
Compressive Light Field Reconstruction using Deep Learning

by

Mayank Gupta

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved July 2017 by the
Graduate Supervisory Committee:

Pavan Turaga, Chair
Yezhou Yang

Baoxin Li

ARIZONA STATE UNIVERSITY

August 2017



ABSTRACT

Light field imaging is limited in its computational processing demands of high

sampling for both spatial and angular dimensions. Single-shot light field cameras

sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing

incoming rays onto a 2D sensor array. While this resolution can be recovered using

compressive sensing, these iterative solutions are slow in processing a light field. We

present a deep learning approach using a new, two branch network architecture,

consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution

4D light field from a single coded 2D image. This network decreases reconstruction

time significantly while achieving average PSNR values of 26-32 dB on a variety of

light fields. In particular, reconstruction time is decreased from 35 minutes to 6.7

minutes as compared to the dictionary method for equivalent visual quality. These

reconstructions are performed at small sampling/compression ratios as low as 8%,

allowing for cheaper coded light field cameras. We test our network reconstructions

on synthetic light fields, simulated coded measurements of real light fields captured

from a Lytro Illum camera, and real coded images from a custom CMOS diffractive

light field camera. The combination of compressive light field capture with deep

learning allows the potential for real-time light field video acquisition systems in the

future.
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Chapter 1

INTRODUCTION

The name plenoptic function (from latin word plenus meaning complete or full

and optic related to vision) was coined by Landy and Movshon (1991). It describes

all the possible radiant energy that can be perceived from the point of view of source

McMillan and Bishop (1995). In case of a dynamic scene where we are also charac-

terizing the wavelength it’s a 7 dimensional function written as :

p = P (θ, φ, λ, x, y, z, t) (1.1)

In case of static scene where we do not care about capturing wavelength specific

information as well it becomes a 5d function as represented in Figure 1.1:

p = P (θ, φ, x, y, z) (1.2)

Now, if the scene we are looking at contains occlusion eg. a concave object,

the light from one point would be blocked by another before reaching the viewer

but if we are only bothered about the convex full of the scene it makes sense to

capture these light fields Levoy (2006). Also, the radiance along the direction of

ray remains constant for all practical purposed so we can discard the redundant

information coming from one dimension which is z and this results into a 4d plenoptic

function.

Light fields, 4D representations of light rays in unoccluded space, are ubiqui-

tous in computer graphics and vision. Light fields have been used for novel view
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Figure 1.1: Using position (x, y, z) and direction (θ, φ) to parameterize a ray in
space. Source: https://en.wikipedia.org/wiki/Light_field

synthesis Levin and Durand (2010), synthesizing virtual apertures for images post-

capture Levoy (2006), and 3D depth mapping and shape estimation Tao et al. (2017).

Recent research has used light fields as the raw input for visual recognition algorithms

such as identifying materials Wang et al. (2016). Finally, biomedical microscopy has

employed light field techniques to improve issues concerning aperture and depth fo-

cusing Levoy et al. (2006).

While the algorithmic development for light fields has yielded promising results,

capturing high resolution 4D light fields at video rates is difficult. For dense sam-

pling of the angular views, bulky optical setups involving gantries, mechanical arms,

or camera arrays have been introduced Wilburn et al. (2005); Venkataraman et al.

2
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(2013). However, these systems either cannot operate in real-time or must process

large amounts of data, preventing deployment on embedded vision platforms with

tight energy budgets. In addition, small form factor, single-shot light field cameras

such as pinhole or microlens arrays above image sensors sacrifice spatial resolution for

angular resolution in a fixed trade-off Veeraraghavan et al. (2007); Ng et al. (2005).

Even the Lytro Illum, the highest resolution consumer light field camera available,

does not output video at 30 fps or higher. There is a clear need for a small form-

factor, low data rate, cheap light field camera that can process light field video data

efficiently.

