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Abstract. Permutation-based symmetric cryptography has become in-
creasingly popular over the past ten years, especially in the lightweight
domain. More than half of the 32 second-round candidates of NIST’s
lightweight cryptography standardization project are permutation-based
designs or can be instantiated with a permutation. The performance
of a permutation-based construction depends, among other aspects, on
the rate (i.e. the number of bytes processed per call of the permutation
function) and the execution time of the permutation. In this paper we
analyze the execution time and code size of assembler implementations
of the permutation of Ascon, Gimli, Schwaemm, and Xoodyak on an
8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. Our aim is to
ascertain how well these four permutations perform on microcontrollers
with very different architectural and micro-architectural characteristics
such as the available register capacity or the latency of multi-bit shifts
and rotations. We also determine the impact of flash wait states on the
execution time of the permutations on Cortex-M3 development boards
with 0, 2, and 4 wait states. Our results show that the throughput (in
terms of permutation time divided by rate when the capacity is fixed to
256 bits) of the permutation of Ascon, Schwaemm, and Xoodyak is
similar on ARM Cortex-M3 and lies in the range of 41.1 to 48.6 cycles
per rate-byte. However, on an 8-bit AVR ATmega128, the permutation
of Schwaemm outperforms its counterparts of Ascon and Xoodyak by
a factor of 1.20 and 1.59, respectively.

1 Introduction

The term Internet of Things (IoT) describes the evolution of the Internet from
a computer network to a network that connects various kinds of smart devices
and enables them to communicate with each other or transmit data to central
servers. This development started roughly 15 years ago, when more and more
“everyday objects,” ranging from household appliances over business machines
to vehicles, became equipped with microcontrollers and transceivers for wireless
communication (e.g. ZigBee, Bluetooth, WiFi). These devices differ greatly in
terms of computing power, but also regarding their data transmission speeds
and run-time memory capacities. At one end of the spectrum are e.g. modern
cars, which are equipped with powerful processors, while e.g. battery-operated
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Fig. 1. North American microcontroller market by product (8-bit, 16-bit, 32-bit) in
million units (source: Radiant Insights Inc. [27])

miniature sensor nodes at the opposite end of the spectrum commonly feature
only a small 8-bit or 16-bit microcontroller. Already today, approximately twice
as many “smart things” are connected to the Internet than ordinary computers
like PCs or laptops, and this proportion will grow rapidly over the next couple
of years [28]. Internet-enabled smart devices can be found in basically all areas
of our life, from home automation over industrial production (“Industry 4.0”)
to transportation and logistics.

The IoT can be seen as a large ecosystem populated by highly diverse and
heterogeneous devices, which come in all shapes and sizes. Therefore, it is little
surprising that there exist dozens of different (and largely incompatible) micro-
controller platforms, operating systems, and wireless communication standards
for the IoT, many of which are optimized to serve a certain application domain
with specific requirements and constraints. This heterogeneity of IoT devices is
in stark contrast to the “monoculture” in the realm of classical computers like
PCs or laptops, where the 64-bit Intel architecture has a market share of well
over 90%. Nonetheless, 64-bit Intel processors represent only a small fraction
of the IoT altogether, which is (quantitatively) dominated by microcontrollers
with rather modest computational capabilities. Figure 1 shows a forecast of the
development of the North American microcontroller market until 2020, split up
in 8-bit, 16-bit, and 32-bit architectures [27]. The North American market was
estimated to be over 3700 million units in 2013 and is expected to reach some
8000 million units in 2020, i.e. the compound annual growth rate is more than
11.2% in the period from 2014 to 2020. 32-bit microcontrollers constitute the
fastest growing product segment over the forecast period, driven mainly by an
increased demand for higher processing capabilities and the expected reduction
in unit prices. Currently, the ARM architecture is the undisputed leader in the
32-bit segment, but it faces fierce competition by ESP32 and RISC-V. There is
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also a growing demand for 16-bit microcontrollers (e.g. MSP430, 68HC16) due
to the need for high level of precision in embedded processing and the develop-
ment of intelligent and real-time functions in the automotive domain [27]. The
8-bit platforms (e.g. AVR, PIC) are expected to retain their market share and
continue to be widely used for automotive and industrial applications [24].

