17,492 research outputs found

    A Novel H.264/AVC Based Multi-View Video Coding Scheme

    Get PDF

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    Overview of MV-HEVC prediction structures for light field video

    Get PDF
    Light field video is a promising technology for delivering the required six-degrees-of-freedom for natural content in virtual reality. Already existing multi-view coding (MVC) and multi-view plus depth (MVD) formats, such as MV-HEVC and 3D-HEVC, are the most conventional light field video coding solutions since they can compress video sequences captured simultaneously from multiple camera angles. 3D-HEVC treats a single view as a video sequence and the other sub-aperture views as gray-scale disparity (depth) maps. On the other hand, MV-HEVC treats each view as a separate video sequence, which allows the use of motion compensated algorithms similar to HEVC. While MV-HEVC and 3D-HEVC provide similar results, MV-HEVC does not require any disparity maps to be readily available, and it has a more straightforward implementation since it only uses syntax elements rather than additional prediction tools for inter-view prediction. However, there are many degrees of freedom in choosing an appropriate structure and it is currently still unknown which one is optimal for a given set of application requirements. In this work, various prediction structures for MV-HEVC are implemented and tested. The findings reveal the trade-off between compression gains, distortion and random access capabilities in MVHEVC light field video coding. The results give an overview of the most optimal solutions developed in the context of this work, and prediction structure algorithms proposed in state-of-the-art literature. This overview provides a useful benchmark for future development of light field video coding solutions

    Learning to Predict Image-based Rendering Artifacts with Respect to a Hidden Reference Image

    Full text link
    Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.Comment: 13 pages, 11 figure

    Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding

    Get PDF
    Real world information, obtained by humans is three dimensional (3-D). In experimental user-trials, subjective assessments have clearly demonstrated the increased impact of 3-D pictures compared to conventional flat-picture techniques. It is reasonable, therefore, that we humans want an imaging system that produces pictures that are as natural and real as things we see and experience every day. Three-dimensional imaging and hence, 3-D television (3DTV) are very promising approaches expected to satisfy these desires. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. In this paper, we propose a novel approach to use Evolutionary Strategy (ES) for joint motion and disparity estimation to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression using a self adapted ES. A half pixel refinement algorithm is then applied by interpolating macro blocks in the previous frame to further improve the video quality. Experimental results demonstrate that the proposed adaptable ES with Half Pixel Joint Motion and Disparity Estimation can up to 1.5 dB objective quality gain without any additional computational cost over our previous algorithm.1Furthermore, the proposed technique get similar objective quality compared to the full search algorithm by reducing the computational cost up to 90%

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use
    • 

    corecore