To reduce the curse of dimensionality when sampling light fields, we turn to com-

pressive sensing (CS). CS states that it is possible to reconstruct a signal perfectly

from small number of linear measurements, provided the number of measurements

is sufficiently large, and the signal is sparse in a transform domain. Thus CS pro-

vides a principled way to reduce the amount of data that is sensed and transmitted

through a communication channel. Moreover, the number of sensor elements also

reduces significantly, paving a way for cheaper imaging. Recently, researchers intro-

duced compressive light field photography to reconstruct light fields captured from

coded aperture/mask based cameras at high resolution Marwah et al. (2013). The

key idea was to use dictionary-based learning for local light field atoms (or patches)

coupled with sparsity-constrained optimization to recover the missing information.

However, this technique required extensive computational processing on the order of

hours for each light field.

In this thesis, we present a new class of solutions for the recovery of compressive

light fields at a fraction of the time-complexity of the current state-of-the-art, while

delivering comparable (and sometimes even better) PSNR. We leverage hybrid deep
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neural network architectures that draw inspiration from simpler architectures in 2D

inverse problems, but are redesigned for 4D light fields. We propose a new network

architecture consisting of a traditional autoencoder and a 4D CNN which can invert

several types of compressive light field measurements including those obtained from

coded masks Veeraraghavan et al. (2007) and Angle Sensitive Pixels Wang and

Molnar (2012), Hirsch et al. (2014). We benchmark our network reconstructions

on simulated light fields, simulated compressive capture from real Lytro Illum light

fields provided by Kalantari et al. (2016), and real images from a prototype ASP

camera Hirsch et al. (2014). We achieve processing times on the order of a few

minutes, which is an order of magnitude faster than the dictionary-based method.

This work can help bring real-time light field video at high spatial resolution closer

to reality.
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Chapter 2

RELATED WORK

This chapter covers the formulation of light fields and surveys various capture

methods that have been used recently. Past research on Light field reconstruction

and compressive sensing has also been mentioned in subsequent sections.

2.1 Light Fields and Capture Methods

The modern formulation of light fields were first introduced independently by

Levoy and Hanrahan (1996) and Gortler et al. (1996). Both of them start with a 5d

plenoptic function as mentioned in previous chapter and reduce it to 4 dimensions by

removing the redundant information along the direction of a light ray i.e. assuming

that radiance along a ray in an empty space to be constant. One way to visualize this

(reexplained by me based on Gortler et al. (1996)) is to imagine an object in a cube

as shown in Figure 2.1. Now take it one step further and imagine one of the surfaces

of the cube, any surface as a grid with specific positions capturing a particular view

of the scene. In a similar fashion we could also move in fixed steps on the surface of

a sphere. Once again we are capturing 2d information(a photo) at different points on

a 2d surface. So the parameterization we will obtain would be 4d indeed.

This was about defining light-field in a way that also aligns with practicality of

its capturing. Since then, there has been numerous work in view synthesis, synthetic

aperture imaging, and depth mapping, see Levoy (2006) for a broad overview. View

synthesis refers to rendering/generating a novel view from the set of existing array of

5



Figure 2.1: The cube contains all the information about light rays coming out from
the object

images or collectively called as a 4d light-field and the pipeline is shown in Figure 2.2

Synthetic aperture imaging is a technique that allows us to synthetically increase

the aperture of our camera. There is not any actual increase but the image we

synthesized appears as though captured from a camera with a huge aperture. This

allows us to see through objects that would have normally caused occlusion as they

are too big as compared to the aperture of a single camera. In capturing light field we

use either camera arrays or same camera moving over to different positions and the

synthetic aperture equal to the collective size of the camera array can be acheived.

This also allows a photographer to refocus onto an object in the scene after capturing.

As we capture multiple views of the same scene different objects are in focus in
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Image array

Light Field 
Reconstruction

Light Field Viewpoint

Resampling

Synthetic 
view

Figure 2.2: Approximate Pipeline of Novel View Synthesis. Source: Yao et al.
(2016)

different scenes which essentially enables this effect.