Since there is no single dominating microcontroller platform in the IoT, it is
essential that a cryptographic algorithm delivers consistently high performance
on a wide variety of 8, 16, and 32-bit architectures. This is far from trivial to
achieve since, for example, a 32-bit ARM Cortex-M3 microcontroller has sig-
nificantly different architectural and micro-architectural characteristics than an
8-bit AVR ATmega microcontroller. The Cortex-M3 has 16 registers, of which
14 are available for general use, i.e. the general-purpose register space amounts
to 448 bits. AVR microcontrollers, on the other hand, have 32 general-purpose
registers, but each of them can only store eight bits of data, yielding a usable
register space of 256 bits. ARM and AVR also differ greatly in their ability to
execute multi-bit shifts or rotations, which are performance-critical operations
of various symmetric cryptosystems. The arithmetic/logic unit of a Cortex-M3
comes with a fast barrel shifter capable to shift or rotate a 32-bit word by an
arbitrary number of bits in a single cycle. Furthermore, a shift or rotation can
be combined with most data-processing instructions, in which case they become
practically “free” [2]. More specifically, the second operand of most arithmetic
or logical instructions can be shifted or rotated (before the actual operation is
executed) without increasing the instruction latency. However, the situation is
much different for 8 and 16-bit architectures, as most of them have only single-
bit shift and rotate instructions, which means that shifting a register by n bits
requires (at least) n clock cycles. This can make multi-bit shifts and rotations
very costly, especially when the length of the operand to be shifted or rotated
exceeds the capacity of a single register. For example, rotating a 32-bit word on
an 8-bit AVR microcontroller (stored in four registers) can, depending on the
rotation amount, require more than 20 clock cycles.

A cryptographic permutation is a bijective mapping within Zb
2, designed to

behave as a random permutation, i.e. a permutation chosen randomly from the
set of all possible permutations that operate on b bits. The width b of a cryp-
tographic permutation is usually between 200 (for cryptosystems targeting the
lightweight domain) and 1600 [12]. Permutation-based cryptography emerged
approximately 15 years ago as a sub-area of research in the field of symmetric
cryptography and started to attract particular interest when the hash function
Keccak [11] and the stream cipher Salsa [6] became popular1. Permutations
are extremely flexible and versatile primitives, similar to block ciphers, and can
be used to construct e.g. hash functions, message authentication codes, pseudo-

1 In October 2012, the U.S. National Institute of Standards and Technology (NIST)
selected Keccak as winner of the SHA-3 hash competition [25]. Roughly 1.5 years
later, in April 2014, Google announced that a TLS cipher suite using ChaCha20
(a variant of Salsa) for symmetric encryption will be their default option to secure
HTTPS connections on devices without AES hardware acceleration [14].
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random bit-sequence generators, stream ciphers, and authenticated encryption
algorithms [9,12]. However, unlike a block cipher, a permutation does not have
a key schedule and needs to be efficient only in one direction since the inverse
permutation is normally never used. Past research in the area of permutation-
based cryptography can be split into two main categories; the first is about the
design (and security analysis) of permutation-based constructions and “modes
of use” built on top of them, while the second category is concerned with the
permutations themselves. Representative work in the former category includes
besides the classical sponge [9] and duplex [10] construction also various kinds
of constuctions/modes that aim to boost performance through a higher bitrate
(e.g. full-state absorption [21], Beetle mode [15]) or via a parallel application
of a sponge or a permutation (e.g. KangarooTwelve [13], Farfalle [8]), as
well as modes with “built-in” countermeasures against certain physical attacks
(e.g. Isap [18]). Research in the second category deals mainly with the design
of permutations and their efficient (and side-channel resistant) implementation
in hardware and/or software. The majority of the published permutations are
either classical Addition-Rotation-XOR (ARX) designs, e.g. Salsa [6], or can
be classified as “AndRX” variants, e.g. Keccak-f [11], Norx Fl [4].

Permutation-based cryptography is well suited for resource-limited devices
(e.g. RFID tags, wireless sensor nodes, smart cards), which is evidenced by the
fact that roughly half of the 32 second-round candidates of NIST’s currently-
ongoing standardization effort for lightweight cryptography use a permutation
as underlying primitive [26]. However, despite a broad body of research in the
area of permutation-based cryptography, surprisingly little is known about the
performance of state-of-the-art permutations on small microcontrollers. There
exist, of course, a lot of benchmarking results for the second-round candidates
of NIST’s lightweight crypto project2, but these benchmarks specify only the
execution time of the full authenticated encryption (resp. hash) algorithms and
not that of the permutation alone. These timings are relatively poor indicators
for the efficiency of the underlying permutation since they also include various
“auxiliary” operations. For example, designs based on the Beetle mode, such
as the NIST candidate Schwaemm [5], include a feedback function ρ through
which data is injected into (and extracted from) the state. Furthermore, some
optimized implementations of permutations that operate on 64-bit words, like
Keccak-f [1600] and Ascon’s p [19], adopt the bit-interleaving method [11] to
speed up rotations on 32-bit ARM processors. This bit-interleaving makes the
injection/extraction of data to/from the state more costly, whereby the actual
penalty factor depends on how fast the permutation itself is. The benchmarks
for full authenticated encryption or hash algorithms do not even allow one to
reason about the relative efficiency of their permutations due to differences in
the bit-rates. Unfortunately, the lack of detailed implementation results makes
the design of new permutations a challenging task since it is not easily possible
to compare the execution time and code size with the state-of-the-art.

