have some guarantees even if the permutation “in
a vacuum” has some distinguishers. In other words, it allows us to build non-hermetic
algorithms with the same security arguments as hermetic ones.

3.2.1 Provable Security Against Differential and Linear Attacks

The resistance of a symmetric-key primitive against differential and linear cryptanalysis
is determined by the differential (resp. linear) trail/s with maximum probability (resp.
absolute correlation). The reason is that the success probability of a differential (resp.
linear) attack depends on the amount of data (number of plaintexts) necessary to execute
the attack. The latter is, in turn, proportional to the inverse of the probability (resp.
squared correlation) of the best differential (resp. linear) trail.

For keyed constructions the maximum 𝑁 -round probability (resp. absolute correlation)
for a fixed key is approximated by the expected maximum probability (resp. absolute cor-
relation) over all keys. This is known as assuming the Hypothesis of Stochastic Equivalence
(see e.g. [LMM91] [DR02, § 8.7.2, pp. 121]).

We denote the two quantities – the maximum expected differential trail (or charac-
teristic) probability and the maximum expected absolute linear trail (or characteristic)
correlation – respectively by MEDCP and MELCC. These abbreviations have been previ-
ously used in the literature e.g. in [KS07].

the different constants added in the rate to add a difference to the state in a way which is not coherent
with indirect injections. Still, our LTS-derived differential bounds (see Section 4.3.1) allow us to simply
solve this problem.

7As hinted by its name, Sparkle is a descendent of the block cipher Sparx. In fact, this block cipher
was co-designed by members of our team.
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For computing the MEDCP and MELCC we work under the assumption of independent
round keys. The latter allows us to compute the probability of an 𝑁 -round trail as the
product of its corresponding 1-round transitions. This is also known as assuming the
Hypothesis of Independent Round Keys (see e.g. [DR02, § 8.7.2, pp. 121]). Note that,
since we are in the permutation setting, we do not have any round keys. Therefore, this
assumption indeed doesn’t hold technically. However, we have validated experimentally
that it is a good approximation for what happens in practice (see [BBdS+19]).

We prove that the proposed designs – Schwaemm and Esch – are resistant against
differential and linear attacks by showing that for the underlying permutation Sparkle,
there does not exist differential and linear trails with MEDCP and MELCC that are
high enough to be exploited in an attack. The tools that make it possible to prove such
statements lie in the heart of the Long Trail Strategy.

3.2.2 The Long Trail Strategy

𝛿𝐿
0 𝛿𝑅

0
𝐴 𝐴

𝐿 ⊕
𝛿𝐿
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⊕
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2

𝐿

𝐴 𝐴

⊕
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3 0
𝐴 𝐴

Figure 5: The decomposition into long trails of a
truncated trail in a simple cipher.

The Long Trail Strategy (LTS) is a de-
sign approach that was introduced by
the designers of Sparx [DPU+16] to
bound the differential probabilities and
absolute linear correlations for ARX-
based primitives with large internal
states.

Up to that point, the only formal
bounds available for ARX-based al-
gorithms were obtained via computer
search which, for computational rea-
sons, were restricted to small block
sizes (mostly 32 bits, possibly up to
64) [BVC16]. The LTS is an approach
that allows the construction of round
functions operating on a much larger
state in such a way that the bounds
obtained computationally over a small
state can be used to derive bounds for the larger structure. This very high level description
is virtually identical to that of the Wide Trail Strategy (WTS), introduced in [Dae95] and
famously used to design the AES [AES01]. However, the specifics of these two methods are
very different. First, we recall how a long trail argument works to bound the differential
probabilities and absolute linear correlations.

The Long Trail Argument. In what follows, we focus on the case of differential proba-
bilities. The linear case is virtually identical. In order to build a cipher according to the
LTS, we need:

• a non-linear operation 𝐴 operating on 𝑏 bits such that the differential probability for
multiple iterations of 𝐴 is bounded,

• a linear layer operating on 𝑏-bit branches.

The bound is then computed by iterating over all the truncated trails that are allowed by
the linear layer. As the number of 𝑏-bit branches is low (in our case, at most 8) and as the
linear layer is sparse (in our case, half of the outputs are copies of the input), this loop is
very efficient. Then, for each truncated trail, we perform two operations.

1. First, we decompose the truncated trail into long trails. A long trail is a continuous
differential trail at the branch level that receives no difference from other words.
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If 𝑟 iterations of 𝐴 are performed on a branch without any call to the linear layer,
then the probability of all differential trails that fit in this truncated trail is at most
equal to the bound for 𝑟 rounds of 𝐴. More subtly, if 𝑥 ← 𝐴𝑟 (𝐴𝑟(𝑥)⊕ 𝐿(𝑦)) and
the difference over 𝑦 is equal to 0 then we can bound the differential probability by
the one corresponding to 2𝑟 rounds of 𝐴.
The decomposition of a truncated trail into its constitutive long trails is obtained by
grouping all the chains of 𝑡 active branches that do not receive differences from the
outside into long trails of length 𝑡.

2. In order to bound the probability of all differential trails that fit in a truncated trail
over 𝑟 rounds, we use

𝑟∏︁
𝑡=1

𝑝𝑡 × 𝑛𝑡 ,

where 𝑝𝑡 is the bound for 𝑡 rounds of 𝐴 and where 𝑛𝑡 is the number of long trails of
length 𝑡 in the truncated trail.

Example 1. Here, we reproduce the example given in the specification of Sparx [DPU+16].
Consider a 64-bit block cipher using a 32-bit S-box, one round of Feistel network as

its linear layer and 4 steps without a final linear layer. Consider the differential trail
(𝛿𝐿

0 , 𝛿𝑅
0 ) → (𝛿𝐿

1 , 𝛿𝑅
1 ) → (0, 𝛿𝑅

2 ) → (𝛿𝐿
3 , 0) (see Fig. 5 where the zero difference is dashed).

Then this differential trail can be decomposed into 3 long trails represented in black, red
and blue: the first one has length 1 and 𝛿𝑅

0 as its input; the second one has length 2 and
𝛿𝐿

0 as its input; and the third one has length 3 and 𝛿𝐿
1 as its input so that the long trail

decomposition of this trail is {𝑡1 = 1, 𝑡2 = 1, 𝑡3 = 1}, where 𝑡𝑖 denotes the number of of
long trails of length 𝑖.

A good structure to leverage long trail is the one described in Figure 6. By forcing the
chaining of multiple rounds of 𝐴 in each branch and in each step, it ensures the existence
of some long trails. In order to further exploit the long trails, we can set 𝐿 to be essentially
a Feistel round defined by

(𝑥0, ..., 𝑥𝑖−1), (𝑦0, ..., 𝑦𝑖−1) ↦→
(︀
𝑦0⊕ℓ0(𝑥0, ..., 𝑥𝑖−1), ..., 𝑦𝑖−1⊕ℓ𝑖−1(𝑥0, ..., 𝑥𝑖−1)

)︀
, (𝑥0, ..., 𝑥𝑖−1) ,

where the ℓ𝑖 are linear functions operating on 𝑖 branches. Indeed, such linear layers ensure
the existence of long trails of length 2𝑟 because half of the inputs are copied to the output.
At the same time, the diffusion provided by a Feistel round is well understood and it is
the same in both the forward and backward directions.8

These observations led us to use such a linear layer when designing Sparx. Now
that Sparx has undergone third-party cryptanalysis [AL18, AK19, ATY17, TAY17] we
confidently reuse this structure.

LTS versus WTS The wide trail strategy (WTS), famously used to design the AES, is
the most common design strategy for block ciphers and permutations. Thus, we provide a
quick comparison of these two approaches.

Bound Derivation. For the WTS, the diffusion must ensure a high number of active
S-boxes in differential and linear trails. The bound on the corresponding primitive is
derived using 𝑝𝑎 where 𝑝 is the relevant probability at the S-box level and 𝑎 is the
number of active S-boxes. The aim is then to increase 𝑎. In contrast, in the LTS,
the bound is derived by looping over all possible truncated trails, decomposing each
into its long trails and computing the bound accordingly.

8Again, we stress that we assume independent calls to Alzette and use bounds on the MEDCP/MELCC,
although we don’t have round keys (see experiments in [BBdS+19]).
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Figure 6: The overall structure of a step for the long trail strategy. The wires correspond
to branches which, in our case, are divided into two words.

Confusion. In algorithms built using the WTS, the non-linearity is provided by S-boxes,
small functions operating on typically 4 or 8 bits. In contrast, in the LTS, the
non-linearity is provided by multiple rounds of a more complex function operating
on a much larger state (32 bits in the case of Sparx, 64 bits for Sparkle).

Diffusion. The diffusion layer in the WTS must ensure a high number of active S-boxes.
In the LTS, it is more subtle: if a difference does not propagate, it might prevent the
interruption of a long trail which could counterintuitively lead to a lower probability
than if the difference did propagate. Nevertheless, in order for the cipher to resist
other attacks, the diffusion layer must provide some diffusion. We have found
that Feistel-based linear layers provided a good compromise between these two
requirements.

Two-Staged Security Analysis. At the heart of both design strategies lies the idea of
separating the analysis of the cipher into two stages. First, we study the non-linear
part (be it its small S-box or its wide ARX-box) and then, using properties of
the linear layer, we deduce the properties of the cipher. This two stage approach
simplifies the task of the cryptanalyst as it allows the use of computer assisted
method to investigate the properties of the non-linear part (which operate on a small
enough block size that it is possible, i.e. at most 64 bits for an ARX-box). Hence,
ciphers designed with either the WTS or the LTS are easier to study than more
classical ARX designs.

3.2.3 Applying the LTS to Absorption

In a sponge function, the state is divided into two parts: the outer part is 𝑟-bit long and
the inner part is 𝑐-bit long. The quantities 𝑟 and 𝑐 are respectively called the rate and the
capacity. Regardless of the use of the sponge, 𝑟-bit plaintext blocks are XORed into the
outer part of the sponge.

Hermetic versus Not-Hermetic Approach When building a block cipher, designers
ensure that their algorithm is safe from differential and linear attacks. The methods to
prove resilience against these attacks are well known and they help provide a good estimate
of the number of rounds needed to ensure security against these attacks.

Like for block ciphers, we turn to the prevention of differential and linear attacks
to make this estimation. Differential attacks pose a serious threat to hash functions
as evidenced by the practical attack against SHA-1 [SBK+17]; and linear biases in the
keystream generated by several authenticated ciphers have been identified as well, for
instance in MORUS [AEL+18]. We show that dangerous respectively differential and
linear distinguishers can be proven to have a negligible probability when the algorithm
considered is a sponge with a permutation built using the LTS.
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Preventing Differential Attacks in Sponges Differential trails that could be useful for
an adversary trying to attack a sponge are prevented in two stages.

First, for hashing, we use a permutation call between the absorption phase and the
squeezing phase that does not yield any differential with probability higher than 2−𝑠,
where 𝑠 is the security parameter. More formally, we want the permutation which is called
between absorption and squeezing to have the following property.

Property 1 (Absorption/Squeezing Separation). Let 𝑃 : F𝑟
2 × F𝑐

2 → F𝑟
2 × F𝑐

2 be a
permutation. It separates the two phases with a security level of 𝑠 bits if:

∀𝛿 ∈ F𝑟
2 × F𝑐

2, 𝛿 ̸= 0: ∀Δ ∈ F𝑟
2 × F𝑐

2, Pr[𝑃 (𝑥⊕ 𝛿)⊕ 𝑃 (𝑥) = Δ] ≤ 2−𝑠 ,

where the probability is taken over all 𝑥 ∈ F𝑟
2 × F𝑐

2.

This property is essentially what we would expect of a random permutation except
that the bound on the probability is 2−𝑠 rather than 2−𝑐−𝑟. The point in this case is to
destroy any pattern that could exist in the internal state of the sponge before squeezing,
even if this pattern is only in the capacity. In other words, Property 1 ensures that no
non-trivial differential pattern can be exploited once the squeezing phase has been reached.

We then need to ensure that no differential trail ending with an all-zero difference (a
collision) exists with a probability higher than 2−𝑠. If we can show this absence then we
expect that the probability of existence of a valid pair with specific predefined input values
is upper-bounded by 2𝑟−𝑠.

Property 2 (Unfeasibility of Vanishing Differences). Let 𝑃 : F𝑟
2 × F𝑐

2 → F𝑟
2 × F𝑐

2 be a
permutation and let 𝑃𝑚 be the permutation of F𝑟

2 × F𝑐
2 parameterized by 𝑚 ∈ F𝑟

2 defined
by

𝑃 [𝑚] : (𝑥, 𝑦) ↦→ 𝑃 (𝑥⊕𝑚, 𝑦) .

Furthermore, for any integer 𝑎 > 0 and fixed differences 𝛿0, . . . , 𝛿𝑎−1 ∈ F𝑟
2, let Pvanish(𝑎) be

the probability that(︀
𝑃 [𝑥𝑎−1 ⊕ 𝛿𝑎−1] ∘ · · · ∘ 𝑃 [𝑥0 ⊕ 𝛿0]

)︀
(𝑦) ⊕

(︀
𝑃 [𝑥𝑎−1] ∘ · · · ∘ 𝑃 [𝑥0]

)︀
(𝑦) = (0, 0)

where the probability is taken over all (𝑥0, ..., 𝑥𝑎−1) ∈ (F𝑟
2)𝑎 and all 𝑦 ∈ F𝑟

2 × F𝑐
2.

We say that 𝑃 makes vanishing differences unfeasible for a security parameter 𝑠 if, for
all numbers of absorbed message blocks 𝑎, we have

∀(𝛿0, ..., 𝛿𝑎−1) ∈ (F𝑟
2)𝑎, 𝛿0 ̸= 0 : Pvanish(𝑎) ≤ 2−𝑠 .