For capture, gantries or camera arrays Wilburn et al. (2005), Venkataraman

et al. (2013) provide dense sampling . Multiple single-shot camera methods such as

microlenses Ng et al. (2005), coded apertures Levin et al. (2007), masks Veeraragha-

van et al. (2007), diffractive pixels Hirsch et al. (2014), and even diffusers Antipa

et al. (2016) and random refractive water droplets Wender et al. (2015) have been

proposed. All these single-shot methods multiplex angular rays into spatial bins, and

thus need to recover that lost information in post-processing.

2.2 Light Field Reconstruction

Vast amount of research has been done in an attempt to increase angular and

7



spatial resolution. These include using explicit signal processing priors Levin and

Durand (2010) and frequency domain methods Shi et al. (2014). The work closest

to our own is compressive light field photography Marwah et al. (2013) that uses

learned dictionaries to reconstruct light fields, and extending that technique to Angle

Sensitive Pixels Hirsch et al. (2014). We replace their framework by using deep

learning to perform both the feature extraction and reconstruction with a neural

network. Recently, Wang and Molnar (2012) proposed a hybrid camera system

consisting of a DSLR camera at 30 fps with a Lytro Illum at 3fps, and used deep

learning to recover light field video at 30 fps. Our work hopes to make light field video

processing cheaper by decreasing the spatio-angular measurements needed at capture

time. Similar to our work, researchers have recently used deep learning networks for

view synthesis Kalantari et al. (2016) and spatio-angular superresolution Yoon et al.

(2015). However, all these methods start from existing 4D light fields, and thus they

do not recover light fields from compressed measurements. To our knowledge this is

the first work of its kind that does that.

2.3 Compressive Sensing

There is no dearth of algorithms recovering original signals from their compres-

sively sensed versions Candès and Wakin (2008). The classical algorithms Donoho

(2006); Candes and Tao (2006); Candès et al. (2006) rely on the assumption that the

signal is sparse or compressible in transform domains like wavelets, DCT, or data

dependent pre-trained dictionaries. More sophisticated algorithms include model-

based methods Baraniuk et al. (2010); Kim et al. (2010) and message-passing algo-

rithms Donoho et al. (2009) which impose a complex image model to perform recon-

struction. However, all of these algorithms are iterative and hence are not conducive

8



for fast reconstruction. Add to that the fact that sparsity or compressibility assump-

tions may not be always true. Similar to our work, deep learning has been used for

recovering 2D images from compressive measurements at faster speeds than iterative

solversKulkarni et al. (2016). Researchers have also proposed stacked-denoising au-

toencoders to perform CS image and video reconstruction respectively Mousavi et al.

(2015); Iliadis et al. (2016). We combine the two types of architectures mentioned

above (CNN and stacked autoencoder) and propose a novel architecture to recon-

struct 4D light fields from their compressive measurements that introduces additional

challenges and opportunities for deep learning + compressive sensing.
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Chapter 3

LIGHT FIELD PHOTOGRAPHY

In this chapter, we describe the image formation model for capturing 4D light

fields and how to reconstruct them.

A 4D light field is typically parameterised with either two planes or two an-

gles Levoy and Hanrahan (1996); Gortler et al. (1996). We will represent light fields

l(x, y, θ, φ) with two spatial coordinates and two angular coordinates. For a regular

image sensor, the angular coordinates for the light field are integrated over the main

lens, thus yielding the following equation:

i(x, y) =

∫
θ

∫
φ

l(x, y, θ, φ)dφdθ, (3.1)

where i(x, y) is the image and l(x, y, θ, φ) is the light field.

Single-shot light field cameras add a modulation function Φ(x, y, θ, φ) that weights

the incoming rays Wetzstein et al. (2013):

i(x, y) =

∫
θ

∫
φ

Φ(x, y, θ, φ) · l(x, y, θ, φ)dφdθ. (3.2)

When we vectorize this equation, we get ~i = Φ~l where the ~l is the vectorized

light field, ~i is the vectorized image, and Φ is the matrix discretizing the modulation

function. Since light fields are 4D and images are 2D, this is inherently an underde-

termined set of equations where Φ has more columns than rows.