2 http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/ (ac-
cessed 2021-09-10).

http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/
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In this paper, we analyze and compare the multi-platform (resp. cross-plat-
form) efficiency of four cryptographic permutations that are part of candidates
of the current lightweight cryptography standardization project of the National
Institute of Standards and Technology (NIST) [26]. These four candidates are
Ascon [19], Gimli [7], Schwaemm [5], and Xoodyak [16], all of which come
with algorithms for Authenticated Encryption with Associated Data (AEAD)
and hashing. In addition, they have in common that the permutation width is
very similar (i.e. between 320 and 384 bits) and they all consist of only simple
arithmetic/logic operations (Schwaemm is a classical ARX construction, while
the other three can be classified as “AndRX” designs, i.e. they use the logical
AND operation or OR operation as a source of non-linearity). We evaluate the
execution time and code size of these four permutations with highly-optimized
Assembler implementations for ARM Cortex-M3 and AVR ATmega128 micro-
controllers, whereby we applied the same general optimization strategies and
invested a similar amount of optimization effort for each implementation so as
to ensure a fair evaluation. By focusing solely on the permutations, we aim to
make their relative performance more transparent and generate new insights to
their multi-platform efficiency, which are not immediately apparent when one
compares the execution times collected by other benchmarking initiatives. We
also assess how basic design decisions, e.g. shift/rotation amounts, impact the
performance of the permutations on 32-bit ARM and 8-bit AVR platforms.

2 Overview of the Permutations

In this section, we briefly review the main properties of the four permutations
we consider in this paper, which are the permutations of the NIST candidates
Ascon, Gimli, Schwaemm, and Xoodyak. Except for Gimli, they all made
it to the final round of the evaluation process [26]. Gimli was eliminated in the
second round, but we still include it in our study since its permutation is well
known and has inspired a number of other designs.

ASCON. Ascon is not only one of the 10 finalists of NIST’s standardization
project in lightweight cryptography, but was also selected for the final portfolio
of the CAESAR competition. The main AEAD instance of the Ascon suite is
Ascon-128 and offers 128-bit security according to [19]. It is based on the so-
called Monkey Duplex mode [12] with a stronger keyed initialization and keyed
finalization function, respectively, which means the underlying permutation is
carried out with an increased number of rounds. Said permutation operates on
a 320-bit state (organized in five 64-bit words) by iteratively applying a round
function p. The number of rounds is a = 12 in the initialization and finalization
phase, and b = 6 otherwise; the corresponding permutations are referred to as
pa and pb in the specification. Ascon-128 processes associated data as well as
plaintext/ciphertext with a rate of r = 64 bits, i.e. the capacity is 256 bits. The
hash function of the Ascon suite is a classical sponge construction.
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Ascon’s round function p is SPN-based and comprises three parts: (i) the
addition of an 8-bit round constant cr to a 64-bit state-word, (ii) a substitution
layer that operates across the five words of the state and implements an affine
equivalent of the S-box in the χ mapping of Keccak, and (iii) a permutation
layer consisting of linear functions that are similar to the Σ functions in SHA2
and performed on each state-word individually. The S-box maps five input bits
to five output bits and is applied to each column of the state, whereby the five
state-words are arranged upon each other. It is normally implemented in a bit-
sliced fashion using logical ANDs and XORs. The permutation layer performs
an operation of the form x = x⊕ (x≫ n1)⊕ (x≫ n2) on each word x of the
state with n1 ∈ {1, 7, 10, 19, 61} and n2 ∈ {6, 17, 28, 39, 41} [19].

Gimli. The second-round NIST candidate Gimli consists of the AEAD algo-
rithm Gimli-Cipher and the hash function Gimli-Hash. Both are claimed to
provide 128 bits of security against all known attacks, and Gimli-Cipher even
uses a 256-bit key to “reduce concerns about multi-target attacks and quantum
attacks” [7]. The underlying 384-bit permutation is called Gimli-24 and was
presented at CHES 2017. Gimli-Cipher is a conventional duplex construction
with a capacity of 256 bits, i.e. the rate is 128 bits. On the other hand, Gimli-
Hash is an ordinary sponge and also uses a rate of 128 bits. Unfortunately, the
permutation has weak diffusion, which makes it possible to build a full-round
distinguisher of relatively low complexity [20]. Though this distinguisher on the
permutation does not immediately threaten the security of Gimli-Cipher and
Gimli-Hash, the NIST decided to not promote Gimli to the final round.

The Gimli-24 permutation was designed to reach high performance across
a broad range of platforms, from high-end 64-bit CPUs with vector extensions
to small 8-bit microcontrollers, as well as FPGAs and ASICs. Its 384-bit state
is represented as a 3× 4 matrix of 32-bit words. Each of the 24 rounds consists
of three operations: (i) a non-linear layer in the form of a 96-bit SP-box that is
applied to each column of the matrix, (ii) a linear mixing layer in every second
round, and (iii) a constant addition in every fourth round. The SP-box itself is
inspired by Norx and can be efficiently implemented using logical operations
(32-bit AND, OR, and XOR), left shifts by 1, 2 and 3 bits, as well as rotations
by 9 and 24 bits. On the other hand, the linear layer performs swap operations
on row 0 of the matrix: a small-swap every fourth round (starting from round
1), and a big-swap also every fourth round (starting from round 3).

