4 research outputs found

    Compressive Light Field Reconstruction using Deep Learning

    Get PDF
    abstract: Light field imaging is limited in its computational processing demands of high sampling for both spatial and angular dimensions. Single-shot light field cameras sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing incoming rays onto a 2D sensor array. While this resolution can be recovered using compressive sensing, these iterative solutions are slow in processing a light field. We present a deep learning approach using a new, two branch network architecture, consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution 4D light field from a single coded 2D image. This network decreases reconstruction time significantly while achieving average PSNR values of 26-32 dB on a variety of light fields. In particular, reconstruction time is decreased from 35 minutes to 6.7 minutes as compared to the dictionary method for equivalent visual quality. These reconstructions are performed at small sampling/compression ratios as low as 8%, allowing for cheaper coded light field cameras. We test our network reconstructions on synthetic light fields, simulated coded measurements of real light fields captured from a Lytro Illum camera, and real coded images from a custom CMOS diffractive light field camera. The combination of compressive light field capture with deep learning allows the potential for real-time light field video acquisition systems in the future.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Revealing the Invisible: On the Extraction of Latent Information from Generalized Image Data

    Get PDF
    The desire to reveal the invisible in order to explain the world around us has been a source of impetus for technological and scientific progress throughout human history. Many of the phenomena that directly affect us cannot be sufficiently explained based on the observations using our primary senses alone. Often this is because their originating cause is either too small, too far away, or in other ways obstructed. To put it in other words: it is invisible to us. Without careful observation and experimentation, our models of the world remain inaccurate and research has to be conducted in order to improve our understanding of even the most basic effects. In this thesis, we1 are going to present our solutions to three challenging problems in visual computing, where a surprising amount of information is hidden in generalized image data and cannot easily be extracted by human observation or existing methods. We are able to extract the latent information using non-linear and discrete optimization methods based on physically motivated models and computer graphics methodology, such as ray tracing, real-time transient rendering, and image-based rendering
    corecore