10



(θ,φ)

(x, y)

Camera arrays 

Gantries 

Lytro Illum (microlenses) 

Coded Apertures/Mask 

Angle Sensitive Pixels 

4D Light Field 

Figure 3.1: Light Field Capture: Light field capture has been performed with various
types of imaging systems, but all suffer from challenges with sampling and processing
this high dimensional information.

The matrix Φ represents the linear transform of the optical element placed in the

camera body. This is a decimation matrix for lenslets, comprised of random rows for

coded aperture masks, or Gabor wavelets for Angle Sensitive Pixels (ASPs).

3.1 Reconstruction

To invert the equation, we can use a pseudo-inverse ~l = Φ†~i, but this solution does

not recover light fields adequately and is sensitive to noise Wetzstein et al. (2013).

Linear methods do exist to invert this equation, but sacrifice spatial resolution by

stacking image pixels to gain enough measurements so that Φ is a square matrix.

To recover the light field at the high spatial image resolution, compressive light

11



field photography Marwah et al. (2013) formulates the following `1 minimization

problem:

min
α
||~i− ΦDα||22 + λ||α||1 (3.3)

where the light field can be recovered by performing l = Dα. Typically the light

fields were split into small patches of 9×9×5×5 (x, y, θ, φ) or equivalently sized atoms

to be processed by the optimization algorithm. Note that this formulation enforces a

sparsity constraint on the number of columns used in dictionary D for the reconstruc-

tion. The dictionary D was learned using a set of million light field patches captured

by a light field camera and trained using a K-SVD algorithm Aharon et al. (2006). To

solve this optimization problem, solvers such as ADMM Boyd et al. (2011) were em-

ployed. Reconstruction times ranged from several minutes for non-overlapping patch

reconstructions to several hours for overlapping patch reconstructions.

12



Chapter 4

DEEP LEARNING FOR LIGHT FIELD RECONSTRUCTION

Before studying the architecture that we used for reconstruction we discuss the

datasets on which we tested our methods by simulating a coded light field capture

under same compression ratio.

4.1 Light Field Simulation and Training

The main challenges we faced while using deep learning for our task were the

scarcity of training data that is available, quality/mismatch of the training data

distribution compared to the test data and lack of ground truth for actual compressive

light field measurements captured using the angle sensitive pixel camera setup. To

overcome these we employ a combination of strategies while using both simulated and

real data to get the best output while reproducing complete 4d light fields from asp

measurements.

4.2 Synthetic Light Field Archive

We use synthetic light fields from the Synthetic Light Field Archive Wetzstein

(2015) which have resolution (x, y, θ, φ) = (593, 840, 5, 5). Since the number of pa-

rameters for our fully-connected layers would be prohibitively large with the full light

field, we split the light fields into (9, 9, 5, 5) patches and reconstruct each local patch.

We then stitch the light field back together using overlapping patches to minimize

edge effects. This however does limit the ability of our network to use contextual

13
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Figure 4.1: Pipeline: An Overview of Our Pipeline for Light Field Reconstruction.
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light field information from outside this (9, 9, 5, 5) patch for reconstruction. However,

as GPU memory improves with technology, we anticipate that larger patches can be

used in the future with improved performance.

Our training procedure is outlined in Figure 4.1. We pick 50,000 random patches

from four synthetic light fields, and simulate coded capture by multiplying by Φ to

form images. We then train the network on these images with the labels being the

true light field patches. Our training/validation split was 85:15. We finally test our

network on a brand new light field never seen before, and report the PSNR as well as

visually inspect the quality of the data. In particular, we want to recover parallax in

the scenes, i.e. the depth-dependent shift in pixels away from the focal plane as the

angular view changes.

4.3 Lytro Illum Light Field Dataset

In addition to synthetic light fields, we utilize real light field captured from a Lytro

Illum camera Kalantari et al. (2016). To simulate coded capture, we use the same Φ

models for each type of camera and forward model the image capture process, result-

ing in simulated images that resemble what the cameras would output if they captured

that light field. There are a total of 100 light fields, each of size (364, 540, 14, 14).