SPARKLE. The Sparkle suite submitted to NIST consists of four instances
of the AEAD algorithm Schwaemm, targeting security levels of 128, 192, and
256 bits, as well as two instances of the hash function Esch with digest lengths
of 256 and 384 bits. All instances are built on top of the Sparkle permutation
family, which consists of three members that differ by the width (i.e. the state
size) and the number of steps they execute. Schwaemm is based on the highly-
efficient Beetle mode of use [15], whereas Esch can be classified as a sponge
construction. The main instance of Schwaemm uses the 384-bit variant of the
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Sparkle permutation, i.e. Sparkle384, with a rate of 256 bits. This variant is
also used for Esch256, the main instance of the hash function Esch. Besides
Sparkle384, there exists also a smaller and a larger version of the permutation
with a width of 256 and 512 bits, respectively (see [5] for details).

Sparkle384 is a classical ARX design, optimized for high speed on a wide
range of 8, 16, and 32-bit microcontrollers. The permutation is performed with
a big number of steps, namely 11, for initialization, finalization, and separation
between the processing of associated data and the secret message, while a slim
(i.e. 7-step) version is used to update the intermediate state. From a high-level
point of view, the permutation has an SPN structure and comprises three main
parts: (i) a non-linear layer consisting of six parallel ARX-boxes, (ii) a simple
linear diffusion layer, (iii) the addition of a step counter and round constant to
the 384-bit state. The ARX-box is called Alzette and can be seen as a small
64-bit block cipher that operates on two 32-bit words and performs additions
modulo 232, logical XORs, and rotations by 16, 17, 24, and 31 bits [5]. On the
other hand, the linear layer is, in essence, a Feistel round with a linear Feistel
function, followed by a swap of the left and right half of the state.

Xoodoo. Xoodyak is a highly versatile cryptographic scheme that is suitable
for a wide range of symmetric-key functions including hashing, pseudo-random
bit generation, authentication, encryption, and authenticated encryption. At its
heart is Xoodoo, a lightweight 384-bit permutation [17]. The Xoodyak suite
submitted to the NIST lightweight crypto project includes an AEAD algorithm
and a hash function; both are built on the Cyclist mode of operation [16]. To
perform authenticated encryption, Cyclist has to be initialized in keyed mode
with a 128-bit key and nonce, respectively, after which associated data can be
absorbed at a rate of 352 bits (i.e. 44 bytes), whereas plaintext/ciphertext gets
processed at a rate of 192 bits. On the other hand, when Cyclist is operated in
hash mode, the rate is 128 bits (i.e. 256 bits of capacity).

Xoodoo is inspired by both Keccak and Gimli in the sense that the state
has the same size and is represented in the same way as in Gimli, though the
round function is similar to Keccak [11]. Consequently, the state has the form
of a 3× 4 matrix of 32-bit words, which can be visualized via three horizontal
128-bit planes (one above the other), each consisting of four 32-bit lanes. It is
also possible to view the 384-bit state as 128 columns of three bits lying upon
another (i.e. each bit belongs to a different plane). The Xoodoo permutation
executes 12 iterations of a round function of five steps: a column-parity mixing
layer θ, a non-linear layer χ, two plane-shifting layers (ρwest and ρeast) between
them, and a round-constant addition. Both ρ layers move bits horizontally and
perform lane-wise rotations of planes as well as rotations of lanes by 11, 1, and
8 bits to the left. On the other hand, in the parity-computation part of θ and
in the χ layer, state-bits interact only vertically, i.e. within 3-bit columns. The
θ layer mainly executes XORs and left-rotations by 5 and 14 bits. Finally, the
non-linear layer χ applies a 3-bit S-box to each column of the state, which can
be computed using logical ANDs, XORs, and bitwise complements.
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3 Implementation and Evaluation

To ensure a fair and consistent evaluation of the four permutations, we applied
the same implementation and optimization strategy to each permutation, and
we put a similar effort into optimizing each implementation. This section gives
an overview of our optimization strategy for ARM and AVR, and presents some
insights into the implementations and the benchmarking. In total, we evaluated
eight implementations (four for ARM and also four for AVR), half of which we
developed from scratch, namely the ARM implementation of Sparkle384 and
the AVR implementations of Ascon, Sparkle384, and Xoodoo, whereas the
remaining four are based on Assembler source code provided by the designers
(with minor modifications to ensure a fair and consistent evaluation).

Target Platforms. The two concrete microcontrollers on which we evaluate
the execution time and binary code size of the cryptographic permutations are
a 32-bit ARM Cortex-M3 [1] and an 8-bit AVR ATmega128 [22]. They possess
very different (micro-)architectural properties and features, making them good
targets for an assessment of the multi-platform efficiency of permutations.