This property is different from the absorption/squeezing separation. Indeed, we are not
looking at any differential trail but specifically at those that correspond to the absorption
of 𝑟-bit blocks. Similarly, we only worry about differences that end up only in the rate
of the sponge as these are the differences that can be cancelled via the absorption of
a message. For hashing, we are aiming for a security parameter of 𝑟 + 𝑐

2 . As already
explained in the documentation of cryptographic sponges [BDPVA11, Section 8.4.1.1], if
the probability of a rate-to-rate differential trail can be upper-bounded by 2−𝑟− 𝑐

2 , the
expected number of pairs following the trail is upper-bounded by 2 𝑐

2 . Thus, the probability
that there exists a valid pair with a fixed and predefined input value is ≤ 2− 𝑐

2 .

Hypothesis 1. If a permutation of F𝑟
2 × F𝑐

2 satisfies both the absorption/squeezing sepa-
ration and the unfeasability of vanishing differences with security parameter 𝑟 + 𝑐/2 then it
can be used to construct a sponge for which a differential collision search cannot be more
efficient than a basic collision search.

The aim of such a differential attack would be to find a pair of messages 𝑥, 𝑦 such that
either of the following two happens:
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1. after absorbing 𝑥 and 𝑦, the states of the sponges are identical (collision of the full
state)

2. there is a difference between the two states but, after squeezing, this difference is
not over a part of the state that matters.

If the first case has a probability higher than 2−𝑟− 𝑐
2 then the unfeasibility of vanishing

differences is violated. If the second one is, then the separation of squeezing and absorption
is violated. Hence, satisfying both prevents such attacks.

Because of the uniqueness of the nonce, attacks on the decryption oracle (e.g., differ-
ential forgeries) in AEAD are the most dangerous kind of attack that exploit differential
cryptanalysis. For AEAD, we therefore aim for a security level of 𝑐 when considering
rate-to-rate trails.

In practice, designers usually cannot prove that those properties are satisfied without
any simplifying assumptions. Still, we can assume that the probability of differential trails
is a good approximation for the probability of the differentials and then we can prove, using
a variant of the long trail argument, that no differential trail can falsify either property.
The conclusion is then that the sponge is safe from a differential collision search.

We have observed that those two requirements require different number of steps in the
iterated permutation. It makes sense as the attacker has full control over the difference in
the absorption/squeezing separation case while it can only inject some specific differences
in the vanishing differences case. The hermetic sponge strategy [BDPVA11, Section 8.1.1]
then consists of the case where 𝑠 = 𝑟 + 𝑐. While the hermetic sponge strategy certainly
yields secure sponges, our finer approach allows us to use fewer steps. In particular, our
approach can be expected to yield different number of steps during absorption and between
absorption and squeezing.

In order to bound the probability of differential trails that are relevant for Property 1,
we can simply consider the permutation like a block cipher and use the probability bounding
techniques that are relevant given its design strategy. In our case, we simply reuse the
long trail argument that was introduced in SPARX, i.e. we loop over all truncated trails,
divide them into long trails and deduce a probability bound for each. This method can be
efficiently implemented using a variant of Matsui’s search, as explained in Section 4.2.1.

For Property 2, using an LTS-based permutation simplifies the search greatly. Usually,
the search space corresponding to the search for the trails considered in Property 2 is too
large. Indeed, in this case, the differences are injected in the outer part of the sponge
during each absorption. We therefore multiply the set of possible input differences by 2𝑟

each time we consider an absorption. It means that Property 2 is a priori impossible to
verify unless we simply ensure that Property 1 holds for the same number of steps.

However, for the Sparkle permutation family, this finer search is possible.
As we bound the differential probabilities using the LTS, we first enumerate all possible

truncated differential trails and then bound the probabilities for each individual truncated
trail. As the branches are wide (64-bit in our case), each message injections lead to the
addition of 𝑟/64 bits of information in terms of truncated trails. It is thus possible to
enumerate all truncated trails covering a certain amount of message absorption where the
difference is injected only in the outer part. The details of the algorithm we used in the
case of SPARX are given in Section 4.3.1.

Preventing Linear Attacks in Sponges. Mirroring differentials, we can define linear
approximations that are of particular interest for cryptanalysts and whose absolute corre-
lation we must strive to lower. The main such correlations corresponds to the following
property.

Property 3 (Undetectability of Keystream Bias). Let 𝑃 : F𝑟
2 × F𝑐

2 → F𝑟
2 × F𝑐

2 be a
permutation. We say it has undetectable keystream biases with security parameter 𝑠 if the
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absolute correlation of each linear approximation of 𝑃 𝑖 involving only bits in the rate is
lower than 2−𝑠/2, for all numbers of iterations 𝑖 where 𝑖 is smaller than the order of the
permutation.

Hypothesis 2. Let 𝑃 : F𝑟
2×F𝑐

2 → F𝑟
2×F𝑐

2 be a permutation that has undetectable keystream
biases with security parameter 𝑠. If it is used to construct a sponge-based stream cipher
then it is impossible to distinguish its output from a random stream using linear biases.

Detection of biases is a dangerous attack on AEAD schemes. We aim for a security
parameter of 𝑠 = 𝑑, where 𝑑 equals the binary logarithm of the number of blocks allowed
by the data limit.

As for the differential case, we do not know how to prove that all linear approximation
have such a low absolute correlation. However, we can approximate the absolute correlations
of linear approximations by those of the linear trails yielding them, and then upperbound
the absolute correlations of said trails.

3.3 The ARX-box Alzette
A detailed design rationale and security analysis of the ARX-box Alzette is described
in [BBdS+19]. Below, we briefly mention its most important properties.

Alzette is constructed from the operations XOR of rotation and ADD of rotation, i.e.,
𝑥 ⊕ (𝑦 ≫ 𝑠) and 𝑥 + (𝑦 ≫ 𝑟), because they can be executed in a single clock cycle on
ARM processors and thus provide extremely good diffusion per cycle.

The rotations were chosen to maximize security and efficiency. While each rotation
has the same cost in 32-bit ARM processors, they were chosen to be optimized for
implementations on 8 and 16-bit microcontrollers.

Table 4: Bounds for Alzette compared to Speck64 [BSS+13]. The first line shows − log2 𝑝,
where 𝑝 is the maximum expected differential trail probability and the second line shows
− log2 𝑐, where 𝑐 is the maximum expected absolute linear trail correlation. The value set
in parenthesis corresponds to the maximum absolute correlation of the linear hull taking
clustering into account, derived by experimental verification. For Speck64, the differential
bounds are taken from [BVC16] and linear bounds are taken from [FWG+16, LWR16].

1 2 3 4 5 6 7 8 9 10 11 12
Alzette 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 ≥ 46 ≥ 52

0 0 1 2 5 8 13 (11.64) 17 (15.79) – – – –
Speck64 0 1 3 6 10 15 21 29 ≥ 32 – – –

0 0 1 3 6 9 13 17 19 21 24 27

Differential Properties. The bounds on the maximum expected differential trail probabil-
ities (MEDCP) were computed by a version of Algorithm 1 of [BVC16]. Upon termination,
it outputs a trail with the MEDCP. For Alzette, such trails were obtained for up to six
rounds, where the 6-round bound is 2−18.

Note that for 7 and 8 rounds, there are no tight bounds due to the high complexity of
the search. However, the algorithm exhaustively searched the range up to − log2(𝑝) = 24
and − log2(𝑝) = 32 for 7 and 8 rounds respectively, which proves that there are no valid
differential trails with an expected differential trail probability larger than 2−24 and 2−32,
respectively. The bounds are provided in Table 4.

Linear Properties. To get bounds on the maximum expected absolute linear trail cor-
relation (MELCC) of Alzette, the MILP approach described in [FWG+16] was used. It
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was feasible to get tight bounds even for 8 rounds, where the 8-round bound for Alzette is
2−17. It was possible to collect all linear trails that correspond to the MELCC for 4 up
to to 8 rounds and to experimentally check the actual correlations of the corresponding
linear approximations. While there was only negligible clustering in the differential case,
slight clustering could be observed here (see bounds in Table 4).

Diffusion. All output bits depend on all the input bits after one iteration of Alzette,
though this dependency can be very weak. After two iterations, we have that all output
bits strongly depend on all the input bits. This strong diffusion ensures that three steps of
the Sparkle permutations already fulfill the strict avalanche criterion.

Round Constants. The purpose of round constant additions is to ensure that the Alzette
instances called on each branch are independent to avoid symmetries.

In order to be transparent in the way we selected the constants, we derived the eight
different 32-bit constants 𝑐0, . . . , 𝑐7 for the eight Alzette instances from the fractional digits
of 𝑒 = 2.71 . . . . In particular, we converted the number into its base-16 representation and
choose 𝑐0 to be the first block of eight fractional digits, 𝑐1 as the third block, 𝑐2 as the
6th, 𝑐3 as the 9th, 𝑐4 as the 14th, 𝑐5 as the 15th, 𝑐6 as the 26th and 𝑐7 as the 29th block.
We excluded several blocks in order to leverage some observed linear hull effects in our
experimental verification for 5 and 6 rounds to our favor. For more on that, see [BBdS+19].

3.4 The Linear Layer
The Alzette layer ensures that no pattern exists at the branch level that a cryptanalyst
could leverage to mount an attack. However, we need to provide diffusion between the
branches. Furthermore, as the Alzette layer needs two steps (i.e., 8 rounds) to obtain good
differential and linear bounds, we have to follow the long trail approach and ensure that
long trails exist in all differential and linear trails. Hence, our linear layer has to provide
two apparently opposite properties: diffusion between the branches and little diffusion to
help fostering long trails.

To solve this problem, we copy the technique that we initially introduced when designing
SPARX and use a linear layer with a Feistel structure. Intuitively, it leaves one half of
the state unchanged and thus ensures the existence of long trails. At the same time, the
Feistel function itself provides excellent diffusion, meaning that we can quickly ensure that
all branches in the state depend on all the branches in the input.

3.4.1 The Linear Feistel Function

In what follows, we establish several lemmas and theorems that describe the behaviour of
the linear Feistel functions ℳ𝑤 that are used in Sparkle instances.

Lemma 2. Let 𝑤 > 2 be an integer. If 𝑤 is even then the inverse of ℳ𝑤 is computed as

𝑡𝑦 ←
𝑤−1⨁︁
𝑖=0

𝑣𝑖 , 𝑡𝑥 ←
𝑤−1⨁︁
𝑖=0

𝑢𝑖 ,

𝑥𝑖 ← 𝑢𝑖 ⊕ ℓ(𝑡𝑦), ∀𝑖 ∈ {0, ..., 𝑤 − 1}, 𝑦𝑖 ← 𝑣𝑖 ⊕ ℓ(𝑡𝑥), ∀𝑖 ∈ {0, ..., 𝑤 − 1} ,

i.e., it is ℳ𝑤 itself. On the other hand, if 𝑤 is odd, it is computed as

𝑡𝑣 ←
𝑤−1⨁︁
𝑖=0

𝑣𝑖 , 𝑡𝑢 ←
𝑤−1⨁︁
𝑖=0

𝑢𝑖 ,

𝑥𝑖 ← 𝑢𝑖 ⊕ 𝑡𝑣 ⊕ ℓ(𝑡𝑢), ∀𝑖 ∈ {0, ..., 𝑤 − 1}, 𝑦𝑖 ← 𝑣𝑖 ⊕ 𝑡𝑢 ⊕ ℓ(𝑡𝑣), ∀𝑖 ∈ {0, ..., 𝑤 − 1} .
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Proof. The proof in the even case is very straight-forward because
⨁︀𝑤−1

𝑖=0 𝑥𝑖 =
⨁︀𝑤−1

𝑖=0 𝑢𝑖

and
⨁︀𝑤−1

𝑖=0 𝑦𝑖 =
⨁︀𝑤−1

𝑖=0 𝑣𝑖. Let us therefore consider the case where 𝑤 is odd.
In order to obtain (𝑥𝑖, 𝑦𝑖) from (𝑢𝑖, 𝑣𝑖), we need to obtain the values of ℓ(𝑡𝑥) and ℓ(𝑡𝑦)

from the (𝑢𝑖, 𝑣𝑖). We remark that

𝑡𝑢 =
𝑤−1⨁︁
𝑖=0

(𝑥𝑖 ⊕ ℓ(𝑡𝑦)) = 𝑡𝑥 ⊕ ℓ(𝑡𝑦), 𝑡𝑣 =
𝑤−1⨁︁
𝑖=0

(𝑦𝑖 ⊕ ℓ(𝑡𝑥)) = 𝑡𝑦 ⊕ ℓ(𝑡𝑥) .

As a consequence, we need to invert the matrix corresponding to the linear application
mapping (𝑡𝑥, 𝑡𝑦) to (𝑡𝑢, 𝑡𝑣) in the expressions above. The solution is easily verified to be

𝑡𝑥 = ℓ−1(𝑡𝑢)⊕ 𝑡𝑣, 𝑡𝑦 = 𝑡𝑢 ⊕ ℓ−1(𝑡𝑣) .

We deduce that if 𝑢𝑖 = 𝑥𝑖 ⊕ ℓ(𝑡𝑦) and 𝑣𝑖 = 𝑦𝑖 ⊕ ℓ(𝑡𝑥), then

𝑥𝑖 = 𝑢𝑖 ⊕ ℓ
(︀
𝑡𝑢 ⊕ ℓ−1(𝑡𝑣)

)︀
= 𝑢𝑖 ⊕ 𝑡𝑣 ⊕ ℓ(𝑡𝑢),

𝑦𝑖 = 𝑣𝑖 ⊕ ℓ
(︀
ℓ−1(𝑡𝑢)⊕ 𝑡𝑣

)︀
= 𝑢𝑖 ⊕ ℓ(𝑡𝑣)⊕ 𝑡𝑢 .

We also remark that ℓ𝑇
𝑤 = ℓ𝑤. To see it, we simply write it as a 2× 2 matrix operating

on 16-bit words using ℐ to denote the 16× 16 identity matrix and 0 to denote the 16× 16
zero matrix, and we obtain that

ℓ =
[︂

0 ℐ
ℐ ℐ

]︂
,

which is symmetric. We deduce the following lemma.
Lemma 3. The matrix representation of the function ℳ𝑤 is symmetric.