For our simulation purposes, we use only views [6, 10] in both θ and φ, to generate

5x5 angular viewpoints. We extract 500,000 patches from these light fields of size

(9, 9, 5, 5), simulate coded capture, and once again use a training/validation split of

85:15.
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4.4 Network Architecture

Our network architecture consists of a two branch network, which one can see in

Figure 4. In the upper branch, the 2D input patch is vectorized to one dimension,

then fed to a series of fully connected layers that form a stacked autoencoder (i.e.

alternating contracting and expanding layers). This is followed by a 4D convolutional

layer. The lower branch is a 4D CNN which uses a fixed interpolation step of mul-

tiplying the input image by ΦT to recover a 4D spatio-angular volume, and then fed

through a series of 4D convolutional layers with ReLU nonlinearities. Finally the

outputs of the two branches are combined with weights of 0.5 to estimate the light

field.

There are several reasons why we converged on this particular network architec-

ture. Autoencoders are useful at extracting meaningful information by compressing

inputs to hidden states Vincent et al. (2010), and our autoencoder branch helped to

extract parallax (angular views) in the light field. In contrast, our 4D CNN branch

utilizes information from the linear reconstruction by interpolating with ΦT and then

cleaning the result with a series of 4D convolutional layers for improved spatial res-

olution. Combining the two branches thus gave us good angular recovery along with

high spatial resolution (please view the supplemental video to visualize the effect of

the two branches).

Our approach here was guided by a high-level empirical understanding of the be-

havior of these network streams, and thus, it is likely to be one of several architecture

choices that could lead to similar results. In Figure 4, we show the results of using

solely the upper or lower branch of the network versus our two stream architecture,

which helped influence our design decisions. To combine the two branches, we chose

16



to use simple averaging of the two branch outputs. While there may be more intelli-

gent ways to combine these outputs, we found that this sufficed to give us a 1-2 dB

PSNR improvement as compared to the autoencoder or 4D CNN alone, and one can

observe the sharper visual detail in the inlets of the figure.

For the loss function, we observed that the regular `2 loss function gives decent re-

constructions, but the amount of parallax and spatial quality recovered in the network

at the extreme angular viewpoints were lacking. We note this effect in Figure 4.4. To

remedy this, we employ the following weighted `2 loss function which penalizes errors

at the extreme angular viewpoints of the light field more heavily:

L(l, l̂) =
∑
θ,φ

W (θ, φ) · ||l(x, y, θ, φ)− l̂(x, y, θ, φ)||22, (4.1)

where W (θ, φ) are weights that increase for higher values of θ, φ. The weight values

were picked heuristically for large weights away from the center viewpoint with the

following values: W (θ, φ) =



√
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√

3

2
√

3
√

2
√

3 2
√

5 2
√

3 2
√

5


.

This loss function gave an average improvement of 0.5dB in PSNR as compared

to `2.
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4.5 Training Details

All of our networks were trained using Caffe Jia et al. (2014) and using a NVIDIA

Titan X GPU. Learning rates were set to λ = .00001, we used the ADAM solver Kingma

and Ba (2014), and models were trained for about 60 epochs for 7 hours or so. We

also finetuned models trained on different Φ matrices, so that switching the structure

of a Φ matrix did not require training from scratch, but only an additional few hours

of finetuning.

For training, we found the best performance was achieved when we trained each

branch separately on the data, and then combined the branches and jointly finetuned

the model further on the data. Training from scratch the entire two branch network

led to suboptimal performance of 2-3 dB in PSNR, most likely because of local minima

in the loss function as opposed to training each branch separately and then finetuning

the combination.
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Figure 4.4: Error in Angular Viewpoints: Here we visualize the `2 error for a light
field reconstruction with respect to ground truth using a standard `2 loss function for
training. Notice how the extreme angular viewpoints contain the highest error. This
helped motivate the use of a weighted `2 function for training the network.
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Chapter 5

EXPERIMENTAL RESULTS

In this chapter, we show experimental results on both simulated light fields, real

light fields with simulated capture, and finally real data taken from a prototype ASP

camera Hirsch et al. (2014). We compare both visual quality and reconstruction time

for our reconstructions, and compare against baselines for each dataset.