The Cortex-M3 is described in [1] as a “low-power processor” that combines
low hardware cost with high code density and is intended for deeply embedded
applications. It features a 3-stage pipeline with branch speculation and is based
on a modified Harvard memory structure, which means data memory (SRAM)
and instruction memory (usually flash) are connected through separate buses
with the core, but the address space is unified. All Cortex-M3 microcontrollers
implement the ARMv7-M architecture profile [2] and are, therefore, capable to
execute the Thumb-2 instruction set. Thumb-2 is is a superset of the previous
16-bit Thumb instruction set, with additional 16-bit instructions alongside 32-
bit instructions, whereby instructions of different length (i.e. 16 bit, 32 bit) can
be intermixed freely. There are 16 registers in total (r0 to r15), of which up to
14 are available to the programmer and can serve as general-purpose registers
for data operations. Arithmetic/logical instructions generally have a 3-operand
format (i.e. two source registers and one destination register), though there are
some restrictions for 16-bit Thumb-2 instructions, e.g. only the lower registers
r0 to r7 can be used or the destination register and one of the source registers
must be identical. On the other hand, many 32-bit data processing instructions
support a “flexible” second operand, which means the second operand can be
a 12-bit immediate value or a register with an optional shift or rotate [2]. This
makes it possible to execute a shift or rotation as part of another instruction
in a single clock cycle; for example, add rd, rs1, rs2, ror #17 first rotates
the content of rs2 17 bits left before adding it to rs1 and assigning the sum to
register rd. Thumb-2 allows for conditional execution of up to four instructions
that immediately follow an “if-then” construct (i.e. an it instruction) and are
suffixed with appropriate condition codes (see [2] for details).

The ATmega128 [22], like other members of the AVR family of 8-bit micro-
controllers, is based on a modified Harvard architecture, which means it comes
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with separate memories and buses for program and data in order to maximize
performance and parallelism. However, in contrast to Cortex-M3, ATmega128
microcontrollers have also separate address spaces for program and data (the
ATmega128 only qualifies as a modified Harvard architecture in the weak sense
that it provides dedicated instructions to read and write program memory as
data, e.g. lpm and spm). In total, there are 133 instructions, which are encoded
to be either 16 or 32 bits wide; most of them are executed in only one or two
clock cycles. The ATmega128 features a 2-stage pipeline, making it possible to
execute an instruction while the next instruction is fetched from the program
memory. In addition, it comes with a large register file consisting of 32 general-
purpose registers (r0 to r31) of 8-bit width. Six registers can be used as three
16-bit pointers (X, Y, and Z) to access the data memory. The arithmetic/logical
instructions have a 2-operand format, which allows them to read two operands
from two (arbitrary) registers and write the result of the operation back to the
first register [23]. The ATmega128, like most other 8-bit microcontrollers, can
shift or rotate the content of a register by only one bit at a time; this implies
that shifting an 8-bit operand by e.g. three bits takes three clock cycles. The
cost increases accordingly for 32 or 64-bit operands. For example, the rotation
of a 32-bit operand (stored in four registers) to the left by one bit requires the
execution of five instructions (one lsl, three rol, and one adc) and takes five
clock cycles. A 1-bit right-rotation of a 32-bit operand is even more expensive
since it involves six instructions (one bst, four ror, and one bld).

Optimization Strategies. The evaluated assembly implementations for the
Cortex-M3 platform are purely speed-optimized, which means whenever there
was a trade-off to be made between execution time and code size, the decision
was always in favor of the optimization that led to the best performance. This
implies, for example, the full unrolling of the main loop of each permutation
to eliminate the loop overhead and facilitate some other optimizations. Round
constants are not kept in tables in flash or RAM, but loaded into registers on
the fly via movw and movt (to reduce the impact of wait states) or, if they are
short enough, directly encoded into an instruction as an immediate value. Such
speed-optimized implementations have been developed by the designer teams
of Ascon, Gimli, and Xoodoo; we used these assembly implementations as
starting point but made small modifications to increase the readability of the
source code (e.g. by using macros) and to ensure that they all adhere to the
specifications of the ARM Application Binary Interface (ABI). We translated
the assembly source code of Gimli from the GNU assembler (GAS) syntax to
the syntax of Keil MicroVision such that its execution time can be determined
with Keil’s cycle-accurate simulator and by execution on development boards
using the GNU toolchain for ARM. The original 32-bit ARM implementation
of Ascon provided by its designers contained “inlined” assembly code for the
permutation. We converted this implementation into a pure assembly function
(with a separate file) to ensure consistency across all permutations. Finally, the
fourth permutation, i.e. Sparkle384, was implemented by us from scratch.
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Our assembly implementations of the permutations for the 8-bit AVR plat-
form [23] aim for small (binary) code size instead of high speed. Therefore, we
refrained from code-size increasing optimizations like (full) loop unrolling as
otherwise the code size may grow unreasonably large. This can be exemplified
using the AVR assembler implementations of Gimli (provided by its designers)
as case study. One of these implementations is size-optimized and, thus, quite
small (less than 800 B), while the other is speed-optimized (with fully unrolled
main loop) and has a code size of over 19 kB [7]. For comparison, the code size
of the fully-unrolled ARM implementation is less than 4 kB. However, it has
to be taken into account that the flash capacity for storing program code is, in
general, more restricted on small and cheap devices that are equipped with an
8-bit microcontroller than on devices with a more powerful 32-bit ARM micro-
controller. We implemented the assembly code for Ascon, Sparkle384, and
Xoodoo from scratch since, at the time we started with our evaluation of the
permutations, no size-optimized AVR implementations were available. On the
other hand, we took over the small-size AVR version of the Gimli permutation
developed by the designer team since it aligns very well with our optimization
strategy for AVR. We put a similar effort into optimizing each implementation
of the permutations to ensure a fair and consistent evaluation.

