830 research outputs found

    Cycle-Level Products in Equivariant Cohomology of Toric Varieties

    Full text link
    In this paper, we define an action of the group of equivariant Cartier divisors on a toric variety X on the equivariant cycle groups of X, arising naturally from a choice of complement map on the underlying lattice. If X is nonsingular, this gives a lifting of the multiplication in equivariant cohomology to the level of equivariant cycles. As a consequence, one naturally obtains an equivariant cycle representative of the equivariant Todd class of any toric variety. These results extend to equivariant cohomology the results of Thomas and Pommersheim. In the case of a complement map arising from an inner product, we show that the equivariant cycle Todd class obtained from our construction is identical to the result of the inductive, combinatorial construction of Berline-Vergne. In the case of arbitrary complement maps, we show that our Todd class formula yields the local Euler-Maclarurin formula introduced in Garoufalidis-Pommersheim.Comment: 15 pages, to be published in Michigan Mathematical Journal; LaTe

    Operations that preserve the covering property of the lifting region

    Full text link
    We contribute to the theory for minimal liftings of cut-generating functions. In particular, we give three operations that preserve the so-called covering property of certain structured cut-generating functions. This has the consequence of vastly expanding the set of undominated cut generating functions which can be used computationally, compared to known examples from the literature. The results of this paper are significant generalizations of previous results from the literature on such operations, and also use completely different proof techniques which we feel are more suitable for attacking future research questions in this area.Comment: 23 page

    Two row mixed integer cuts via lifting

    Get PDF
    Recently, Andersen et al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [9] characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts derived using maximal lattice-free convex sets. In order to use these inequalities to obtain cuts from two rows of a general simplex tableau, one approach is to extend the system to include all possible nonnegative integer variables (giving the two-row mixed integer infinite-group problem), and to develop lifting functions giving the coefficients of the integer variables in the corresponding inequalities. In this paper, we study the characteristics of these lifting functions. We begin by observing that functions giving valid coefficients for the nonnegative integer variables can be constructed by lifting a subset of the integer variables and then applying the fill-in procedure presented in Johnson [23]. We present conditions for these 'general fill-in functions" to be extreme for the two-row mixed integer infinite-group problem. We then show that there exists a unique 'trivial' lifting function that yields extreme inequalities when starting from a maximal lattice-free triangle with multiple integer points in the relative interior of one of its sides, or a maximal lattice-free triangle with integral vertices and one integer point in the relative interior of each side. In all other cases (maximal lattice-free triangle with one integer point in the relative interior of each side and non-integral vertices, and maximal lattice-free quadrilaterals), non-unique lifting functions may yield distinct extreme inequalities. For the case of a triangle with one integer point in the relative interior of each side and non-integral vertices, we present sufficient conditions to yield an extreme inequality for the two-row mixed integer infinite-group problem.

    Relaxations of mixed integer sets from lattice-free polyhedra

    Get PDF
    This paper gives an introduction to a recently established link between the geometry of numbers and mixed integer optimization. The main focus is to provide a review of families of lattice-free polyhedra and their use in a disjunctive programming approach. The use of lattice-free polyhedra in the context of deriving and explaining cutting planes for mixed integer programs is not only mathematically interesting, but it leads to some fundamental new discoveries, such as an understanding under which conditions cutting planes algorithms converge finitel
    corecore