219 research outputs found

    Initialization of lattice Boltzmann models with the help of the numerical Chapman-Enskog expansion

    Get PDF
    We extend the applicability of the numerical Chapman-Enskog expansion as a lifting operator for lattice Boltzmann models to map density and momentum to distribution functions. In earlier work [Vanderhoydonc et al. Multiscale Model. Simul. 10(3): 766-791, 2012] such an expansion was constructed in the context of lifting only the zeroth order velocity moment, namely the density. A lifting operator is necessary to convert information from the macroscopic to the mesoscopic scale. This operator is used for the initialization of lattice Boltzmann models. Given only density and momentum, the goal is to initialize the distribution functions of lattice Boltzmann models. For this initialization, the numerical Chapman-Enskog expansion is used in this paper.Comment: arXiv admin note: text overlap with arXiv:1108.491

    Numerical extraction of a macroscopic pde and a lifting operator from a lattice Boltzmann model

    Full text link
    Lifting operators play an important role in starting a lattice Boltzmann model from a given initial density. The density, a macroscopic variable, needs to be mapped to the distribution functions, mesoscopic variables, of the lattice Boltzmann model. Several methods proposed as lifting operators have been tested and discussed in the literature. The most famous methods are an analytically found lifting operator, like the Chapman-Enskog expansion, and a numerical method, like the Constrained Runs algorithm, to arrive at an implicit expression for the unknown distribution functions with the help of the density. This paper proposes a lifting operator that alleviates several drawbacks of these existing methods. In particular, we focus on the computational expense and the analytical work that needs to be done. The proposed lifting operator, a numerical Chapman-Enskog expansion, obtains the coefficients of the Chapman-Enskog expansion numerically. Another important feature of the use of lifting operators is found in hybrid models. There the lattice Boltzmann model is spatially coupled with a model based on a more macroscopic description, for example an advection-diffusion-reaction equation. In one part of the domain, the lattice Boltzmann model is used, while in another part, the more macroscopic model. Such a hybrid coupling results in missing data at the interfaces between the different models. A lifting operator is then an important tool since the lattice Boltzmann model is typically described by more variables than a model based on a macroscopic partial differential equation.Comment: submitted to SIAM MM

    Spatially Distributed Stochastic Systems: equation-free and equation-assisted preconditioned computation

    Full text link
    Spatially distributed problems are often approximately modelled in terms of partial differential equations (PDEs) for appropriate coarse-grained quantities (e.g. concentrations). The derivation of accurate such PDEs starting from finer scale, atomistic models, and using suitable averaging, is often a challenging task; approximate PDEs are typically obtained through mathematical closure procedures (e.g. mean-field approximations). In this paper, we show how such approximate macroscopic PDEs can be exploited in constructing preconditioners to accelerate stochastic simulations for spatially distributed particle-based process models. We illustrate how such preconditioning can improve the convergence of equation-free coarse-grained methods based on coarse timesteppers. Our model problem is a stochastic reaction-diffusion model capable of exhibiting Turing instabilities.Comment: 8 pages, 6 figures, submitted to Journal of Chemical Physic

    Coarse Stability and Bifurcation Analysis Using Stochastic Simulators: Kinetic Monte Carlo Examples

    Full text link
    We implement a computer-assisted approach that, under appropriate conditions, allows the bifurcation analysis of the coarse dynamic behavior of microscopic simulators without requiring the explicit derivation of closed macroscopic equations for this behavior. The approach is inspired by the so-called time-step per based numerical bifurcation theory. We illustrate the approach through the computation of both stable and unstable coarsely invariant states for Kinetic Monte Carlo models of three simple surface reaction schemes. We quantify the linearized stability of these coarsely invariant states, perform pseudo-arclength continuation, detect coarse limit point and coarse Hopf bifurcations and construct two-parameter bifurcation diagrams.Comment: 26 pages, 5 figure

    Physics-Informed Deep Neural Operator Networks

    Full text link
    Standard neural networks can approximate general nonlinear operators, represented either explicitly by a combination of mathematical operators, e.g., in an advection-diffusion-reaction partial differential equation, or simply as a black box, e.g., a system-of-systems. The first neural operator was the Deep Operator Network (DeepONet), proposed in 2019 based on rigorous approximation theory. Since then, a few other less general operators have been published, e.g., based on graph neural networks or Fourier transforms. For black box systems, training of neural operators is data-driven only but if the governing equations are known they can be incorporated into the loss function during training to develop physics-informed neural operators. Neural operators can be used as surrogates in design problems, uncertainty quantification, autonomous systems, and almost in any application requiring real-time inference. Moreover, independently pre-trained DeepONets can be used as components of a complex multi-physics system by coupling them together with relatively light training. Here, we present a review of DeepONet, the Fourier neural operator, and the graph neural operator, as well as appropriate extensions with feature expansions, and highlight their usefulness in diverse applications in computational mechanics, including porous media, fluid mechanics, and solid mechanics.Comment: 33 pages, 14 figures. arXiv admin note: text overlap with arXiv:2204.00997 by other author

    A time-parallel framework for coupling finite element and lattice Boltzmann methods

    No full text
    International audienceIn this work we propose a new numerical procedure for the simulation of time-dependent problems based on the coupling between the finite element method and the lattice Boltzmann method. The procedure is based on the Parareal paradigm and allows to couple efficiently the two numerical methods, each one working with its own grid size and time-step size. The motivations behind this approach are manifold. Among others, we have that one technique may be more efficient, or physically more appropriate or less memory consuming than the other depending on the target of the simulation and/or on the sub-region of the computational domain. Furthermore, the coupling with finite element method may circumvent some difficulties inherent to lattice Boltzmann discretization, for some domains with complex boundaries, or for some boundary conditions. The theoretical and numerical framework is presented for parabolic equations, in order to describe and validate numerically the methodology in a simple situation
    corecore