12 research outputs found

    On the Stability of Random Multiple Access with Stochastic Energy Harvesting

    Full text link
    In this paper, we consider the random access of nodes having energy harvesting capability and a battery to store the harvested energy. Each node attempts to transmit the head-of-line packet in the queue if its battery is nonempty. The packet and energy arrivals into the queue and the battery are all modeled as a discrete-time stochastic process. The main contribution of this paper is the exact characterization of the stability region of the packet queues given the energy harvesting rates when a pair of nodes are randomly accessing a common channel having multipacket reception (MPR) capability. The channel with MPR capability is a generalized form of the wireless channel modeling which allows probabilistic receptions of the simultaneously transmitted packets. The results obtained in this paper are fairly general as the cases with unlimited energy for transmissions both with the collision channel and the channel with MPR capability can be derived from ours as special cases. Furthermore, we study the impact of the finiteness of the batteries on the achievable stability region.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Saint Petersburg, Russia, Aug. 201

    Homology-based Distributed Coverage Hole Detection in Wireless Sensor Networks

    Get PDF
    Homology theory provides new and powerful solutions to address the coverage problems in wireless sensor networks (WSNs). They are based on algebraic objects, such as Cech complex and Rips complex. Cech complex gives accurate information about coverage quality but requires a precise knowledge of the relative locations of nodes. This assumption is rather strong and hard to implement in practical deployments. Rips complex provides an approximation of Cech complex. It is easier to build and does not require any knowledge of nodes location. This simplicity is at the expense of accuracy. Rips complex can not always detect all coverage holes. It is then necessary to evaluate its accuracy. This work proposes to use the proportion of the area of undiscovered coverage holes as performance criteria. Investigations show that it depends on the ratio between communication and sensing radii of a sensor. Closed-form expressions for lower and upper bounds of the accuracy are also derived. For those coverage holes which can be discovered by Rips complex, a homology-based distributed algorithm is proposed to detect them. Simulation results are consistent with the proposed analytical lower bound, with a maximum difference of 0.5%. Upper bound performance depends on the ratio of communication and sensing radii. Simulations also show that the algorithm can localize about 99% coverage holes in about 99% cases

    SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory

    Get PDF
    While traffic signals are necessary to safely control competing flows of traffic, they inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces traffic flow and causes traffic jams. These side effects can be alleviated by providing drivers and their onboard computational devices (e.g., vehicle computer, smartphone) with information about the schedule of the traffic signals ahead. Based on when the signal ahead will turn green, drivers can then adjust speed so as to avoid coming to a complete halt. Such information is called Green Light Optimal Speed Advisory (GLOSA). Alternatively, the onboard computational device may suggest an efficient detour that will save the driver from stops and long waits at red lights ahead. This paper introduces and evaluates SignalGuru, a novel software service that relies solely on a collection of mobile phones to detect and predict the traffic signal schedule, enabling GLOSA and other novel applications. Our SignalGuru leverages windshield-mounted phones to opportunistically detect current traffic signals with their cameras, collaboratively communicate and learn traffic signal schedule patterns, and predict their future schedule. Results from two deployments of SignalGuru, using iPhones in cars in Cambridge (MA, USA) and Singapore, show that traffic signal schedules can be predicted accurately. On average, SignalGuru comes within 0.66s, for pre-timed traffic signals and within 2.45s, for traffic-adaptive traffic signals. Feeding SignalGuru's predicted traffic schedule to our GLOSA application, our vehicle fuel consumption measurements show savings of 20.3%, on average.National Science Foundation (U.S.). (Grant number CSR-EHS-0615175)Singapore-MIT Alliance for Research and Technology Center. Future Urban Mobilit

    Target coverage through distributed clustering in directional sensor networks

    Full text link
    Maximum target coverage with minimum number of sensor nodes, known as an MCMS problem, is an important problem in directional sensor networks (DSNs). For guaranteed coverage and event reporting, the underlying mechanism must ensure that all targets are covered by the sensors and the resulting network is connected. Existing solutions allow individual sensor nodes to determine the sensing direction for maximum target coverage which produces sensing coverage redundancy and much overhead. Gathering nodes into clusters might provide a better solution to this problem. In this paper, we have designed distributed clustering and target coverage algorithms to address the problem in an energy-efficient way. To the best of our knowledge, this is the first work that exploits cluster heads to determine the active sensing nodes and their directions for solving target coverage problems in DSNs. Our extensive simulation study shows that our system outperforms a number of state-of-the-art approaches
    corecore