23,013 research outputs found

    Synchrotron-based visualization and segmentation of elastic lamellae in the mouse carotid artery during quasi-static pressure inflation

    Get PDF
    This dataset contains images that were obtained during quasi-static pressure inflation of mouse carotid arteries. Images were taken with phase propagation imaging at the X02DA TOMCAT beamline of the Swiss Light Source synchrotron at the Paul Scherrer Institute in Villigen, Switzerland. Scans of n=12 left carotid arteries (n-6 Apoe-deficient mice, n=6 wild-type mice, all on a C57Bl6J background) were taken at pressure levels of 0, 10, 20, 30, 40, 50, 70, 90 and 120 mmHg. For analysis we selected 75 images from the center of each stack (starting at the center of the stack, and skipping 2 of every three images in both cranial and caudal axial directions) for each sample and for each pressure level, resulting in a total of 75 x 12 x 9 = 8100 analyzed images from 108 different scans. Segmentation, 3D visualization and geometric analysis is presented in the corresponding manuscript. Files are uploaded in 16bit .tif format and are named: mouseid_pressurelevel_stacknumber, with mouseid consisting of either Apoe (Apoe-deficient) or Bl (wild-type) and the mouse number, pressurelevel varies from P0 to P120 and stacknumber indicates which image from the stack has been uploaded

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

    Get PDF
    This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images

    DPP-PMRF: Rethinking Optimization for a Probabilistic Graphical Model Using Data-Parallel Primitives

    Full text link
    We present a new parallel algorithm for probabilistic graphical model optimization. The algorithm relies on data-parallel primitives (DPPs), which provide portable performance over hardware architecture. We evaluate results on CPUs and GPUs for an image segmentation problem. Compared to a serial baseline, we observe runtime speedups of up to 13X (CPU) and 44X (GPU). We also compare our performance to a reference, OpenMP-based algorithm, and find speedups of up to 7X (CPU).Comment: LDAV 2018, October 201

    Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped Divergences

    Full text link
    In this article, we present a graph-based method using a cubic template for volumetric segmentation of vertebrae in magnetic resonance imaging (MRI) acquisitions. The user can define the degree of deviation from a regular cube via a smoothness value Delta. The Cube-Cut algorithm generates a directed graph with two terminal nodes (s-t-network), where the nodes of the graph correspond to a cubic-shaped subset of the image's voxels. The weightings of the graph's terminal edges, which connect every node with a virtual source s or a virtual sink t, represent the affinity of a voxel to the vertebra (source) and to the background (sink). Furthermore, a set of infinite weighted and non-terminal edges implements the smoothness term. After graph construction, a minimal s-t-cut is calculated within polynomial computation time, which splits the nodes into two disjoint units. Subsequently, the segmentation result is determined out of the source-set. A quantitative evaluation of a C++ implementation of the algorithm resulted in an average Dice Similarity Coefficient (DSC) of 81.33% and a running time of less than a minute.Comment: 23 figures, 2 tables, 43 references, PLoS ONE 9(4): e9338
    • …
    corecore