8,947 research outputs found

    Interesting viewpoints to those who will put Ada into practice

    Get PDF
    Ada will most probably be used as the programming language for computers in the NASA Space Station. It is reasonable to suppose that Ada will be used for at least embedded computers, because the high software costs for these embedded computers were the reason why Ada activities were initiated about ten years ago. The on-board computers are designed for use in space applications, where maintenance by man is impossible. All manipulation of such computers has to be performed in an autonomous way or remote with commands from the ground. In a manned Space Station some maintenance work can be performed by service people on board, but there are still a lot of applications, which require autonomous computers, for example, vital Space Station functions and unmanned orbital transfer vehicles. Those aspect which have come out of the analysis of Ada characteristics together with the experience of requirements for embedded on-board computers in space applications are examined

    Exploratory Inquiry: Disparate Air Force Base Area Network Architectures

    Get PDF
    Joint Vision 2020, the Department of Defense (DoD) blueprint for development and transformation, identifies information and technology as critical enablers for our nation\u27s military and calls for the development of a joint force capable of integrated information sharing to provide decision superiority, the ability to make and implement better decisions before enemies can react (DoD, 2000). Networks have been identified as the single most important element for transforming our current military forces. Ironically, Air Force base-level communications networks have been identified as a weakness. This research follows the qualitative approach to increases the current understanding of base level communications networks by conducting a multiple site comparative case study that includes practitioner interviews at four locations and the examination of existing literature and documented trip reports. This study determines if base- level networks are disparate, isolates sources of disparity, identifies advantages and disadvantages of disparity, and recommends an appropriate course of action. This research is significant for members of the Air Force, DoD, and private citizens. Air Force networks support close to three-quarters of a million users, including active duty service members, Air Force Reserves, Air National Guard, civilians, and embedded contract employees (McCarter, 2003). In addition to potentially affecting many people and the larger DoD network, base-level networks provide support to deployed warfighters and provide the environment to train, organize and equip our forces. Additionally, these networks provide critical information to key decision makers

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    A NASA family of minicomputer systems, Appendix A

    Get PDF
    This investigation was undertaken to establish sufficient specifications, or standards, for minicomputer hardware and software to provide NASA with realizable economics in quantity purchases, interchangeability of minicomputers, software, storage and peripherals, and a uniformly high quality. The standards will define minicomputer system component types, each specialized to its intended NASA application, in as many levels of capacity as required

    Microprocessor Seminar, phase 2

    Get PDF
    Workshop sessions and papers were devoted to various aspects of microprocessor and large scale integrated circuit technology. Presentations were made on advanced LSI developments for high reliability military and NASA applications. Microprocessor testing techniques were discussed, and test data were presented. High reliability procurement specifications were also discussed

    Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    Get PDF
    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented

    An Empirical Methodology for Engineering Human Systems Integration

    Get PDF
    The systems engineering technical processes are not sufficiently supported by methods and tools that quantitatively integrate human considerations into early system design. Because of this, engineers must often rely on qualitative judgments or delay critical decisions until late in the system lifecycle. Studies reveal that this is likely to result in cost, schedule, and performance consequences. This dissertation presents a methodology to improve the application of systems engineering technical processes for design. This methodology is mathematically rigorous, is grounded in relevant theory, and applies extant human subjects data to critical systems development challenges. The methodology is expressed in four methods that support early systems engineering activities: a requirements elicitation method, a function allocation method, an input device design method, and a display layout design method. These form a coherent approach to early system development. Each method is separately discussed and demonstrated using a prototypical system development program. In total, this original and significant work has a broad range of systems engineer applicability to improve the engineering of human systems integration

    Paper Session III-B - Space Exploration Initiative Logistics Support - Lessons from the DoD

    Get PDF
    A mission as complex as the Space Exploration Initiative (SEI) cannot succeed without adhering to sound principles in the planning, development, and execution of logistics support for the exploration crews and their mission equipment. While much attention will focus upon the development of reliable, robust, heavy lift launch vehicles, and scientific, technological breakthroughs for SEI, of equal concern is the supportability and sustainability of systems designed for mission operations and crew life support on the lunar and Martian surfaces
    • …
    corecore