117,556 research outputs found

    An optical reaction micro-turbine

    Get PDF
    To any energy flow there is an associated flow of momentum, so that recoil forces arise every time an object absorbs or deflects incoming energy. This same principle governs the operation of macroscopic turbines as well as that of microscopic turbines that use light as the working fluid. However, a controlled and precise redistribution of optical energy is not easy to achieve at the micron scale resulting in a low efficiency of power to torque conversion. Here we use direct laser writing to fabricate 3D light guiding structures, shaped as a garden sprinkler, that can precisely reroute input optical power into multiple output channels. The shape parameters are derived from a detailed theoretical analysis of losses in curved microfibers. These optical reaction micro-turbines can maximally exploit light’s momentum to generate a strong, uniform and controllable torque

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method

    Get PDF

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.Peer ReviewedPostprint (published version

    Modelling and characterization of cell collapse in aluminium foams during dynamic loading

    Get PDF
    Plate-impact experiments have been conducted to investigate the elastic–plastic behaviour of shock wave propagation and pore collapse mechanisms of closed-cell aluminium foams. FE modelling using a meso-scale approach has been carried out with the FE software ABAQUS/Explicit. A micro-computed tomography-based foam geometry has been developed and microstructural changes with time have been investigated to explore the effects of wave propagation. Special attention has been given to the pore collapse mechanism. The effect of velocity variations on deformation has been elucidated with three different impact conditions using the plate-impact method. Free surface velocity (ufs) was measured on the rear of the sample to understand the evolution of the compaction. At low impact velocities, the free-surface velocity increased gradually, whereas an abrupt rise of free-surface velocity was found at an impact velocity of 845 m/s with a copper flyer-plate which correlates with the appearance of shock. A good correlation was found between experimental results and FE predictions

    Web-based interface system for bedside monitor

    Get PDF
    From face-to-face consultation to medicine at a distance, technology is changing the way medical services are delivered to the people. We are going into an era where the information is being digitized to be stored in a database. This is done in order to reduce information overlap and redundancy that are the main problems the health care sector are facing right now. More hospitals in other more advanced countries are going paperless. In order to provide better services to the critically ill patients in the ICU or CCU, a data acquisition program is developed for the acquisition of vital signs monitored in the critical care units. This work discusses the work done in extracting the data and signal from patient monitor BSM 8800 to the computer. The data are acquired using RS232C Interface Protocol. The vital signs acquired include oxygen saturation (SaCh), heart rate (HR), electrocardiograph (ECG) signal, non-invasive blood pressure (NIBP), respiration rate (RR), temperature (TEMP) and end tidal carbon dioxide (PETCO2 or ETCO2). Ventricular Premature Contraction (VPC), ST level and arrhythmia information are also acquired and displayed to provide a more thorough information on the condition of the patients. Alarm detection is also programmed so that in critical conditions the vital signs will be displayed in red for extra caution. An ECG user control is designed and embedded in the web page in order to convert and plot the ECG waveform from hexadecimal values sent from the bedside monitor. The user control has been tested its accuracy and proved its validity to reconstruct the original ECG waveform. Basic patient information can also be seen from the graphical user interface (GUI) that has been developed. Physicians and medical practitioners have to register with the system before gaining access to the system and only the physician-in-charge of the patient can see the more intricate details of the patient
    • 

    corecore