Implementation Details. Optimizing the permutations for the 32-bit ARM
Cortex-M3 microcontroller is fairly straightforward. All four permutations have
in common that the full state can be kept in the register file, which still leaves
either two (Gimli, Sparkle384, Xoodoo) or four (Ascon) registers available
for the computations. Gimli, Sparkle384, and Xoodoo organize their state
in 32-bit words and can, therefore, take advantage of implicit shifts/rotations
folded into data processing instructions. All implementations we evaluate make
extensive use of such “free” shifts or rotations so as to minimize the execution
time. As already mentioned above, round constants are either directly encoded
into an instruction as immediate value (if they are short enough) or loaded to
registers via movw and movt. The permutation of Ascon is a special case since
it operates on 64-bit words. In order to still be able to exploit “free” shifts and
rotations of 32-bit operands, the designer team of Ascon adopted a so-called
bit-interleaving technique [11,19], which is, in essence, a special representation
of a 64-bit word as two 32-bit words, one containing all bits at even positions
and the other all bits at odd positions. In this way, Ascon can take advantage
of implicitly-performed rotations in the linear layer, though this comes at the
expense of conversions between the normal representation and bit-interleaved
representation. More concretely, data that is injected into the state has to be
converted from normal to bit-interleaved form, while an extraction of data from
the state requires a conversion in the opposite direction.

The 8-bit AVR architecture requires significantly different implementation
and optimization techniques than ARM. First and foremost, the register space
of an 8-bit AVR microcontroller is not large enough to accommodate the entire
state of any of the four permutations, which means the state has to be kept in
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RAM and parts of the state are loaded into registers when an operation is to be
carried out on them. Therefore, the main optimization problem for AVR is to
find a good register allocation strategy, which includes to decide when to load
state-words from RAM to registers and when to write them back to RAM so
that the overall number of memory accesses (i.e. ld, st instructions) becomes
minimal. Ascon is well suited for platforms with small register space because
each of the two main layers needs, at any time, only a part of the 320-bit state
(but never the full state) in registers. Our AVR implementation processes the
substitution layer in 16-bit slices (i.e. a 16-bit part of each state-word is loaded
and stored) and the permutation layer one state-word at a time, which means
each byte of the state gets loaded/stored twice per round. This is also the case
for Sparkle384, but requires moving the computation of the temporary values
tx and ty from the linear layer to the ARX-box layer. Our AVR implementation
of Xoodoo integrates parts of the plane-shifting layers ρwest and ρeast into the
mixing layer θ and the non-linear layer χ, respectively, to minimize the overall
number of memory accesses. Nonetheless, each byte of the 384-bit state has to
be loadd from RAM and stored to RAM on average 2.66 times per round.

Rotations of 32-bit (resp. 64-bit) words can be optimized on AVR by taking
advantage of the fact that rotating by a multiple of 8 bits is cheap (i.e. can be
executed by mov instructions) or even free (e.g. when combined with XOR).

Benchmarking. We evaluated the execution time of both the ARM and the
AVR implementation of the permutations via simulation with a cycle-accurate
instruction set simulator, namely the simulator of Keil MicroVision 5.26 and
Atmel Studio 7, respectively. Execution times obtained by simulation with the
latter are, in general, very close to the timings on a real AVR device. Unfortu-
nately, this is often not the case for simulation results for ARM since, as stated
on Keil’s website3, the simulator assumes ideal conditions for memory accesses
and “does not simulate wait states for data or code fetches.” Thus, the timings
obtained with this simulator should be seen as lower bounds of the execution
times one will observe on a real Cortex-M3 device. In order to get more precise
performance figures, we also measured the execution time of the permutations
on three development boards with a different number of flash wait states. The
first board is a STM32 VL Discovery, which is equipped with a STM32F100RB
Cortex-M3 microcontroller clocked at a nominal frequency of 24 MHz. Due to
this relatively low clock frequency, the microcontroller can access flash with no
wait states at all. Our second board is also a STM32, but a more sophisticated
one, namely the Nucleo-64. It comes with a STM32F103RB Cortex-M3 clocked
with a frequency of 72 MHz. At this clock frequency, flash accesses require two
wait states. Finally, the third board is an Arduino Due, which houses an Atmel
SAM3X8E Cortex-M3 clocked at 84 MHz. When operated using the standard
configuration, flash accesses require four wait states. However, the performance
impact of this high number of wait states is partly mitigated by a 128-bit wide
memory interface and a system of 2× 128-bit buffers (see [3, Sect. 18]).