The key properties of such linear permutations in terms of diffusion are given by the
following theorem.
Theorem 1. For all 𝑤 > 1, ℳ𝑤 is such that:

• a unique active branch in the input activates all output branches,

• a unique active branch in the output requires that all input branches are active,

• if 𝑤 > 2 and there are two active branches with indices 𝑗 and 𝑘 in the input, then
one of the following must occur:

– only the branches 𝑗 and 𝑘 are active in the output,
– all the output branches are active except for 𝑗,
– all the output branches are active except for 𝑘, or
– all the output branches are active.

Proof. We prove each point separately.
Case with 1 input. Without loss of generality, suppose that (𝑥0, 𝑦0) ̸= (0, 0) and that

(𝑥𝑖, 𝑦𝑖) = (0, 0) for all 𝑖 > 0. Then 𝑡𝑥 = 𝑥0 and 𝑡𝑦 = 𝑦0, so that

𝑢𝑖 = 𝑥𝑖 ⊕ ℓ(𝑦0) and 𝑣𝑖 = 𝑦𝑖 ⊕ ℓ(𝑥0) .

If 𝑖 ̸= 0, then 𝑢𝑖 = ℓ(𝑦0) and 𝑣𝑖 = ℓ(𝑥0). Thus, we have

(𝑢𝑖, 𝑣𝑖) =
(︀
ℓ(𝑦0), ℓ(𝑥0)

)︀
, if 𝑖 ̸= 0 ,

(𝑢0, 𝑣0) =
(︀
𝑥0 ⊕ ℓ(𝑦0), 𝑦0 ⊕ ℓ(𝑥0)

)︀
,

so that each pair (𝑢𝑖, 𝑣𝑖) is the output of a permutation with input (𝑥0, 𝑦0) (recall
that 𝑥 ↦→ 𝑥⊕ ℓ(𝑥) is a permutation). Since we assume (𝑥0, 𝑦0) ̸= (0, 0), we deduce
that all (𝑢𝑖, 𝑣𝑖) are non-zero.
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Case with 1 output. If 𝑤 is even, the inverse ofℳ𝑤 isℳ𝑤 itself. We can therefore reuse
the same argument as above. Suppose now that 𝑤 is odd. Without loss of generality,
we consider that (𝑢0, 𝑣0) ̸= (0, 0) and that (𝑢𝑖, 𝑣𝑖) = (0, 0) for all 𝑖 > 0. In this case,
we have 𝑡𝑢 = 𝑢0 and 𝑡𝑣 = 𝑣0, so that

(𝑥0, 𝑦0) =
(︀
𝑢0 ⊕ 𝑣0 ⊕ ℓ(𝑢0), 𝑣0 ⊕ 𝑢0 ⊕ ℓ(𝑣0)

)︀
,

(𝑥𝑖, 𝑦𝑖) =
(︀
𝑣0 ⊕ ℓ(𝑢0), 𝑢0 ⊕ ℓ(𝑣0)

)︀
, if 𝑖 ̸= 0 ,

We deduce that (𝑥𝑖, 𝑦𝑖) is always a permutation of (𝑢0, 𝑣0) for 𝑖 ≠ 0 and thus cannot be
zero. It is also the case for 𝑖 = 0. Indeed, we have (𝑥0, 𝑦0) =

(︀
(ℓ2(𝑢0)⊕ 𝑣0, 𝑢0 ⊕ ℓ2(𝑣0)

)︀
because I + ℓ = ℓ2 = ℓ−1, so that the function mapping (𝑢0, 𝑣0) to (𝑥0, 𝑦0) is the
inverse of (𝑥, 𝑦) ↦→ (𝑥⊕ ℓ(𝑦), 𝑦 ⊕ ℓ(𝑥)). In particular, it is a permutation as well.
We conclude that if a unique branch is active in the output then all branches are
active in the input.

Case with 2 inputs. Suppose now that 𝑤 > 2 and that (𝑥𝑗 , 𝑦𝑗) ̸= (0, 0), (𝑥𝑘, 𝑦𝑘) ̸= (0, 0)
and (𝑥𝑖, 𝑦𝑖) = (0, 0) otherwise. In this case, we have 𝑡𝑥 = 𝑥𝑗 ⊕ 𝑥𝑘 and 𝑡𝑦 = 𝑦𝑗 ⊕ 𝑦𝑘

so that

(𝑢𝑗 , 𝑣𝑗) =
(︀
𝑥𝑗 ⊕ ℓ(𝑦𝑗 ⊕ 𝑦𝑘), 𝑦𝑗 ⊕ ℓ(𝑥𝑗 ⊕ 𝑥𝑘)

)︀
,

(𝑢𝑘, 𝑣𝑘) =
(︀
𝑥𝑘 ⊕ ℓ(𝑦𝑗 ⊕ 𝑦𝑘), 𝑦𝑘 ⊕ ℓ(𝑥𝑗 ⊕ 𝑥𝑘)

)︀
,

(𝑢𝑖, 𝑣𝑖) =
(︀
ℓ(𝑦𝑗 ⊕ 𝑦𝑘), ℓ(𝑥𝑗 ⊕ 𝑥𝑘)

)︀
, if 𝑖 ̸∈ {𝑗, 𝑘} .

If (𝑢𝑖, 𝑣𝑖) = (0, 0) for some 𝑖 ̸∈ {𝑗, 𝑘} then (𝑢𝑖, 𝑣𝑖) = (0, 0) for all 𝑖 ̸∈ {𝑗, 𝑘} and we
have both 𝑥𝑗 = 𝑥𝑘 and 𝑦𝑗 = 𝑦𝑘. Hence, we have (𝑢𝑗 , 𝑣𝑗) = (𝑥𝑗 , 𝑦𝑗) ̸= (0, 0) and
(𝑢𝑘, 𝑣𝑘) = (𝑥𝑘, 𝑦𝑘) ̸= (0, 0), so that both branches 𝑗 and 𝑘 have to be active.
Finally, we suppose that (𝑢𝑖, 𝑣𝑖) ̸= (0, 0) for some 𝑖 ̸∈ {𝑗, 𝑘}. In this case, we have
(𝑢𝑖, 𝑣𝑖) ̸= (0, 0) for all 𝑖 ̸∈ {𝑗, 𝑘} and we cannot have both (𝑢𝑗 , 𝑣𝑗) = (0, 0) and
(𝑢𝑘, 𝑣𝑘) = (0, 0). Indeed, if it were the case then we would have

𝑥𝑗 = ℓ(𝑦𝑗 ⊕ 𝑦𝑘), 𝑦𝑗 = ℓ(𝑥𝑗 ⊕ 𝑥𝑘)
𝑥𝑘 = ℓ(𝑦𝑗 ⊕ 𝑦𝑘), 𝑦𝑘 = ℓ(𝑥𝑗 ⊕ 𝑥𝑘) ,

which in turn implies 𝑥𝑗 = 𝑥𝑘 and 𝑦𝑗 = 𝑦𝑘, leading to 𝑥𝑗 = 𝑥𝑘 = 𝑦𝑗 = 𝑦𝑘 = 0 and
thus to a contradiction.

Corollary 1. If 𝑤 > 2 then the differential branch number of ℳ𝑤 is 4. If 𝑤 = 2 then the
differential branch number of ℳ2 is 3. As a consequence, ℳ2 and ℳ3 are MDS.

3.5 On the Number of Steps
In this section, we outline the security margins depending on the number of steps of the
Sparkle instances used in the AEAD and hashing schemes. Each of our schemes employs
a big and a slim version of an underlying Sparkle permutation. For design simplicity, we
decided to use the same number of steps for the big permutations both in the AEAD and
hashing schemes, as well as the same number of steps for the slim permutations in both
functionalities.

We emphasize that the security evaluation with regard to differential and linear attacks
is based on the bounds obtained by the LTS and therefore the above margins are derived
under the worst-case assumption that differential and linear trails matching our bounds
exist. In other words, we did not find actual attacks on the (round-reduced) schemes that
correspond to those bounds and might actually be vastly overestimating the abilities of the
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adversary. Especially for the case where we had to use the worse bounds corresponding to
rate-to-anything trails in order to be as conservative as possible (see below), we expect a
much higher margin in practice.

3.5.1 In the Big Versions

We are aiming for security of Sparkle in the sense that no distinguishers exist with both
a time and data complexity lower than 2 𝑏

2 , where 𝑏 is the block size of the permutation in
bits. In particular, this means that we need 6, 7, and 7 steps of Sparkle256, Sparkle384
and Sparkle512, respectively, in order to prevent differential and linear distinguishers
based on the bounds of the LTS (see Tables 6 and 7). All other attacks that we evaluated
covered fewer steps. For the final choice of the number of steps, we added four steps as a
security margin for Sparkle256 and Sparkle384 (three steps for full diffusion plus one
additional step), and five steps as a security margin for Sparkle512 (since it is intended
for a higher security level), thus choosing 10, 11 and 12 steps for the big instances of
Sparkle256, Sparkle384 and Sparkle512, respectively. The reason for adding one,
resp., two additional step after the three steps for full diffusion is that we can easily afford
it without impacting the actual performance of our schemes significantly, thus leading to a
more conservative design. As the big versions of the permutations are used for initializing
the state with a secret key in the AEAD schemes, a more conservative approach seems
reasonable. It total, this gives us a security margin of 66%, 57% and 71%, respectively.

3.5.2 In the Slim Versions

The slim version of the Sparkle permutations are designed to offer security against
distinguishers in which the adversary can only control the outer part of the state when
the permutation is employed in a sponge. There are different security bounds to consider
depending on whether the permutation is employed in Schwaemm or Esch. For the AEAD
schemes Schwaemm, the domain separation constant that is XORed in the last block is in
the inner part. Therefore, the adversary could have the ability to inject a difference in the
inner part of the last padded block. In order to prevent attacks based on this possibility,
we consider the bounds in Table 8 corresponding to the “rate-to-anything” trails, i.e.,
where the input difference is constrained to be in the rate only, but the output difference
can be on the whole state. Note that we are using a big permutation for separating the
associated data processing from the message encryption part because the adversary might
be able to inject an input difference into the inner part of the last (padded) block through
the domain separation constant. For Esch, we consider the bounds corresponding to the
rate-to-rate trails (where the rate is always considered to be 𝑏

2 because of the indirect
injection). With regard to linear attacks, we use the bounds of the rate-to-rate trails given
in Table 9 for Esch. For Schwaemm, we have to use the bounds for the permutation (i.e.,
Table 7) because of the rate-whitening layer that introduces linear masks in the inner part.

Note that in Esch, the security level to achieve with regard to differential attacks is
𝑐
2 + 𝑟. The security level with regard to linear attacks in Schwaemm is determined by the
data limit.

Sparkle256 is only employed in our AEAD schemes. To offer a security level of
128 bits, for Sparkle256, we need five steps to prevent differential and linear attacks.
For differential attack, 5 steps are sufficient to prevent rate-to-anything differential trails
with a probability under 2−128 (see Table 8). For linear attacks, this bound is obtained
already after four steps assuming a data limit of 264 blocks. Recall that the estimated data
complexity for a linear attack is at least 1/𝑐2, where 𝑐 denotes the absolute correlation of
the linear approximation used. Hence, we need only to ensure an upperbound of 2−32 on
the absolute correlation of linear trails, see Table 7. The best distinguishers we found with
regard to other attacks in this sponge settings cover fewer steps (see Section 4.3).
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Sparkle384 is employed in three of our schemes. For Schwaemm256-128, we need a
security level of 128 bit for the underlying permutation, restricting the user to encrypt
at most 264 blocks with one key. The rate of the sponge is 𝑟 = 256 and four steps are
sufficient to prevent linear and differential distinguishers according to the LTS bounds.
Also, the longest of the other distinguishers we found covers no more than four steps. In
Schwaemm192-192, we need a security level of 192 bit for the underlying permutation,
restricting the user to encrypt at most 264 blocks with one key. The rate of the sponge
is 𝑟 = 192 and also four steps are sufficient to prevent linear distinguishers according
to the LTS bounds. To prevent differential distinguishers, six steps are sufficient for
rate-to-anything trails, and five steps for rate-to-rate trails. In Esch256, we need a security
level of 256 bit for the underlying permutation with regard to differential attacks and 128
bit with regard to linear attacks (but without the restriction of processing only 264 blocks
of data). The rate of the sponge is 𝑟 = 192 (because of indirect injection) and five steps
are sufficient to prevent differential attacks (using the bounds for rate-to-rate trails), and
four steps to prevent linear distinguishers according to the LTS bounds.

Finally, Sparkle512 is employed in two of our schemes. For Schwaemm256-256, we
need a security level of 256 bit for the underlying permutation, restricting the user to
encrypt at most 2128 blocks with one key. The rate of the sponge is 𝑟 = 256 and seven steps
are sufficient to prevent differential distinguishers according to the rate-to-anything bounds.
Note that five steps are sufficient if the output difference is in the rate only. With regard
to linear attacks, five steps are sufficient. Also, the longest of the other distinguishers we
found covers no more than four steps. In Esch384, we need a security level of 320 bit for
the underlying permutation with regard to differential attacks and 192 bit with regard to
linear attacks (but without the restriction of processing only 2128 blocks of data). The rate
of the sponge is 𝑟 = 256 (because of indirect injection) and we need six steps to prevent
differential distinguishers and five to prevent linear distinguishers, respectively, according
to the LTS bounds.

3.5.3 On the Differential and Linear Bounds

Our arguments rely on the bounds on the differential probability and the absolute linear
correlation obtained by applying a long-trail argument using the properties of our ARX-box
Alzette. These are conservative bounds: while our algorithms show that there cannot
exist any trail with a higher probability/correlation, it may very well be that the bounds
they find are not tight. In other words, while we cannot overestimate the security our
permutations provide against single trail differential and linear attacks, we may actually
underestimate it.

In fact, we think it is an interesting open problem to try and tighten our bounds as it
could only increase the trust in our algorithms. This tightening could happen at two levels:
first, we could try and obtain tighter bounds for the differential and linear properties of
Alzette alone and, second, we could look for actual trails for the Sparkle permutations.
Indeed, our bounds for Sparkle assume that there exists a trail where all transitions have
optimal probability that fits in every truncated trail. Again, this is a conservative estimate.
We may be overestimating the power the actual trails give to the adversary.