5.1 Synthetic Experiments

We first show simulation results on the Synthetic Light Field Archive. We used

as our baseline the dictionary-based method from Marwah et al. (2013); Hirsch et al.

(2014) with the dictionary trained on synthetic light fields, and we use the dragon

scene as our test case. We utilize three types of Φ matrices, a random Φ matrix that

represents the ideal 4D random projections matrix (satisfying RIP Candes (2008)),

but is not physically realizable in hardware (rays are arbitrarily summed from different

parts of the image sensor array). We also simulate Φ for coded masks placed in the

body of the light field camera, a repeated binary random code that is periodically

shifted in angle across the sensor array. Finally, we use the Φ matrix for ASPs which

consists of 2D oriented sinusoidal responses to angle as described in Hirsch et al.

(2014). As can be seen in Figure 5, the ASPs and the mask reconstructions perform

slightly better than the ideal random projections.

It is hard to justify why ideal projections are not the best reconstruction in prac-

tice, but it might be because the compression ratio is too low at 8% for random

projections or because there are no theoretical guarantees that the network can solve
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Number of Measurements Our Method (PSNR) Dictionary Method (PSNR)

N = 2 25.40 dB 22.86 dB

N = 15 26.54 dB 24.40 dB

N = 25 27.55 dB 24.80 dB

Table 5.1: Compression Sweep: Variation of PSNR for reconstructions with the
number of measurements in the dragons scene for ASP (non-overlapping patches)
using the two branch network versus the dictionary method.

the CS problem. All the reconstructions do suffer from blurred details in the zoomed

inlets, which means that there is still spatial resolution that is not recovered by the

network.

Compression ratio is the ratio of independent coded light field measurements

to angular samples to reconstruct in the light field for each pixel. This directly

corresponds to the number of rows in the Φ matrix which correspond to one spatial

location (x, y). We show three separate compression ratios and measure the PSNR for

ASP light field cameras in Table 5.1 with non-overlapping patches. Not surprisingly,

increasing the number of measurements increased the PSNR. We also compared for

ASPs using our baseline method based on dictionary learning. Our method achieves

a 2-4 dB improvement over the baseline method as we vary the number of measure-

ments.

Noise: We also tested the robustness of the networks to additive noise in the input

images for ASP reconstruction. We simulated Gaussian noise of standard deviation

of 0.1 and 0.2, and record the PSNR and reconstruction time which is display in

Table 5.2. Note that the dictionary-based algorithm takes longer to process noisy

patches due to its iterative `1 solver, while our network has the same flat run time

regardless of the noise level. This is a distinct advantage of neural network-based
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Metrics Noiseless Std 0.1 Std 0.2

PSNR (Ours) [dB] 26.77 26.74 26.66

PSNR (Dictionary) [dB] 25.80 21.98 17.40

Time (Ours) [s] 242 242 242

Time (Dictionary) [s] 3786 9540 20549

Table 5.2: Noise: The table shows how PSNR varies for different levels of additive
Gaussian noise for ASP reconstructions. It is clear that our method is extremely
robust to high levels of noise and provides high PSNR reconstructions, while for the
dictionary method, the quality of the reconstructions degrade with noise. Also shown
is the time taken to perform the reconstruction. For our method, the time taken
is only 242 seconds and independent of noise level whereas for dictionary learning
method, it can vary from 1 hour to nearly 7 hours.

methods over the iterative solvers. The network also seems resilient to noise in general,

as our PSNR remained about 26 dB.

Lytro Illum Light Fields Dataset: We show our results on this dataset in

Figure 5.2. As a baseline, we compare against the method from Kalantari et al.