3 http://www2.keil.com/mdk5/simulation/ (accessed 2021-09-14).

http://www2.keil.com/mdk5/simulation/
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4 Experimental Results

Table 1 presents the code size and execution time of speed-optimized (i.e. with
fully-unrolled loops) ARM assembly implementations of the four permutations
Ascon, Gimli, Sparkle384, and Xoodoo. All these execution times are the
result of simulations using the cycle-accurate instruction set simulator of Keil
MicroVision 5.26 using a generic Cortex-M3 model as target device. The times
range from 387 clock cycles (Ascon) to 1041 cycles (Gimli). However, when
comparing symmetric cryptosystems, the throughput (in cycles per byte) is, in
general, more meaningful than raw execution times. For example, in the case
of block ciphers, the throughput obtained by dividing the execution time by the
block size allows one to take into account that different algorithms may have
different block sizes. Similarly, when comparing permutations, one can obtain
throughput figures by dividing the computation time by either the width of the
permutation or the rate of the associated AEAD algorithm. The AEAD rates
that are relevant for our four permutations are all different, namely eight bytes
for Ascon-128, 16 bytes for Gimli-Cipher, 24 bytes for Xoodyak, and even
32 bytes for Schwaemm256-128. However, when using the rate of the related
AEAD algorithm to determine the throughput, the resulting values take into
account the efficiency of the permutation and the efficiency of the mode of the
AEAD algorithm. Since our aim is to analyze the efficiency of the permutation
alone, we decided to calculate the throughput under the assumption that each
permutation is used to instantiate one and the same mode (namely a classical
sponge) with one and the same capacity (namely 256 bits, which corresponds
to 128 bits of security). Consequently, Ascon has a rate of eight bytes, and the
three other permutations a rate of 16 bytes.

Table 1. Code size, execution time, and throughput of speed-optimized ARMv7-M
assembly implementations of the four permutations on a Cortex-M3 microcontroller.

Code size Exec. time Throughput
Permutation

(bytes) (clock cycles) (cc/rate-byte)

Ascon-128 (6 rounds) 1364 387 48.38

Gimli (24 rounds) 3950 1041 65.06

Sparkle384 (7 steps) 2810 778 48.63

Xoodoo (12 rounds) 2376 657 41.06

The last column of Table 1 gives the throughput (in cycles per byte) of the
permutations calculated in this way, i.e. by dividing the execution time by the
rate under the assumption that the permutation is used to instantiate a sponge
with a capacity of 256 bits. Xoodoo requires only 41 cycles per rate-byte and
reaches the best throughput, followed by Ascon and Sparkle384, which are
nearly identical. However, the results for Ascon do not include the conversion
to and from bit-interleaved form. Gimli has the by far worst throughput of all
four permutations. In terms of code size, Ascon is the clear winner.



An Evaluation of the Multi-Platform Efficiency of Lightweight Permutations 13

Table 2. Code size, execution time, and throughput of size-optimized AVR assembly
implementations of the four permutations on an ATmega128 microcontroller.

Code size Exec. time Throughput
Permutation

(bytes) (clock cycles) (cc/rate-byte)

Ascon-128 (6 rounds) 836 4484 560.50

Gimli (24 rounds) 778 23699 1481.19

Sparkle384 (7 steps) 844 7460 466.25

Xoodoo (12 rounds) 756 11849 740.56

Table 2 lists the code size, execution time, and throughput (in terms of the
permutation time divided by the rate, assuming a capacity of 256 bits) of code-
size-optimized AVR assembly implementations of the four permutations on an
ATmega128 microcontroller [22]. The execution times were simulated using the
cycle-accurate instruction set simulator of Atmel Studio 7. Apparently, all the
AVR timings are significantly worse (by at least one order of magnitude) than
the execution times of the permutations on ARM. This enormous performance
penalty can be explained by different optimization goals (i.e. size versus speed)
and, more importantly, the completely different characteristics of the AVR and
ARM architecture (e.g. register space, latency of multi-bit rotations). In terms
of throughput, Sparkle384 is now the clear winner, followed by Ascon and
Xoodoo. While on ARM the three fastest permutations were throughput-wise
relatively close to each other, we see a significant difference on AVR since the
throughput of Ascon is 20% worse than the throughput of Sparkle384, and
the throughput of Xoodoo is even 59% worse. Even though we optimized the
permutations for small code size, they compare very well with speed-optimized
AVR implementations. For example, the AVR assembler implementation of the
permutation of Ascon developed by Rhys Weatherley4 has an execution time
of 4693 cycles and a code size of 1418 bytes, which means our implementation
is not only much smaller but also a bit faster. The AVR implementation of the
Xoodoo permutation provided by its designers5 needs 11009 clock cycles for 12
rounds and has a code size of 1656 bytes, making it more than twice as big as
our implementation, but also 840 clock cycles (or 7.6%) faster.