In both the differential and the linear case, experiments have been made at the ARX-box
level to try and estimate if there was any significant clustering of trails that might lead
the differential probability (respectively absolute correlation) to be significantly higher
than the differential trail probability (resp. trail absolute correlation), see [BBdS+19]. In
the differential case, this effect is minimal. In the linear case, it is small but observable.
However, in double iterations of Alzette, it is not sufficient that the input and output
patterns are known, we also need to constrain the values in the middle (i.e. in between
the two Alzette instances). As a consequence, we use the linear trail correlation bound and
not a bound that would take the double ARX-box level clustering into account.
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4 Security Analysis
4.1 Security Claims
Our proposed algorithms are secure to the best of our knowledge. We have done our best
not to introduce any flaw in their design. In particular, we did not purposefully put any
backdoor or other security flaw in our algorithms.

4.1.1 For Esch

We claim that Esch256 and Esch384 offer a security level of 𝑐
2 bits, where 𝑐 is both the

capacity and digest size, with regard to collision resistance, preimage resistance and second
preimage resistance. Our claim covers the security against length-extension attacks. We
impose the data limit of 2 𝑐

2 processed blocks (as collisions are likely to occur for more
data). In other words, a cryptanalytic result that qualifies as an attack violating the above
security claim should have a time complexity of at most 2 𝑐

2 executions of the underlying
permutation or its inverse.

For the XOFs, the security level is min{ 𝑐
2 , 𝑡

2} bits for collision resistance and min{ 𝑐
2 , 𝑡}

bits for (second) preimage resistance. The maximal allowed output length 𝑡 is the same as
the data limit.

4.1.2 For Schwaemm

The Beetle mode of operation offers a security level (in bits) of min
(︀
𝑟, 𝑟+𝑐

2 , 𝑐− log2(𝑟)
)︀

both for confidentiality (under adaptive chosen-plaintext attacks) and integrity (under
adaptive forgery attempts), where 𝑟 denotes the rate, and 𝑐 denotes the capacity. Note
that we claim security in the nonce-respecting setting, i.e., in which the adversary cannot
encrypt data using the same nonce twice.

Following the security bound of the Beetle mode and the choice of parameter in our
AEAD schemes, we claim a security level of 120 bits for Schwaemm256-128, where the
adversary is allowed to process at most 268 bytes of data (in total) under a single key. In
other words, a cryptanalytic result that qualifies as an attack violating this security claim
has a time complexity of at most 2120 executions of the underlying permutation or its
inverse and requires at most 268 blocks of data.9

Analogously, we claim a security level of 184 bits for Schwaemm192-192, where
the adversary is allowed to process at most 268 byte of data under a single key. For
Schwaemm128-128 we claim a security level of 120 bits,10 where the adversary is allowed
to process at most 268 byte of data under a single key. Finally, for Schwaemm256-256 we
claim a security level of 248 bits, where the adversary is allowed to process at most 2133

byte of data under a single key.

Nonce Misuse Setting. The above security claims are void in cases where nonces are
reused. As noted in [VV17], authenticated ciphers based on duplexed sponge constructions
are vulnerable to CPA decryption attacks and semi-universal forgery attacks in the nonce-
misuse setting. For instance, an encryption of 𝑀 = 0𝑟 under (𝐾, 𝑁, 𝐴) leaks the rate
part of the internal state for processing the first message block as the ciphertext.This
information can be used to decrypt another ciphertext obtained under the same tuple
(𝐾, 𝑁, 𝐴).

However, because we employ a strong permutation in the initialization and a per-
mutation in the absorption that is strong when the adversary can only control the rate

9We first set the data limit as 264 blocks for all instances except for Schwaemm256-256 but then
decided to replace 269 bytes by 268 to have more consistency between the algorithms.

10While Beetle allows us to claim 121 bits, we claim only 120 in order to have a security level consistent
with Schwaemm256-128.
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part, we believe that a full state recovery attack is hard to mount in practice even in the
nonce-misuse setting. We therefore expect some reasonable security against key recovery
attacks even under reuse of nonces. Moreover, we expect the security with regard to privacy
and integrity to still hold under misuse of nonces if it is guaranteed that the associated
data is unique for each encryption. In that way, the associated data itself would serve as a
nonce before invoking the encryption process of the secret messages. We emphasize that
this statement about nonce misuse robustness is not part of our formal security claim and
therefore, we strongly recommend to only use the algorithm under unique nonces.

Known-key Attacks. In the secret-key setting, Beetle guarantees security level close to
the capacity size. However, in the known-key setting, the security drops to half of the
capacity size. Indeed, a classical meet-in-the-middle attack in the sponge becomes possible.
It allows an attacker to find collisions and preimages (in the case where the tag is squeezed
in one step) with birthday complexity. We stress that such attacks are possible in all
sponge-based modes.

We are not aware of usage scenarios of authenticated encryption which require known-
key security. Therefore, we do not claim any known-key security of the Schwaemm
family.

4.1.3 For the Sparkle Permutations

We make formal claims only for the big versions. For Sparkle25610, we claim that
there are no distinguishers with both a time and data complexity lower than 2128. For
Sparkle38411, we claim that there are no distinguishers with both a time and data
complexity lower than 2192. For Sparkle51212, we claim that there are no distinguishers
with both a time and data complexity lower than 2256.

The slim version of the Sparkle permutations are designed to offer security against
distinguishers in which the adversary can only control part of the state, in particular the
part corresponding to the rate 𝑟 when the permutation is employed in a sponge. We
emphasize that those slim versions should not be used on their own or in other constructions
that are not the sponge-based ones presented in this paper unless a proper security analysis
is done.

4.1.4 Targets for Cryptanalysis

We encourage cryptanalysts to study variants of Esch and Schwaemm with fewer steps
or a decreased capacity. Particularly, for hashing, we define the targets (𝑠,𝑏)-Esch256 and
(𝑠,𝑏)-Esch384, which instantiate a version of Esch256, resp., Esch384 using 𝑠 steps in
the slim and 𝑏 steps in the big permutation.

Similarly, for authenticated encryption, we define the members (𝑠,𝑏)-Schwaemm𝑟-𝑐,
which instantiates a version of Schwaemm𝑟-𝑐 using 𝑠 steps in the slim and 𝑏 steps in the
big permutation. Note that those additional members should not be used for hashing,
resp., encryption, they just define possible targets for cryptanalysis.

4.2 Attacks Against the Permutation
We evaluated the security of the Sparkle permutation family against several attack
vectors, listed in Table 5, with regard to our security claim stated above. Note that in the
attacks considered here the adversary can control the whole permutation state, not only
the part corresponding to the rate when the permutation is used in a sponge.

Besides the attacks listed in Table 5, we conducted several statistical tests on the
Sparkle permutations. In particular, we tested for diffusion properties, the distribution
of low-weight monomials in the algebraic normal form and the resistance against slide
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attacks. In this paper, we only focus on differential and linear attacks. For the security
evaluation with regard to the other attack vectors, we refer to the official NIST submission.
Supporting cryptanalysis code can be found at https://github.com/cryptolu/sparkle.

Table 5: This table lists upper bounds on the number of steps for which we found an
attack, or for which the differential and linear bounds are too low to guarantee security,
breaking a security level of 𝑏

2 bits, where 𝑏 denotes the block size, with regard to several
attack vectors. The numbers for differential and linear attacks correspond to the bounds
given in Table 6 and Table 7.

Attack Ref. Sparkle256 Sparkle384 Sparkle512

Differential cryptanalysis [BS91] 4 5 6
Linear cryptanalysis [Mat94] 5 6 6
Boomerang attacks [Wag99] 3 4 5
Truncated differentials [Knu95] 2 2 3
Yoyo games [BBD+99] 4 4 4
Impossible differentials [Knu98, BBS99] 4 4 4
Zero-correlation [BR14] 4 4 4
Integral and Division property [DKR97, KW02, Tod15] 4 4 4

# steps slim 7 7 8
# steps big 10 11 12

4.2.1 Differential Attacks

Bounding the MEDCP In order to bound the MEDCP for the whole permutation, we
use a long trail argument. First, we enumerate all the truncated trails defined at the
branch level (i.e., a branch is active or inactive) that are compatible with the linear layer.
For each such truncated trail, we partition it into long trails and then deduce a bound on
the probability of all the trails that fit into this truncated trail using the probability that
were established for Alzette (see Section 3.3).

In practice, a truncated trail is a sequence of binary vectors 𝑑𝑖 of length 𝑛𝑏 where,
in our case, 𝑛𝑏 ∈ {4, 6, 8}. Furthermore, the structure of the linear layer significantly
constrains the value of 𝑑𝑖+1 knowing 𝑑𝑖. Indeed, half of the bits have to be identical
(corresponding to those that do not receive a XOR), and the output of the Feistel function
itself is constrained by Theorem 1. As a consequence, we can implement the exploration
of all truncated trails as a tree search with the knowledge that each new step will multiply
the number of branches at most by 2𝑛𝑏/2 ∈ {4, 8, 16}.

We can simplify the search further using tricks borrowed from Matsui’s algorithm 1. We
can for example fix a threshold for the probability of the differential trail we are interested
in, thus allowing us to cut branches as soon as the probability of the trails they contain
is no longer bounded by the given threshold. If this threshold is higher than the actual
bound, the search will return a correct result and it will do so faster.

We have implemented the long trail argument in this way to bound the differential
probability in a permutation with the structure used in the Sparkle family. The bounds
for the permutations we have obtained using the bounds for our 4-round Alzette instances
are given in Table 6.

4.2.2 Linear Attacks

For linear attacks, we can use essentially the same analysis as for differential attacks. The
only difference is that we need to replace the linear layer of Sparkle by the transpose of
its inverse. The linear layer can be written as ℒ𝑛𝑏

= ℱ ×ℛ× 𝒮 where ℱ corresponds to
the Feistel function, ℛ to the rotation applied to the branches on the right side and 𝒮 to

https://github.com/cryptolu/sparkle
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Table 6: The quantity − log2(𝑝) where 𝑝 is the differential bound for several steps of
Sparkle for different block sizes. For 1 and 2 steps, we always have that − log2(𝑝) is
equal to 6 and 32 respectively.

𝑛 ∖ steps 3 4 5 6 7 8 9 10 11 12 13

256 64 88 140 168 192 216 ≥ 256 ≥ 256 ≥ 256 ≥ 256 ≥ 256
384 70 100 178 200 230 260 326 356 ≥ 384 ≥ 384 ≥ 384
512 76 112 210 232 268 276 295 424 433 496 ≥ 512

the swap of the branches on the left and right sides. For example, for Sparkle384, they
correspond to the following block matrices:

𝒮 =

⎡⎢⎢⎢⎢⎢⎢⎣
ℐ
ℐ
ℐ

ℐ
ℐ
ℐ

⎤⎥⎥⎥⎥⎥⎥⎦ ,ℛ =

⎡⎢⎢⎢⎢⎢⎢⎣
ℐ
ℐ
ℐ

ℐ
ℐ

ℐ

⎤⎥⎥⎥⎥⎥⎥⎦
and

ℱ =

⎡⎢⎢⎢⎢⎢⎢⎣
ℐ

ℐ
ℐ

ℐ + ℓ′ ℓ′ ℓ′ ℐ
ℓ′ ℐ + ℓ′ ℓ′ ℐ
ℓ′ ℓ′ ℐ + ℓ′ ℐ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ℓ′(𝑥, 𝑦) = ℓ(𝑦), ℓ(𝑥). We thus have that (ℒ𝑇
𝑛𝑏

)−1 = (ℱ𝑇 )−1 × (ℛ𝑇 )−1 × (𝒮𝑇 )−1. We
can simplify this expression using that:

• ℱ is an involution, so that (ℱ𝑇 )−1 = ℱ𝑇 ,

• ℛ is orthogonal, so that (ℛ𝑇 )−1 = ℛ, and

• 𝒮 = 𝒮−1 = 𝒮𝑇 , so that (𝒮𝑇 )−1 = 𝒮.
We deduce that (ℒ𝑇

𝑛𝑏
)−1 = (ℱ𝑇 ) × ℛ × 𝒮. The permutation ℱ𝑇 has the following

representation

ℱ𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣
ℐ ℐ + ℓ′𝑇 ℓ′𝑇 ℓ′𝑇

ℐ ℓ′𝑇 ℐ + ℓ′𝑇 ℓ′𝑇

ℐ ℓ′𝑇 ℓ′𝑇 ℐ + ℓ′𝑇

ℐ
ℐ

ℐ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

i.e. it is a Feistel function going from the right to the left and where ℳ𝑤 is replaced with
its transpose. As we established in Lemma 3, this transpose is in fact ℳ𝑤 itself.

As a consequence, we can reuse the long trail argument that we introduced for the
differential case (see Section 4.2.1) and we can further reuse the corresponding algorithm.
However, we need to modify it so that the Feistel function goes in the other direction. The
bound on the maximum expected absolute linear trail correlation we obtained with this
modified program is given in Table 7.

As argued in Section 3.5.3, the slight clustering observed in the double iteration of
Alzette does not mean that the absolute correlation of trails is a bad approximation of the
absolute correlations in the permutation. Indeed, in each double iteration of Alzette, either
the mask in the middle enters the linear Feistel function or it is XORed with another mask.
Hence, the clustering at the double ARX-box level does not really matter (especially as it
is low in our case), it is the one at the single ARX-box level (which is negligible here).
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Table 7: The quantity − log2(𝑝) where 𝑝 is the linear bound for several steps of Sparkle
for different block sizes. For 1 and 2 steps, we always have that − log2(𝑝) is equal to 2 and
17 respectively.