(2016) which utilize 4 input views from the light field and generate the missing an-

gular viewpoints with a neural network. Our network model achieves higher PSNR

values of 30-32 dB on these real light fields for ASP encoding while keeping the same

compression ratio of 1
16

as Kalantari et al. (2016). While their method achieves PSNR

> 32dB on this dataset, their starting point is 4D light field captured by the Lytro

camera and they do not have to uncompress coded measurements. In addition, our

method is slightly faster as their network takes 147 seconds to reconstruct the full

light field, while our method reconstructs a light field in 80 seconds (both on a Titan
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X GPU).

5.2 Real Experiments

Finally, to show the feasibility of our method on a real compressive light field

camera, we use data collected from a prototype ASP camera Hirsch et al. (2014).

This data was collected on an indoors scene, and utilized three color filters to capture

color light fields.

Since we do not have training data for these scenes, we train our two branch

network on synthetic data, and then apply a linear scaling factor to ensure the testing

data has the same mean as the training data. We also change our Φ matrix to match

the actual sensors response and measure the angular variation in our synthetic light

fields to what we expect from the real light field. See Figure ?? and the supplementary

videos for our reconstructions. We compare our reconstructions against the method

from Hirsch et al. (2014) which uses dictionary-based learning to reconstruct the

light fields. For all reconstruction techniques, we apply post-processing filtering to

the image to remove periodic artifacts due to the patch-based processing and non-

uniformities in the ASP tile, as done in Hirsch et al. (2014).

We first show the effects of stride for overlapping patch reconstructions for the

light fields, as shown in Figure 5.4. Our network model takes a longer time to process

smaller stride, but improves the visual quality of the results. This is a useful tradeoff

between visual quality of results and reconstruction time in general.

Time complexity and quality of ASP reconstructions: As can be seen,

the visual quality of the reconstructed scenes from the network are on-par with the

dictionary-based method, but with an order of magnitude faster reconstruction times.
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A full color light field with stride of 5 in overlapping patches can be reconstructed

in 90 seconds, while an improved stride of 2 in overlapping patches yields higher

quality reconstructions for 6.7 minutes of reconstruction time. The dictionary-based

method in contrast takes 35 minutes for a stride of 5 to process these light fields.

However, our method has some distortions in the recovered parallax that is seen in

the supplementary videos. This could be possibly explained by several reasons. First,

optical abberations and mismatch between the real optical impulse response of the

system and our Φ model could cause artifacts in reconstruction. Secondly, the loss

function used to train the network is the l2 norm of the difference light field, which

can lead to the well-known regress-to-mean effect for the parallax in the scene.

It will be interesting to see if a l1 based loss function or specially designed loss

function can help improve the results. Thirdly, there is higher noise in the real data

as compared to synthetic data. However, despite these parallax artifacts, we believe

the results present here show the potential for using deep learning to recover 4D light

fields from real coded light field cameras.
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32.17 dB 32.10 dB 

Our method Ground 
 Truth 

Kalantari  
et al. 

33.82 dB  30.22 dB 

32.64 dB 30.33 dB 
Figure 5.2: Lytro Illum Light Fields: We show reconstruction results for real Lytro
Illum light fields with simulated ASP capture. We note that our network performs
subpar to Kalantari et al. (2016) since we have to deal with the additional difficulty
of uncompressing the coded measurements.
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Time:   13 seconds   90 seconds 6.7 minutes   
Figure 5.4: Overlapping Patches: Comparison of non-overlapping patches and over-
lapping patches with strides of 11 (non-overlapping), 5, and 2 for light field recon-
structions.
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Chapter 6

DISCUSSION

In this chapter, we have presented a deep learning method for the recovery of

compressive light fields that is signifcantly faster than the dictionary-based method,

while delivering comparable visual quality. The two branch structure of a traditional

autoencoder and a 4D CNN lead to superior performance, and we benchmark our

results on both synthetic and real light fields, achieving good visual quality while

reducing reconstruction time to minutes.

6.1 Limitations

Since acquiring ground truth for coded light field cameras is difficult, there is

no possibility of fine tuning our model for improved performance. In addition, it is

hard to determine exactly the Φ matrix without careful optical calibration, and this

response is dependent on the lens and aperture settings during capture time. All of

this information is hard to feed into a neural network to adaptively learn, and leads

to a mismatch between the statistics of training and testing data.