As mentioned in the last section, the simulation results obtained with Keil
MicroVision can differ from the execution time on “real” Cortex-M3 hardware
because the simulator does not take flash wait states into account. The purpose
of such flash wait states is to compensate the difference between the maximum
clock frequency with which the microcontroller core and the flash memory can be
operated. Modern Cortex-M3 microcontrollers can be clocked with frequencies
of over 200 MHz, which is far above the maximum frequency of conventional
flash memory (usually between 20 and 30 MHz). Thus, it makes sense to assess

4 ascon permute from http://github.com/rweather/lwc-finalists/blob/master/

src/individual/ASCON/internal-ascon-avr.S (accessed 2021-09-21).
5 Xoodoo Permute Nrounds from http://github.com/XKCP/XKCP/blob/master/lib/

low/Xoodoo/AVR8/Xoodoo-avr8-u1.s (accessed 2021-09-21).

http://github.com/rweather/lwc-finalists/blob/master/src/individual/ASCON/internal-ascon-avr.S
http://github.com/rweather/lwc-finalists/blob/master/src/individual/ASCON/internal-ascon-avr.S
http://github.com/XKCP/XKCP/blob/master/lib/low/Xoodoo/AVR8/Xoodoo-avr8-u1.s
http://github.com/XKCP/XKCP/blob/master/lib/low/Xoodoo/AVR8/Xoodoo-avr8-u1.s
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Table 3. Execution time of the four permutations as determined by simulation with
Keil MicroVision using a generic Cortex-M3 model and measurement on Cortex-M3
development boards with 0, 2, and 4 flash wait states (values in parentheses are the
performance penalties versus the VL Discovery board, which has 0 wait states).

Keil µVision VL Discovery Nucleo-64 Arduino Due
Permutation

(simulation) 0 wait states 2 wait states 4 wait states

Ascon-128 (6 rounds) 387 389 601 (1.54) 472 (1.21)

Gimli (24 rounds) 1041 1043 1656 (1.59) 1287 (1.23)

Sparkle384 (7 steps) 778 780 1196 (1.53) 936 (1.20)

Xoodoo (12 rounds) 657 659 1014 (1.54) 795 (1.21)

the impact of flash wait states on the actual performance of the permutations
by measuring their execution time on the three Cortex-M3 development boards
mentioned in the previous section, namely an STM32 VL Discovery (which has
no flash wait states), an STM32 Nucleo-64 (two wait states), and an Arduino
Due (four wait states). However, the Atmel SAM3X8E microcontroller on the
Due board performs fetches from flash through a 128-bit wide bus and comes
with a 2× 128-bit buffer, which mitigates to a certain extent the impact of the
wait states. Table 3 shows the (measured) execution times of the permutations
on these boards. The timings on the VL Discovery are almost the same as the
ones obtained through simulation with Keil MicroVision; this confirms that the
Keil simulator is indeed cycle-accurate. On the other hand, the execution times
on the Nucleo-64 board are significantly worse (by factors of between 1.53 and
1.59) than the results on the Discovery board and the timings reported by the
simulator. The timings on the Arduino Due are better than the timings on the
Nucleo-64, despite the two times larger number of wait states, which is because
of the afore-mentioned 128-bit wide flash access and the 2× 128-bit buffer.

5 Conclusions

Since there is no single dominating microcontroller architecture in the IoT, the
designers of (lightweight) symmetric algorithms have to aim for multi-platform
efficiency, i.e. efficiency on a wide range of microcontrollers with highly diverse
(and divergent) characteristics. In this paper, we analyzed how well the permu-
tations of the AEAD algorithms Ascon-128, Gimli, Schwaemm256-128, and
Xoodyak achieve this goal, whereby we used a 32-bit ARM Cortex-M3 and an
8-bit AVR microcontroller as target platforms. We evaluated speed-optimized
assembler implementations for ARM, based primarily on source code from the
designer teams, and size-optimized assembler implementations for AVR, which
we mainly developed from scratch. Our results indicate that the throughput (in
terms of permutation time divided by the rate when the capacity is fixed to 256
bits) of Ascon, Sparkle384 and Xoodoo is very similar on ARM and differs
by just a few cycles per rate-byte. On the other hand, on AVR, Sparkle384 is
significantly more efficient than all its competitors; for example, it outperforms
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Ascon and Xoodoo by a factor of 1.20 and 1.59, respectively. A major reason
for the difference between ARM and AVR results is the cost of multi-bit shifts
and rotations on the latter platform. Many of the rotation amounts of the five
linear functions of Ascon are not particularly AVR-friendly, which makes the
linear layer relatively inefficient. The performance of Xoodoo on AVR is also
hampered by rotation amounts that are “unfriendly” to small microcontrollers
and further suffers from a relatively large number of memory accesses compared
to e.g. Ascon. On a more positive note, the results for Sparkle demonstrate
that it is possible to design a permutation for multi-platform efficiency.
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