𝑛 ∖ steps 3 4 5 6 7 8 9 10 11 12 13

256 23 42 57 72 91 106 125 ≥ 128 ≥ 128 ≥ 128 ≥ 128
384 25 46 76 89 110 131 161 174 ≥ 192 ≥ 192 ≥ 192
512 27 50 93 106 129 152 195 208 231 254 ≥ 256

4.3 Attacks Against the Sponge
When absorbing message blocks, we prefer to inject them as branches on the left side of
the integral state. There are several reasons for this:

1. these branches are those that will go in the Feistel function the soonest, thus ensuring
a quick diffusion of the message blocks in the state,

2. these branches will undergo a double iteration of Alzette right away, meaning that it
will be harder for an attacker to control what happens to these branches, and

3. an attacker who wants for instance to find a collision needs to have some control
over the branches which receive the blocks injected in the state. By having those
be on the left, we ensure that these branches have just received a XOR from the
linear Feistel function, and thus that they depend on all the branches that are on the
right side at the time of injection. This property makes it harder for an attacker to
propagate information backwards or to ensure that some pattern holds right before
block injection.

When the rate is higher than a half of the state, we first use all the branches on the left as
the inner part and then complete it with as many branches from the right as needed.

4.3.1 Differential Attacks

To study the security of a sponge against differential attacks, we estimate the security
parameter for which vanishing differences become unfeasible for an increasing number of
steps in the sponge permutation.

First, we observe that the probability Pvanish(𝑎) of a differential trail covering 𝑎 absorp-
tions with a sponge with 𝑟 steps is upper-bounded by 𝑈𝑎

𝑟 , where 𝑈𝑟 is an upper bound on
the probability of all differentials for the 𝑟 step permutation, unless the difference cancels
out at some absorptions. For Sparkle, such bounds are provided in Table 6. Let 𝑠 be the
security parameter we aim for. If (𝑈𝑟)2 < 2−𝑠, then the only way for a vanishing absorbed
trail to exist with probability higher than 2−𝑠 is for it to correspond to two absorptions,
i.e., that the second absorption cancels the difference in the state of the sponge after the
absorption of the first difference.

As a consequence, we can restrict our search for absorbed trails to those that have both
an input and an output that is fully contained in the rate of the sponge. The program
we used to enumerate all truncated trails to implement a long trail argument is easily
modified to only take into account such trails. Then, we upper bound the probability of
all the corresponding trail using the same approach as before and we obtain Table 8.

Note that while the rate of both Esch256 and Esch384 is equal to 128 bits, it is
necessary to look at 𝑛 = 384, 𝑟 = 192 for Esch256 and 𝑛 = 512, 𝑟 = 256 for Esch384.
Indeed, the indirect injection means that the input and output difference must be over
the leftmost 3 and 4 branches respectively. Still, as we can see in Table 8, it makes little
difference in terms of differential trail probability. Furthermore, it would be necessary for
an attacker to find trails that start and end in a specific subspace of the left half of the
state.
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Table 8: The quantity − log2(𝑝) where 𝑝 is an upper bound on the probability of a
differential trail over one call to Sparkle where both the input and the output differences
are fully contained in the rate. The ∅ symbols means that such trails impossible. 𝑟 → 𝑟
denotes “rate to rate” trails and 𝑟 → 𝑛 denotes trails where the input is in the rate but
the output is not constrained.

𝑛 𝑟 𝑐 (security) Type 3 4 5 6 7 8

256

𝑛→ 𝑛 64 88 140 168 192 216

192 64
𝑟 → 𝑟 76 108 140 168 204 232
𝑟 → 𝑛 64 108 140 168 192 232

128 128
𝑟 → 𝑟 96 128 192 192 224 ≥ 256
𝑟 → 𝑛 96 116 140 172 212 244

64 192
𝑟 → 𝑟 ∅ 128 192 192 ≥ 256 ≥ 256
𝑟 → 𝑛 96 128 148 172 212 ≥ 256

384

𝑛→ 𝑛 70 100 178 200 230 260

256 128
𝑟 → 𝑟 108 148 180 200 268 296
𝑟 → 𝑛 70 140 178 200 230 296

192 192
𝑟 → 𝑟 128 160 256 256 288 320
𝑟 → 𝑛 128 148 178 210 276 306

128 256
𝑟 → 𝑟 128 160 256 256 320 320
𝑟 → 𝑛 128 160 180 210 276 306

64 320
𝑟 → 𝑟 ∅ 160 256 256 320 320
𝑟 → 𝑛 128 160 180 210 276 306

512

𝑛→ 𝑛 76 112 210 232 268 276

256 256
𝑟 → 𝑟 160 192 256 320 352 416
𝑟 → 𝑛 134 172 212 248 332 372

128 384
𝑟 → 𝑟 ∅ 192 256 320 352 384
𝑟 → 𝑛 134 172 212 248 332 376

64 448
𝑟 → 𝑟 ∅ 192 320 320 384 384
𝑟 → 𝑛 160 192 212 248 340 376

4.3.2 Linear Attacks

Using a reasoning identical to the one we used above in the differential case, we can
restrict ourselves to the case where the input and output masks are restricted to the
outer part of the sponge. Doing so, we can look at all the linear trails that would yield
linear approximations connecting the outer parts of the internal state before and after a
call to the Sparkle permutation. If this absolute correlation is too high, it could lead
for instance to observable biases in a keystream generated using a Schwaemm instance.
Table 9 bounds such probabilities.

5 Implementation Aspects

5.1 Software Implementations

This section presents some characteristics of Sparkle, with a focus on software implemen-
tations.
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Table 9: The quantity − log2(𝑝) where 𝑝 is an upper bound on the absolute correlation
of a linear trail connecting the rate of the input with the rate of the output of various
Sparkle instances. The ∅ symbols means that the trails connecting the rate to itself are
impossible.

𝑛 𝑟 𝑐 (security) 3 4 5 6 7

256
192 64 23 42 57 76 91
128 128 23 55 74 76 91
64 192 59 55 89 89 123

384

256 128 25 46 76 97 110
192 192 25 72 93 97 110
128 256 42 72 108 110 142
64 320 ∅ 72 123 123 157

512
256 256 27 78 97 129 129
128 384 ∅ 89 110 142 161

5.1.1 Alzette

The ARX-box Alzette is an important part of Sparkle, and as such, was designed to
provide good security bounds, but also efficient implementation. The rotation amounts
have been carefully chosen to be a multiple of eight bits or one bit from it. On 8 or 16 bit
architectures these rotations can be efficiently implemented using move, swap, and 1-bit
rotate instructions. On ARM processors, operations of the form z ← x <op> (y ≪ n)
can be executed with a single instruction in a single clock cycle, irrespective of the rotation
distance.

Alzette itself operates over two 32-bit words of data, with an extra 32-bit constant
value. This allows the full computation to happen in-register in AVR, MSP and ARM
architectures, whereby the latter is able to hold at least 4 Alzette instances entirely in
registers. This, in turn, reduces load-store overheads and contributes to the performance
of the permutation.

The consistency of operations across branches, which means that each branch executes
the same sequence of instructions, allows one to either focus on small code size (by
implementing the Alzette layer in a loop), or on architectures with more registers, execute
two or more branches to exploit instruction pipelining.

Algorithm 8 The 𝑤-branch permutation
used in ℒ𝑤

Input/Output: (𝑍0, ..., 𝑍𝑤−1) ∈ (F64
2 )𝑤

𝑍 ′ ← 𝑍0
for all 𝑖 ∈ {1, ..., 𝑤/2− 1} do

𝑍𝑖−1 ← 𝑍𝑖+𝑤/2
𝑍𝑖+𝑤/2 ← 𝑍𝑖

end for
𝑍𝑤/2 = 𝑍 ′

return (𝑍0, ..., 𝑍𝑤−1)

This consistency of operations also al-
lows some degree of parallelism, namely
by using Single Instruction Multiple
Data (SIMD) instructions. SIMD is a
type of computational model that ex-
ecutes the same operation on multi-
ple operands. The branch structure of
Sparkle makes it possible to manipulate
the state through SIMD instructions. In
addition, the small size of the state also
allows it to fit in the most popular SIMD
engines, such as ARM’s NEON and In-
tel’s SSE or AVX. Due to the layout of
Alzette a SIMD implementation can be created by packing 𝑥0 . . . 𝑥𝑛𝑏

, 𝑦0 . . . 𝑦𝑛𝑏
, and

𝑐0 . . . 𝑐𝑛𝑏
each in a vector register. That allows 128-bit SIMD architectures such as NEON

to execute four Alzette instances in parallel, or even eight instances when using x86 AVX2
instructions.
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5.1.2 Linear Layer

It is, of course, possible to implement the branch permutation at the end of the linear
layer in a straightforward way via a 1-branch left-rotation of the right half, followed by
a swap of the left and right branches. However, it is more efficient to combine both
operations and implement them with a single loop as shown in Algorithm 8. The optimized
C implementation of Sparkle given in Appendix C follows this approach. Both the
rotation and swap can be carried out implicitly (and do not cost any clock cycles) when
Sparkle is fully unrolled, though this comes at the expense of significantly increased code
size. For example, the linear layer of a fully-unrolled implementation of Sparkle384 has
an execution time of only 18 clock cycles on a 32-bit ARM Cortex-M3 microcontroller.

5.1.3 Parameterized Implementations

Parameterized implementations, offering support to all instances of the algorithm, are
easily done and contribute to a small code size. It also facilitates the writing of macro-based
code that compiles binaries for a specific instance. An implementation of Sparkle can be
parameterized by the number of rounds and branches. Schwaemm implementations need
only the rate, capacity, and round numbers. Similarly, Esch needs only the number of
branches and steps. Beyond that, a single implementation of Sparkle is sufficient for all
instances of Schwaemm and Esch, making optimization, implementation, and testing
easier.

5.2 Hardware Implementation
Both Esch and Schwaemm have a number of properties and features that facilitate efficient
hardware implementation, especially when small silicon area is the main design goal. As
already mentioned in Section 1.2, an important characteristic of Esch and Schwaemm is
the relatively small size of their state (e.g., 256 bits in the case of Schwaemm128-128). A
minimalist hardware architecture for Esch or Schwaemm (or both) optimized for small
silicon area consists of three main components: (i) a small RAM module (with two 32-bit
read ports and a 32-bit write port) that is word-addressable and large enough to hold
the state words, (ii) a 32-bit ALU capable to execute all arithmetic/logical operations
performed by the Sparkle permutation, and (iii) a control unit, which can, for example,
take the form of a hard-wired or a microcode-programmable state machine. Of course,
implementations that support both Esch and Schwaemm can share components like the
state-RAM or the ALU.

The 32-bit ALU has to be able to execute the following set of basic arithmetic/logical
operations: 32-bit XOR, addition of 32-bit words, and rotations of a 32-bit word by four
different amounts, namely 16, 17, 24, and 31 bits. Since there are only four different
rotation amounts, the rotations can be simply implemented by a collection of 32 4-to-1
multiplexers. There exist a number of different design approaches for a 32-bit adder; the
simplest variant is a conventional Ripple-Carry Adder (RCA) composed of 32 Full Adder
(FA) cells. RCAs are very efficient in terms of area requirements, but their delay increases
linearly with the bit-length of the adder. Alternatively, if an implementation requires a
short critical path, the adder can also take the form of a Carry-Lookahead Adder (CLA)
or Carry-Skip Adder (CSA), both of which have a delay that grows logarithmically with
the word size. On the other hand, when reaching small silicon area is the main goal, one
can “re-use” the adder for performing XOR operations. Namely, an RCA can output the
XOR of its two inputs by simply suppressing the propagation of carries, which requires an
ensemble of 32 AND gates. In summary, a minimalist ALU consists of 32 FA cells, 32 AND
gates (to suppress the carries if needed), and 32 4-to-1 multiplexers (for the rotations).
To minimize execution time, it makes sense to combine the addition (resp. XOR) with
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a rotation into a single operation that can be executed in a single clock cycle. In some
sense, the 32-bit ALU for Sparkle can be seen as a stripped-down variant of the ALU of
a 32-bit ARM processor whose functionality has been reduced to the six basic operations
mentioned at the beginning of this paragraph.

5.3 Protection against Side-Channel Attacks
A straightforward implementation of a symmetric cryptosystem such as Schwaemm is
normally vulnerable to side-channel attacks, in particular to Differential Power Analysis
(DPA). Timing attacks and conventional Simple Power Analysis (SPA) attacks are a lesser
concern since the specification of Schwaemm does not contain any conditional statement
(e.g. if-then-else clauses) that depend on secret data. A well-known and widely-used
countermeasure against DPA attacks is masking, which can be realized in both hardware
and software. Masking aims to conceal every key-dependent variable with a random value,
called mask, to decorrelate the sensitive data of the algorithm from the data that is actually
processed on the device. The basic principle is related to the idea of secret sharing because
every sensitive variable is split up into 𝑛 ≥ 2 “shares” so that any combination of up to
𝑑 = 𝑛− 1 shares is statistically independent of any secret value. These 𝑛 shares have to
be processed separately during the execution of the algorithm (to ensure their leakages are
independent of each other) and then recombined in the end to yield the correct result.

Depending on the actual operation to be protected against DPA, a masking scheme
can be Boolean (using logical XOR), arithmetic (using modular addition or modular
subtraction) or multiplicative (using modular multiplication). Since Schwaemm is an
ARX design and, consequently, involves arithmetic and Boolean operations, the masks
have to be converted from one form to the other without introducing any kind of leakage.
There exists an abundant literature on mask conversion techniques and it is nowadays
well understood how one can convert efficiently from arithmetic masks to Boolean masks
and vice versa, see e.g. [CGV14]. An alternative approach is to compute the arithmetic
operations (i.e. modular addition) directly on Boolean shares as described in e.g. [CGTV15].
The development of masked implementations of Schwaemm in hardware and software, as
well as detailed analysis of the performance impact of masking, is part of our future work.

5.4 Implementation Results
We developed reference and optimized C implementations of all instances of Schwaemm
and Esch, as well as assembler implementations of the Sparkle permutation for 8-bit
AVR ATmega and 32-bit ARM Cortex-M microcontrollers. The AVR assembler code for
Sparkle is parameterized with respect to the number of branches and the number of
steps, and complies with the interface of the optimized C implementation. Therefore, the
assembler implementation can serve as a “plug-in” replacement for the optimized C code
to further increase the performance on AVR devices. Thanks to the parameterization,
the assembler implementation of Sparkle provides the full functionality needed by the
different instances of Schwaemm and Esch.