6.2 Future Directions

There are several future avenues for research. On the network architecture side, we

can explore the use of generative adversarial networks Goodfellow et al. (2014) which

have been shown to work well in image generation and synthesis problems Pathak

et al. (2016); Ledig et al. (2016). We have already done preliminary invesitigation
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Generator
G(x)

Discriminator
D(x)

1

0

z ~ pz(x)

sigmoid 
function

real data
z ~ pz(x)

Figure 6.1: Description of the Mechanism for Training a Generative Adversarial
Network

in this regard by running a Generative Adversarial Network using just one stream of

our final network architecture. Below are the two equations describing the working

of a GAN.

min
G

max
D

V (D,G) (6.1)

V (D,G) = Ex pdata(x)[logD(x)] + Ez pz(z)[log(1−D(G(z)))] (6.2)

One of the biggest problems with GAN that we faced as well in the initial phases

of training was that it’s very difficult to train the discriminator using information

from just binary labels. Moreover we also had to come up with our own architecture

for the discriminator inspired from Dosovitskiy et al. (2015) and this is the first work

to best of our knowledge that deals with 4D input data using GANs. One way to do

a sort of sanity check regarding a GAN discriminator is to take the light-field patches

generated by the generator and try to discriminate them from the actual patches

used to generate it. It is relatively easy to discard small network sizes for that as
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the learning task for them would be very difficult given they are trying to learn to

differentiate between generated patches(which are not that bad in quality) and real

patches just using binary feedback. To ease the task of training it is essential to start

training the discriminator using very slightly trained generator patches and then up

the quality slowly. This is essentially the idea behind the correct methodology to train

GANs as well where both generator and discriminator act as each other’s adversary

like in a game. If at any instant any adversary gets an edge it may slowly become

impossible for the other to catch it and the GAN may fail to converge properly. Exact

algorithm to train the GANs can be found in Goodfellow et al. (2014)

Another direction that should be explored is increasing the patch size(spatial and

angular). This has multiple advantages: better parallax capture as currently any-

thing that moves more than 9 pixels is impossible to be resolved accurately in the

views simply because the network cannot reproduce something for which it doesn’t

have any information unless we modify our architecture completely and use neigh-

boring patches also to reconstruct any patch; better discrimination in case of GANs

as it has more information to look at, although it could be argued that it has more

parameters to learn as well which may make the task more difficult; better reproduc-

tion of extreme views as any convolution operation has a kind of averaging affect;

significantly decreased reconstruction time. Apart from this other techniques such

as skip connections He et al. (2016) and other techniques for training GANs such as

feature matching Salimans et al. (2016) convolutional GANs Radford et al. (2015) or

WGANs Arjovsky et al. (2017) may be explored.

In addition to all these, the network could jointly learn optimal codes for captur-

ing light fields with the reconstruction technique, similar to the work by Chakrabarti

(2016) and Mousavi et al. (2015), helping design new types of coded light field cam-
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eras. Finally, we could explore the recent unified network architecture presented by

Chang et al. (2017) that applies to all inverse problems of the form y = Ax. While our

work has focused on processing single frames of light field video efficiently, we could

explore performing coding jointly in the spatio-angular domain and temporal domain.

This would help improve the compression ratio for these sensors, and potentially lead

to light field video that is captured at interactive (1-15 FPS) frame rates. Finally, it

would be interesting to perform inference on compressed light field measurements di-

rectly (similar to the work for inference on 2D compressed images Lohit et al. (2015);

Kulkarni and Turaga (2016)) that aims to extract meaningful semantic information.

All of these future directions point to a convergence between compressive sensing,

deep learning, and computational cameras for enhanced light field imaging.
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The content in this document has been taken from the paper ”Compressive Light-
field reconstruction using Deep Learning” for which I was the First listed co-author
and I hereby confirm that all other co-authors have granted their permission for the
material to be used in this thesis.
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