In contrast to AVR, we developed separate assembler implementations for Sparkle256,
Sparkle384, and Sparkle512 for ARM, which are “branch-unrolled” in the sense that the
number of branches is hard-coded and not passed as argument anymore. However, all three
ARM assembler implementations are still parameterized by the number of steps so that one
and the same assembler function is capable to support both the slim and big number of steps
specified in Table 1. The main reason why it makes sense to develop three branch-unrolled
Assembler implementations of Sparkle for ARM but not for AVR is the large register space
of the former architecture, which is capable to accommodate the full state of Sparkle256
and Sparkle384, thereby significantly reducing the number of load/store operations.
Unfortunately, this approach for optimizing the two smaller Sparkle instances can not be
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applied in a single branch-parameterized assembler function. It is nonetheless possible to
have a “plug-in” assembler replacement for the fully-parameterized C implementation of
the Sparkle permutation by writing a wrapper over the three Sparkle functions that
has the same interface as the C implementation (i.e. this wrapper is parameterized by
both the number of steps and the number of branches). The wrapper simply checks the
number of branches and then calls the corresponding variant of the assembler function,
i.e. Sparkle256 when the number of branches is 4, Sparkle384 when the number of
branches is 6, and Sparkle512 when the number of branches is 8.

The execution times and throughputs of our assembler implementations of the Sparkle
permutation for AVR and ARM are summarized in Table 10. On AVR, the assembler
code is approximately four times faster than the optimized C code (compiled with avr-gcc
5.4.0), which is roughly in line with the results observed in [CDG19]. The main reasons
for the relatively bad performance of the compiled code are a poor register allocation
strategy (which causes many unnecessary memory accesses) and the non-optimal code
generated for the rotations compared to hand-optimized assembler code. Our AVR
assembler implementation is also relatively small in terms of code size (702 bytes) and
occupies only 21 bytes on the stack (for callee-saved registers). All execution times for
AVR were determined with help of the cycle-accurate instruction set simulator of Atmel
Studio 7 using the ATmega128 microcontroller as target device.

Table 10: Performance of the Sparkle permutations on an 8-bit AVR ATmega128 and
a 32-bit ARM Cortex-M3 microcontroller. The results are given in cycles/byte, with
the number inside parentheses representing the total cycle count for an execution of the
permutation (including function-call overhead).

Permutation Rounds
AVR ARM

C asm C asm

Sparkle256
7 (slim) 697 (22305) 179 ( 5728) 46 (1487) 19 ( 615)
10 (big) 992 (31761) 254 ( 8146) 66 (2111) 27 ( 858)

Sparkle384
7 (slim) 680 (32679) 173 ( 8318) 45 (2173) 20 ( 935)
11 (big) 1066 (51215) 271 (13022) 71 (3397) 30 (1435)

Sparkle512
8 (slim) 768 (49169) 194 (12454) 51 (3263) 24 (1529)
12 (big) 1150 (73633) 291 (18638) 76 (4879) 35 (2269)

The performance gap between the compiled C code and the hand-written assembler
code is a bit smaller on ARM, namely a factor of roughly 2.5 when executed on a Cortex-M3.
However, it has to be taken into account that the assembler functions are “branch-unrolled,”
whereas the C version is fully parameterized. The C implementation was compiled with
Keil MicroVision v5.24.2.0 using optimization level -O2. Obviously, the large register space
and the “free” rotations of the ARM architecture make it easier for a compiler to generate
efficient code. The binary code size of the assembler implementations of Sparkle for ARM
ranges between 348 and 628 bytes and they occupy at most 48 bytes on the stack, of which
40 bytes are due to callee-saved registers (see Table 11). All execution times for ARM
specified in Table 10 were obtained with the cycle-accurate instruction set simulator of Keil
MicroVision using a generic Cortex-M3 model as target device11. It should be noted that
these ARM assembler implementations are optimized to achieve a balance between small

11As mentioned on http://www2.keil.com/mdk5/simulation, the Keil simulator assumes ideal conditions
for memory accesses and does not simulate wait states for data or code fetches. Therefore, the timings in
Table 10 should be seen as lower bounds of the actual execution times one will get on a real Cortex-M3
device. The fact that the Keil simulator does not take flash wait-states into account may also explain why
our simulated execution time for the Gimli permutation (1041 cycles) differs slightly from the 1047 cycles
specified in Section 5.5 of [BKL+17].

http://www2.keil.com/mdk5/simulation
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code size and high speed, which means we refrained from optimization techniques that
would increase the code size significantly, like full loop unrolling (i.e. unrolling not only the
branches but also the steps). An aggressively speed-optimized assembler implementation
with fully unrolled loops can be a bit faster, not only due to the elimination of the overhead
of the step-loop, but also because the execution time of the linear layer can be further
reduced (concretely, the 1-branch left-rotation of the right-side branches in the linear layer
could be done “implicitly”).

Table 11: Code size and stack consumption of the Sparkle permutations on a 32-bit ARM
Cortex-M3 microcontroller. The code size is given as the number of bytes the permutation
occupies in the text segment plus the 32 bytes for the round constants.

Permutation Code Size (byte) Stack Usage (byte)

Sparkle256 316+32 40
Sparkle384 452+32 48
Sparkle512 596+32 48

Table 12: Comparison of fully unrolled ARMv7-M Assembler implementations of the per-
mutations of Ascon, Sparkle384, Gimli and Xoodoo on a Cortex-M3 microcontroller.

Permutation Code Size (byte) Time (cycles) Time/Rate (cycles/byte)

Ascon (8 rounds) 1928 494 30.88
Gimli (24 rounds) 3950 1041 65.06
Sparkle384 (7 steps) 2820 781 24.40
Xoodoo (12 rounds) 2376 657 27.38

Besides Sparkle a multitude of other permutation-based designs were submitted
to the NIST lightweight cryptography standardization process. Three of those designs,
namely Ascon, Gimli, and Xoodoo, come with optimized (i.e. fully unrolled) assembler
implementations of the underlying permutation for the Cortex-M series of ARM microcon-
trollers. Table 12 compares the execution time and code size of the permutations of Ascon,
Gimli and Xoodoo with a fully-unrolled version of Sparkle384, the main instance of
Sparkle12. The full loop unrolling reduces the execution time of Sparkle384 from 935
to 781 clock cycles, but this reduction by 154 cycles comes at the expense of an almost
six-fold increase of code size. Also given in Table 12 is the throughput (in cycles per byte)
of the permutations, which is simply the execution time of the permutation divided by
the rate of the main instance of the corresponding AEAD algorithm (16 bytes for Ascon
and Gimli, 32 bytes for Schwaemm256-128, and 24 bytes for Xoodyak). Sparkle384
achieves the highest throughput, closely followed by Xoodoo and Ascon. Gimli reaches
less than half of the throughput of of the other three permutations, but it has to be taken
into account that the Gimli AEAD algorithm aims for 256 bits of security.

Table 13 shows the AVR execution times and throughputs of the different Schwaemm
and Esch instances when processing a small amount (64 bytes) and a large amount
(1536 bytes) of data, respectively. As before, all execution times were obtained with the
cycle-accurate simulator of Atmel Studio 7 using an ATmega128 as target device. The
results in the “C + asm” columns refer to a C implementation that uses the hand-written
assembler code for the Sparkle permutation. Table 14 summarizes the corresponding
results for an ARM Cortex-M3 device.

12We took the ARM Assembler source code of Gimli from http://gimli.cr.yp.to/gimli-20170627.tar.
gz and converted it from the GNU syntax to the Keil syntax. The source code of Xoodoo contained in the
eXtended Keccak Code Package (XKCP) at http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo
was already in Keil syntax.

http://gimli.cr.yp.to/gimli-20170627.tar.gz
http://gimli.cr.yp.to/gimli-20170627.tar.gz
http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo
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Table 13: Benchmarking results for the different instances of Schwaemm and Esch on an
AVR ATmega128 microcontroller when processing 64 and 1536 bytes of data, respectively
(in the case of Schwaemm the benchmarked operation is encryption and the length of
the associated data is 0). The results are given in cycles/byte, with the number inside
parentheses representing the total cycle count for processing the specified amount of data.

Instance
64 bytes of data 1536 bytes of data

Pure C C + asm Pure C C + asm

Schwaemm128-128 2444 (156416) 712 (45583) 1421 (2182899) 387 (594898)
Schwaemm256-128 2105 (134748) 596 (38166) 1071 (1644606) 302 (464347)
Schwaemm192-192 2594 (165994) 727 (46526) 1399 (2148858) 395 (606716)
Schwaemm256-256 3014 (192918) 839 (53704) 1574 (2417064) 434 (666554)

Esch256 2714 (173678) 893 (57187) 1978 (3038834) 559 (860071)
Esch384 4732 (302837) 1308 (83725) 2992 (4595649) 830 (161717)

Table 14: Benchmarking results for the different instances of Schwaemm and Esch on an
ARM Cortex-M3 microcontroller when processing 64 and 1536 bytes of data, respectively
(in the case of Schwaemm the benchmarked operation is encryption and the length of
the associated data is 0). The results are given in cycles/byte, with the number inside
parentheses representing the total cycle count for processing the specified amount of data.

Instance
64 bytes of data 1536 bytes of data

Pure C C + asm Pure C C + asm

Schwaemm128-128 148 ( 9491) 69 (4384) 101 (155495) 46 (70440)
Schwaemm256-128 154 ( 9851) 74 (4715) 77 (118917) 37 (57109)
Schwaemm192-192 189 (12066) 89 (5698) 100 (153597) 47 (72077)
Schwaemm256-256 219 (14029) 111 (7072) 113 (173051) 56 (86284)

Esch256 198 (12654) 90 ( 5774) 114 (221678) 66 (101454)
Esch384 341 (21847) 165 (10561) 216 (332623) 105 (161717)

In order to compare the performance of Esch256 (using the assembler implementation
of Sparkle as sub-function) with that of other (lightweight) hash functions, we simulated
the time it needs to hash a 500-byte message on an 8-bit AVR ATmega128 microcontroller.
According to our simulation results, the mixed C and assembler implementation of Esch256
has an execution time of 289131 clock cycles, which translates to a hash rate of 578
cycles/byte. The binary code size of Esch256 is 1428 bytes. Table 15 summarizes the
implementation results of Esch256, SHA-2, SHA-3, some SHA-3 finalists, as well as
Gimli[BKL+17]. Our hash rate of 578 cycles/byte for Esch256 compares favorably with
the results of the SHA-3 finalists and is beaten only by Blake-256 and SHA-256. However,
it must be taken into account that the results reported in [BEE+13] were obtained with
“pure” assembler implementations, whereas Esch256 contains hand-optimized assembler
code only for the Sparkle permutation. We expect that a fully-optimized implementation
of Esch256 with all its components written in assembler has the potential to be faster than
Blake-256 and get very close to (or even outperform) SHA-256. Such a “pure” assembler
implementation of Esch256 is part of our future work and will be made available on the
Sparkle homepage at http://cryptolux.org/index.php/Sparkle.

A comparison of the performance of hash functions is easily possible because there
exists a number of implementation results in the literature (e.g. [BEE+13]) that were
obtained in a consistent fashion. In particular, determining the execution time required
for hashing a 500-byte message on AVR is a well-established way to generate benchmarks
for a comparison of lightweight hash functions. Unfortunately, there seems to be no

http://cryptolux.org/index.php/Sparkle
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Table 15: Comparison of Esch256 with other hash functions producing a 256-bit digest.
The number of cycles and the throughput were obtained by hashing a 500-byte message
on an AVR microcontroller. The implementation of Esch256 contains hand-optimized
assembler code only for the permutation, whereas the implementations of all other hash
functions were written entirely in assembler.

Hash function Ref. Throughput (c/b) Code size (b)

Esch256 This paper 578 1428

Blake-256 [BEE+13] 562 1166
Gimli-Hash small [BKL+17] 1610 778∗

Gimli-Hash fast [BKL+17] 725 19218∗

Groestl-256 [BEE+13] 686 1400
JH-256 [BEE+13] 5062 1020
Keccak† [BEE+13] 1432 868
SHA-256 [BEE+13] 532 1090
∗ The code size corresponds to the permutation alone.
† The version of Keccak considered is Keccak[𝑟 = 1088, 𝑐 = 512].

similarly established way of generating benchmarking results for lightweight authenticated
encryption algorithms since the results one can find in the literature were obtained with
completely different lengths of plaintexts/ciphertexts and associated data.
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A Algorithms
• The Sparkle384 permutation is described in Algorithm 9.

• The Sparkle512 permutation is described in Algorithm 10.

• The linear layer ℒ4 is described in Algorithm 11.

• The linear layer ℒ6 is described in Algorithm 12.

• The linear layer ℒ8 is described in Algorithm 13.

• The hash function Esch384 is described in Algorithm 14.

• Schwaemm192-192 is described in Algorithm 16 (encryption) and 17 (decryption).

• Schwaemm128-128 is described in Algorithm 18 (encryption) and 19 (decryption).

• Schwaemm256-256 is described in Algorithm 20 (encryption) and 21 (decryption).

Algorithm 9 Sparkle384𝑛𝑠

In/Out:
(︀
(𝑥0, 𝑦0), ..., (𝑥5, 𝑦5)

)︀
, 𝑥𝑖, 𝑦𝑖 ∈ F32

2

(𝑐0, 𝑐1)← (0xB7E15162,0xBF715880)
(𝑐2, 𝑐3)← (0x38B4DA56,0x324E7738)
(𝑐4, 𝑐5)← (0xBB1185EB,0x4F7C7B57)
(𝑐6, 𝑐7)← (0xCFBFA1C8,0xC2B3293D)
for all 𝑠 ∈ [0, 𝑛𝑠 − 1] do

𝑦0 ← 𝑦0 ⊕ 𝑐(𝑠 mod 8)
𝑦1 ← 𝑦1 ⊕ (𝑠 mod 232)
for all 𝑖 ∈ [0, 5] do

(𝑥𝑖, 𝑦𝑖)← 𝐴𝑐𝑖
(𝑥𝑖, 𝑦𝑖)

end for(︀
(𝑥0, 𝑦0), ..., (𝑥5, 𝑦5)

)︀
← ℒ6

(︀
(𝑥0, 𝑦0), ..., (𝑥5, 𝑦5)

)︀
end for
return

(︀
(𝑥0, 𝑦0), ..., (𝑥5, 𝑦5)

)︀

Algorithm 10 Sparkle512𝑛𝑠

In/Out:
(︀
(𝑥0, 𝑦0), ..., (𝑥7, 𝑦7)

)︀
, 𝑥𝑖, 𝑦𝑖 ∈ F32

2

(𝑐0, 𝑐1)← (0xB7E15162,0xBF715880)
(𝑐2, 𝑐3)← (0x38B4DA56,0x324E7738)
(𝑐4, 𝑐5)← (0xBB1185EB,0x4F7C7B57)
(𝑐6, 𝑐7)← (0xCFBFA1C8,0xC2B3293D)
for all 𝑠 ∈ [0, 𝑛𝑠 − 1] do

𝑦0 ← 𝑦0 ⊕ 𝑐(𝑠 mod 8)
𝑦1 ← 𝑦1 ⊕ (𝑠 mod 232)
for all 𝑖 ∈ [0, 7] do

(𝑥𝑖, 𝑦𝑖)← 𝐴𝑐𝑖(𝑥𝑖, 𝑦𝑖)
end for(︀
(𝑥0, 𝑦0), ..., (𝑥7, 𝑦7)

)︀
← ℒ8

(︀
(𝑥0, 𝑦0), ..., (𝑥7, 𝑦7)

)︀
end for
return

(︀
(𝑥0, 𝑦0), ..., (𝑥7, 𝑦7)

)︀
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Algorithm 11 ℒ4
Input/Output:

(︀
(𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3)

)︀
∈ (F32

2 × F32
2 )4

◁ Feistel round
(𝑡𝑥, 𝑡𝑦)←

(︀
𝑥0 ⊕ 𝑥1, 𝑦0 ⊕ 𝑦1)

(𝑡𝑥, 𝑡𝑦)←
(︀
(𝑡𝑥 ⊕ (𝑡𝑥 ≪ 16)) ≪ 16, (𝑡𝑦 ⊕ (𝑡𝑦 ≪ 16)) ≪ 16

)︀
(𝑦2, 𝑦3)← (𝑦2 ⊕ 𝑦0 ⊕ 𝑡𝑥, 𝑦3 ⊕ 𝑦1 ⊕ 𝑡𝑥)
(𝑥2, 𝑥3)← (𝑥2 ⊕ 𝑥0 ⊕ 𝑡𝑦, 𝑥3 ⊕ 𝑥1 ⊕ 𝑡𝑦)

◁ Branch permutation
(𝑥0, 𝑥1, 𝑥2, 𝑥3)← (𝑥3, 𝑥2, 𝑥0, 𝑥1)
(𝑦0, 𝑦1, 𝑦2, 𝑦3)← (𝑦3, 𝑦2, 𝑦0, 𝑦1)
return

(︀
(𝑥0, 𝑦0), . . . , (𝑥3, 𝑦3)

)︀

Algorithm 12 ℒ6
Input/Output:

(︀
(𝑥0, 𝑦0), . . . , (𝑥5, 𝑦5)

)︀
∈ (F32

2 × F32
2 )6

◁ Feistel round
(𝑡𝑥, 𝑡𝑦)←

(︀
𝑥0 ⊕ 𝑥1 ⊕ 𝑥2, 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2)

(𝑡𝑥, 𝑡𝑦)←
(︀
(𝑡𝑥 ⊕ (𝑡𝑥 ≪ 16)) ≪ 16, (𝑡𝑦 ⊕ (𝑡𝑦 ≪ 16)) ≪ 16

)︀
(𝑦3, 𝑦4, 𝑦5)← (𝑦3 ⊕ 𝑦0 ⊕ 𝑡𝑥, 𝑦4 ⊕ 𝑦1 ⊕ 𝑡𝑥, 𝑦5 ⊕ 𝑦2 ⊕ 𝑡𝑥)
(𝑥3, 𝑥4, 𝑥5)← (𝑥3 ⊕ 𝑥0 ⊕ 𝑡𝑦, 𝑥4 ⊕ 𝑥1 ⊕ 𝑡𝑦, 𝑥5 ⊕ 𝑥2 ⊕ 𝑡𝑦)

◁ Branch permutation
(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)← (𝑥4, 𝑥5, 𝑥3, 𝑥0, 𝑥1, 𝑥2)
(𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5)← (𝑦4, 𝑦5, 𝑦3, 𝑦0, 𝑦1, 𝑦2)
return

(︀
(𝑥0, 𝑦0), . . . , (𝑥5, 𝑦5)

)︀

Algorithm 13 ℒ8
Input/Output:

(︀
(𝑥0, 𝑦0), . . . , (𝑥7, 𝑦7)

)︀
∈ (F32

2 × F32
2 )8

◁ Feistel round
(𝑡𝑥, 𝑡𝑦)←

(︀
𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3)

(𝑡𝑥, 𝑡𝑦)←
(︀
(𝑡𝑥 ⊕ (𝑡𝑥 ≪ 16)) ≪ 16, (𝑡𝑦 ⊕ (𝑡𝑦 ≪ 16)) ≪ 16

)︀
(𝑦4, 𝑦5, 𝑦6, 𝑦7)← (𝑦4 ⊕ 𝑦0 ⊕ 𝑡𝑥, 𝑦5 ⊕ 𝑦1 ⊕ 𝑡𝑥, 𝑦6 ⊕ 𝑦2 ⊕ 𝑡𝑥, 𝑦7 ⊕ 𝑦3 ⊕ 𝑡𝑥)
(𝑥4, 𝑥5, 𝑥6, 𝑥7)← (𝑥4 ⊕ 𝑥0 ⊕ 𝑡𝑦, 𝑥5 ⊕ 𝑥1 ⊕ 𝑡𝑦, 𝑥6 ⊕ 𝑥2 ⊕ 𝑡𝑦, 𝑥7 ⊕ 𝑥3 ⊕ 𝑡𝑦)

◁ Branch permutation
(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)← (𝑥5, 𝑥6, 𝑥7, 𝑥4, 𝑥0, 𝑥1, 𝑥2, 𝑥3)
(𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7)← (𝑦5, 𝑦6, 𝑦7, 𝑦4, 𝑦0, 𝑦1, 𝑦2, 𝑦3)
return

(︀
(𝑥0, 𝑦0), . . . , (𝑥7, 𝑦7)

)︀
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Algorithm 14 Esch384
Input: 𝑀 ∈ F*

2 Output: 𝐷 ∈ F384
2

◁ Padding the message
if 𝑀 ̸= 𝜖 then

𝑃0‖𝑃1‖ . . . ‖𝑃ℓ−1 ←𝑀
with ∀𝑖<ℓ−1: |𝑃𝑖|=128 and 1≤|𝑃ℓ−1|≤
128
else

ℓ← 1
𝑃0 ← 𝜖

end if
if |𝑃ℓ−1| < 128 then

𝑃ℓ−1 ← pad128(𝑃ℓ−1)
ConstM ← (1≪ 256)

else
ConstM ← (2≪ 256)

end if
◁ Absorption

𝑆 ← 0 ∈ F512
2

for all 𝑗 = 0, . . . , ℓ− 2 do
𝑃 ′

𝑗 ←ℳ4(𝑃𝑗‖0128)
𝑆←Sparkle5128

(︀
𝑆 ⊕ (𝑃 ′

𝑗‖0256)
)︀

end for
𝑃 ′

ℓ−1 ←ℳ4(𝑃ℓ−1‖0128)
𝑆 ← Sparkle51212

(︀
𝑆 ⊕ (𝑃 ′

ℓ−1‖0256) ⊕
ConstM

)︀
◁ Squeezing

𝐷0 ← trunc128(𝑆)
𝑆 ← Sparkle5128

(︀
𝑆
)︀

𝐷1 ← trunc128(𝑆)
𝑆 ← Sparkle5128

(︀
𝑆
)︀

𝐷2 ← trunc128(𝑆)
return 𝐷0‖𝐷1‖𝐷2

Algorithm 15 XOEsch384
Input: 𝑀 ∈ F*

2, 𝑡 ∈ N Output: 𝐷 ∈ F𝑡
2

◁ Padding the message
if 𝑀 ̸= 𝜖 then

𝑃0‖𝑃1‖ . . . ‖𝑃ℓ−1 ←𝑀
with ∀𝑖<ℓ−1: |𝑃𝑖|=128 and 1≤|𝑃ℓ−1|≤
128
else

ℓ← 1
𝑃0 ← 𝜖

end if
if |𝑃ℓ−1| < 128 then

𝑃ℓ−1 ← pad128(𝑃ℓ−1)
ConstM ← (1≪ 256)⊕ (4≪ 256)

else
ConstM ← (2≪ 256)⊕ (4≪ 256)

end if
◁ Absorption

𝑆 ← 0 ∈ F512
2

for all 𝑗 = 0, . . . , ℓ− 2 do
𝑃 ′

𝑗 ←ℳ4(𝑃𝑗‖0128)
𝑆←Sparkle5128

(︀
𝑆 ⊕ (𝑃 ′

𝑗‖0256)
)︀

end for
𝑃 ′

ℓ−1 ←ℳ4(𝑃ℓ−1‖0128)
𝑆 ← Sparkle51212

(︀
𝑆 ⊕ (𝑃 ′

ℓ−1‖0256) ⊕
ConstM

)︀
◁ Squeezing

𝐷0 ← trunc128(𝑆)
for all 𝑗 = 1, . . . , ⌈𝑡/128⌉ − 1 do

𝑆 ← Sparkle5128
(︀
𝑆
)︀

𝐷𝑗 ← trunc128(𝑆)
end for
return trunc𝑡(𝐷0‖𝐷1‖ . . . ‖𝐷⌈𝑡/128⌉−1)
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Algorithm 16 Schwaemm192-192-Enc
Input: (𝐾, 𝑁, 𝐴, 𝑀) where 𝐾 ∈ F192

2 is a key, 𝑁 ∈ F192
2 is a nonce and 𝐴, 𝑀 ∈ F*

2
Output: (𝐶, 𝑇 ), where 𝐶 ∈ F*

2 is the ciphertext and 𝑇 ∈ F192
2 is the authentication tag

◁ Padding the associated data and message
if 𝐴 ̸= 𝜖 then

𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 192 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 192
if |𝐴ℓ𝐴−1| < 192 then

𝐴ℓ𝐴−1 ← pad192(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 3)

else
Const𝐴 ← 1⊕ (1≪ 3)

end if
end if
if 𝑀 ̸= 𝜖 then

𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1 ← 𝑀 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝑀𝑖| = 192 and 1 ≤
|𝑀ℓ𝑀 −1| ≤ 192

𝑡← |𝑀ℓ𝑀 −1|
if |𝑀ℓ𝑀 −1| < 192 then

𝑀ℓ𝑀 −1 ← pad192(𝑀ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 3)

else
Const𝑀 ← 3⊕ (1≪ 3)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 192 and |𝑆𝑅| = 192

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if message is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Encrypting
if 𝑀 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝐶𝑗 ← 𝜌2(𝑆𝐿, 𝑀𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝑀𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝐶ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌2(𝑆𝐿, 𝑀ℓ𝑀 −1)

)︀
◁ Finalization

𝑆𝐿‖𝑆𝑅 ← Sparkle38411
(︀
(𝜌1(𝑆𝐿, 𝑀ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )

)︀
end if

return (𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1, 𝑆𝑅 ⊕𝐾)



Beierle, Biryukov, Cardoso dos Santos, Großschädl, Perrin, Udovenko, Velichkov, Wang 255

Algorithm 17 Schwaemm192-192-Dec
Input: (𝐾, 𝑁, 𝐴, 𝐶, 𝑇 ) where 𝐾 ∈ F192

2 is a key, 𝑁 ∈ F192
2 is a nonce, 𝐴, 𝐶 ∈ F*

2 and
𝑇 ∈ F192

2
Output: Decryption 𝑀 of 𝐶 if the tag 𝑇 is valid, ⊥ otherwise

if 𝐴 ̸= 𝜖 then
𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 192 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 192
if |𝐴ℓ𝐴−1| < 192 then

𝐴ℓ𝐴−1 ← pad192(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 3)

else
Const𝐴 ← 1⊕ (1≪ 3)

end if
end if
if 𝐶 ̸= 𝜖 then

𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1 ← 𝐶 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝐶𝑖| = 192 and 1 ≤ |𝐶ℓ𝑀 −1| ≤
192

𝑡← |𝐶ℓ𝑀 −1|
if |𝐶ℓ𝑀 −1| < 192 then

𝐶ℓ𝑀 −1 ← pad192(𝐶ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 3)

else
Const𝑀 ← 3⊕ (1≪ 3)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 192 and |𝑆𝑅| = 192

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if ciphertext is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Decrypting
if 𝐶 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝑀𝑗 ← 𝜌′

2(𝑆𝐿, 𝐶𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle3847

(︀
(𝜌′

1(𝑆𝐿, 𝐶𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝑀ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌′

2(𝑆𝐿, 𝐶ℓ𝑀 −1)
)︀

◁ Finalization and tag verification
if 𝑡 < 192 then

𝑆𝐿‖𝑆𝑅 ← Sparkle38411
(︀
(𝜌1(𝑆𝐿, pad192(𝑀ℓ𝑀 −1)) ⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕

Const𝑀 )
)︀

else
𝑆𝐿‖𝑆𝑅 ← Sparkle38411

(︀
(𝜌′

1(𝑆𝐿, 𝐶ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )
)︀

end if
end if
if 𝑆𝑅 ⊕𝐾 = 𝑇 then

return (𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1)
else

return ⊥
end if
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Algorithm 18 Schwaemm128-128-Enc
Input: (𝐾, 𝑁, 𝐴, 𝑀) where 𝐾 ∈ F128

2 is a key, 𝑁 ∈ F128
2 is a nonce and 𝐴, 𝑀 ∈ F*

2
Output: (𝐶, 𝑇 ), where 𝐶 ∈ F*

2 is the ciphertext and 𝑇 ∈ F128
2 is the authentication tag

◁ Padding the associated data and message
if 𝐴 ̸= 𝜖 then

𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 128 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 128
if |𝐴ℓ𝐴−1| < 128 then

𝐴ℓ𝐴−1 ← pad128(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 2)

else
Const𝐴 ← 1⊕ (1≪ 2)

end if
end if
if 𝑀 ̸= 𝜖 then

𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1 ← 𝑀 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝑀𝑖| = 128 and 1 ≤
|𝑀ℓ𝑀 −1| ≤ 128

𝑡← |𝑀ℓ𝑀 −1|
if |𝑀ℓ𝑀 −1| < 128 then

𝑀ℓ𝑀 −1 ← pad128(𝑀ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 2)

else
Const𝑀 ← 3⊕ (1≪ 2)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle25610

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 128 and |𝑆𝑅| = 128

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle2567

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if message is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle25610

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Encrypting
if 𝑀 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝐶𝑗 ← 𝜌2(𝑆𝐿, 𝑀𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle2567

(︀
(𝜌1(𝑆𝐿, 𝑀𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝐶ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌2(𝑆𝐿, 𝑀ℓ𝑀 −1)

)︀
◁ Finalization

𝑆𝐿‖𝑆𝑅 ← Sparkle25610
(︀
(𝜌1(𝑆𝐿, 𝑀ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )

)︀
end if

return (𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1, 𝑆𝑅 ⊕𝐾)
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Algorithm 19 Schwaemm128-128-Dec
Input: (𝐾, 𝑁, 𝐴, 𝐶, 𝑇 ) where 𝐾 ∈ F128

2 is a key, 𝑁 ∈ F128
2 is a nonce, 𝐴, 𝐶 ∈ F*

2 and
𝑇 ∈ F128

2
Output: Decryption 𝑀 of 𝐶 if the tag 𝑇 is valid, ⊥ otherwise

if 𝐴 ̸= 𝜖 then
𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 128 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 128
if |𝐴ℓ𝐴−1| < 128 then

𝐴ℓ𝐴−1 ← pad128(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 2)

else
Const𝐴 ← 1⊕ (1≪ 2)

end if
end if
if 𝐶 ̸= 𝜖 then

𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1 ← 𝐶 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝐶𝑖| = 128 and 1 ≤ |𝐶ℓ𝑀 −1| ≤
128

𝑡← |𝐶ℓ𝑀 −1|
if |𝐶ℓ𝑀 −1| < 128 then

𝐶ℓ𝑀 −1 ← pad128(𝐶ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 2)

else
Const𝑀 ← 3⊕ (1≪ 2)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle25610

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 128 and |𝑆𝑅| = 128

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle2567

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if ciphertext is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle25610

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Decrypting
if 𝐶 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝑀𝑗 ← 𝜌′

2(𝑆𝐿, 𝐶𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle2567

(︀
(𝜌′

1(𝑆𝐿, 𝐶𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝑀ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌′

2(𝑆𝐿, 𝐶ℓ𝑀 −1)
)︀

◁ Finalization and tag verification
if 𝑡 < 128 then

𝑆𝐿‖𝑆𝑅 ← Sparkle25610
(︀
(𝜌1(𝑆𝐿, pad128(𝑀ℓ𝑀 −1)) ⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕

Const𝑀 )
)︀

else
𝑆𝐿‖𝑆𝑅 ← Sparkle25610

(︀
(𝜌′

1(𝑆𝐿, 𝐶ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )
)︀

end if
end if
if 𝑆𝑅 ⊕𝐾 = 𝑇 then

return (𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1)
else

return ⊥
end if
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Algorithm 20 Schwaemm256-256-Enc
Input: (𝐾, 𝑁, 𝐴, 𝑀) where 𝐾 ∈ F256

2 is a key, 𝑁 ∈ F256
2 is a nonce and 𝐴, 𝑀 ∈ F*

2
Output: (𝐶, 𝑇 ), where 𝐶 ∈ F*

2 is the ciphertext and 𝑇 ∈ F256
2 is the authentication tag

◁ Padding the associated data and message
if 𝐴 ̸= 𝜖 then

𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 256 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 256
if |𝐴ℓ𝐴−1| < 256 then

𝐴ℓ𝐴−1 ← pad256(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 4)

else
Const𝐴 ← 1⊕ (1≪ 4)

end if
end if
if 𝑀 ̸= 𝜖 then

𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1 ← 𝑀 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝑀𝑖| = 256 and 1 ≤
|𝑀ℓ𝑀 −1| ≤ 256

𝑡← |𝑀ℓ𝑀 −1|
if |𝑀ℓ𝑀 −1| < 256 then

𝑀ℓ𝑀 −1 ← pad256(𝑀ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 4)

else
Const𝑀 ← 3⊕ (1≪ 4)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle51212

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 256 and |𝑆𝑅| = 256

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle5128

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if message is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle51212

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Encrypting
if 𝑀 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝐶𝑗 ← 𝜌2(𝑆𝐿, 𝑀𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle5128

(︀
(𝜌1(𝑆𝐿, 𝑀𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝐶ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌2(𝑆𝐿, 𝑀ℓ𝑀 −1)

)︀
◁ Finalization

𝑆𝐿‖𝑆𝑅 ← Sparkle51212
(︀
(𝜌1(𝑆𝐿, 𝑀ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )

)︀
end if

return (𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1, 𝑆𝑅 ⊕𝐾)
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Algorithm 21 Schwaemm256-256-Dec
Input: (𝐾, 𝑁, 𝐴, 𝐶, 𝑇 ) where 𝐾 ∈ F256

2 is a key, 𝑁 ∈ F256
2 is a nonce, 𝐴, 𝐶 ∈ F*

2 and
𝑇 ∈ F256

2
Output: Decryption 𝑀 of 𝐶 if the tag 𝑇 is valid, ⊥ otherwise

if 𝐴 ̸= 𝜖 then
𝐴0‖𝐴1‖ . . . ‖𝐴ℓ𝐴−1 ← 𝐴 with ∀𝑖 ∈ {0, . . . , ℓ𝐴−2} : |𝐴𝑖| = 256 and 1 ≤ |𝐴ℓ𝐴−1| ≤ 256
if |𝐴ℓ𝐴−1| < 256 then

𝐴ℓ𝐴−1 ← pad256(𝐴ℓ𝐴−1)
Const𝐴 ← 0⊕ (1≪ 4)

else
Const𝐴 ← 1⊕ (1≪ 4)

end if
end if
if 𝐶 ̸= 𝜖 then

𝐶0‖𝐶1‖ . . . ‖𝐶ℓ𝑀 −1 ← 𝐶 with ∀𝑖 ∈ {0, . . . , ℓ𝑀 − 2} : |𝐶𝑖| = 256 and 1 ≤ |𝐶ℓ𝑀 −1| ≤
256

𝑡← |𝐶ℓ𝑀 −1|
if |𝐶ℓ𝑀 −1| < 256 then

𝐶ℓ𝑀 −1 ← pad256(𝐶ℓ𝑀 −1)
Const𝑀 ← 2⊕ (1≪ 4)

else
Const𝑀 ← 3⊕ (1≪ 4)

end if
end if

◁ State initialization
𝑆𝐿‖𝑆𝑅 ← Sparkle51212

(︀
𝑁‖𝐾

)︀
with |𝑆𝐿| = 256 and |𝑆𝑅| = 256

◁ Processing of associated data
if 𝐴 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝐴 − 2 do
𝑆𝐿‖𝑆𝑅 ← Sparkle5128

(︀
(𝜌1(𝑆𝐿, 𝐴𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for

◁ Finalization if ciphertext is empty
𝑆𝐿‖𝑆𝑅 ← Sparkle51212

(︀
(𝜌1(𝑆𝐿, 𝐴ℓ𝐴−1)⊕ 𝑆𝑅 ⊕ Const𝐴)‖(𝑆𝑅 ⊕ Const𝐴)

)︀
end if

◁ Decrypting
if 𝐶 ̸= 𝜖 then

for all 𝑗 = 0, . . . , ℓ𝑀 − 2 do
𝑀𝑗 ← 𝜌′

2(𝑆𝐿, 𝐶𝑗)
𝑆𝐿‖𝑆𝑅 ← Sparkle5128

(︀
(𝜌′

1(𝑆𝐿, 𝐶𝑗)⊕ 𝑆𝑅)‖𝑆𝑅

)︀
end for
𝑀ℓ𝑀 −1 ← trunc𝑡

(︀
𝜌′

2(𝑆𝐿, 𝐶ℓ𝑀 −1)
)︀

◁ Finalization and tag verification
if 𝑡 < 256 then

𝑆𝐿‖𝑆𝑅 ← Sparkle51212
(︀
(𝜌1(𝑆𝐿, pad256(𝑀ℓ𝑀 −1)) ⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕

Const𝑀 )
)︀

else
𝑆𝐿‖𝑆𝑅 ← Sparkle51212

(︀
(𝜌′

1(𝑆𝐿, 𝐶ℓ𝑀 −1)⊕ 𝑆𝑅 ⊕ Const𝑀 )‖(𝑆𝑅 ⊕ Const𝑀 )
)︀

end if
end if
if 𝑆𝑅 ⊕𝐾 = 𝑇 then

return (𝑀0‖𝑀1‖ . . . ‖𝑀ℓ𝑀 −1)
else

return ⊥
end if
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B Origin of the Names
Sparkle is basically a Sparx instance with a wider block size and a fixed key, hence its
name:

SPARx, but Key LEss.

The name Esch stands for

Efficient, Sponge-based, and Cheap Hashing.

It is also the part of the name of a small town in southern Luxembourg, which is close to the
campus of the University of Luxembourg. Esch is pronounced ["ES]. Finally, Schwaemm
stands for

Sponge-based Cipher for Hardened but Weightless Authenticated Encryption
on Many Microcontrollers

It is also the Luxembourgish word for “sponges”. Schwaemm is pronounced ["SvEm].

C C Implementation of Sparkle
All permutations in the Sparkle family are implemented by the following function, where
nb is the number of branches (4 for Sparkle256, 6 for Sparkle384 and 8 for Sparkle512)
and where ns is the number of steps. The implementation uses a single array named state
of type uint32_t that consists of 2𝑛𝑏 elements to represent the state. More precisely,
state[0] = 𝑥0, state[1] = 𝑦0, state[2] = 𝑥1, state[3] = 𝑦1, . . . state[2*nb-2] =
𝑥𝑛𝑏−1, and state[2*nb-1] = 𝑦𝑛𝑏−1. Each 32-bit word contains four state bytes in little-
endian order. More precisely, if (𝑚0, 𝑚1, . . . , 𝑚𝑛−1) ∈ F𝑛

2 , 𝑛 ∈ {256, 384, 512}, is an input
to a Sparkle instance, it is mapped to the state words via state[𝑘] =

𝑚32𝑘+24‖𝑚32𝑘+25‖ . . . ‖𝑚32𝑘+31‖𝑚32𝑘+16‖𝑚32𝑘+17‖ . . . ‖𝑚32𝑘+23‖ . . . ‖𝑚32𝑘‖𝑚32𝑘+1‖ . . . ‖𝑚32𝑘+7

and the inverse mapping is used for transforming state words back to bitstrings.13

13Note that the indirect injection through ℳℎ𝑏
in Esch also operates on state words. Therefore, the

same mapping of bitstrings to words (and vice versa) is applied.
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1 # define MAX_BRANCHES 8
2 # define ROT(x, n) (((x) >> (n)) | ((x) << (32 -(n))))
3 # define ELL(x) (ROT (((x) ^ ((x) << 16)), 16))
4
5 // Round constants
6 static const uint32_t RCON[ MAX_BRANCHES ] = { \
7 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 , \
8 0xBB1185EB , 0x4F7C7B57 , 0xCFBFA1C8 , 0 xC2B3293D \
9 };

10
11 void sparkle ( uint32_t *state , int nb , int ns)
12 {
13 int i, j; // Step and branch counter
14 uint32_t rc , tmpx , tmpy , x0 , y0;
15
16 for(i = 0; i < ns; i ++) {
17 // Counter addition
18 state [1] ^= RCON[i% MAX_BRANCHES ];
19 state [3] ^= i;
20 // ARXBox layer
21 for(j = 0; j < 2* nb; j += 2) {
22 rc = RCON[j > >1];
23 state [j] += ROT( state [j+1] , 31);
24 state [j+1] ^= ROT( state [j], 24);
25 state [j] ^= rc;
26 state [j] += ROT( state [j+1] , 17);
27 state [j+1] ^= ROT( state [j], 17);
28 state [j] ^= rc;
29 state [j] += state [j+1];
30 state [j+1] ^= ROT( state [j], 31);
31 state [j] ^= rc;
32 state [j] += ROT( state [j+1] , 24);
33 state [j+1] ^= ROT( state [j], 16);
34 state [j] ^= rc;
35 }
36 // Linear layer
37 tmpx = x0 = state [0];
38 tmpy = y0 = state [1];
39 for(j = 2; j < nb; j += 2) {
40 tmpx ^= state [j];
41 tmpy ^= state [j+1];
42 }
43 tmpx = ELL(tmpx);
44 tmpy = ELL(tmpy);
45 for (j = 2; j < nb; j += 2) {
46 state [j -2] = state [j+nb] ^ state [j] ^ tmpy;
47 state [j+nb] = state [j];
48 state [j -1] = state [j+nb +1] ^ state [j+1] ^ tmpx;
49 state [j+nb +1] = state [j+1];
50 }
51 state [nb -2] = state [nb] ^ x0 ^ tmpy;
52 state [nb] = x0;
53 state [nb -1] = state [nb +1] ^ y0 ^ tmpx;
54 state [nb +1] = y0;
55 }
56 }
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