36,286 research outputs found

    The use of Virtual Reality in Enhancing Interdisciplinary Research and Education

    Get PDF
    Virtual Reality (VR) is increasingly being recognized for its educational potential and as an effective way to convey new knowledge to people, it supports interactive and collaborative activities. Affordable VR powered by mobile technologies is opening a new world of opportunities that can transform the ways in which we learn and engage with others. This paper reports our study regarding the application of VR in stimulating interdisciplinary communication. It investigates the promises of VR in interdisciplinary education and research. The main contributions of this study are (i) literature review of theories of learning underlying the justification of the use of VR systems in education, (ii) taxonomy of the various types and implementations of VR systems and their application in supporting education and research (iii) evaluation of educational applications of VR from a broad range of disciplines, (iv) investigation of how the learning process and learning outcomes are affected by VR systems, and (v) comparative analysis of VR and traditional methods of teaching in terms of quality of learning. This study seeks to inspire and inform interdisciplinary researchers and learners about the ways in which VR might support them and also VR software developers to push the limits of their craft.Comment: 6 Page

    Identifying immersive environments’ most relevant research topics: an instrument to query researchers and practitioners

    Get PDF
    This paper provides an instrument for ascertaining researchers’ perspectives on the relative relevance of technological challenges facing immersive environments in view of their adoption in learning contexts, along three dimensions: access, content production, and deployment. It described its theoretical grounding and expert-review process, from a set of previously-identified challenges and expert feedback cycles. The paper details the motivation, setup, and methods employed, as well as the issues detected in the cycles and how they were addressed while developing the instrument. As a research instrument, it aims to be employed across diverse communities of research and practice, helping direct research efforts and hence contribute to wider use of immersive environments in learning, and possibly contribute towards the development of news and more adequate systems.The work presented herein has been partially funded under the European H2020 program H2020-ICT-2015, BEACONING project, grant agreement nr. 687676.info:eu-repo/semantics/publishedVersio

    The use of non-intrusive user logging to capture engineering rationale, knowledge and intent during the product life cycle

    Get PDF
    Within the context of Life Cycle Engineering it is important that structured engineering information and knowledge are captured at all phases of the product life cycle for future reference. This is especially the case for long life cycle projects which see a large number of engineering decisions made at the early to mid-stages of a product's life cycle that are needed to inform engineering decisions later on in the process. A key aspect of technology management will be the capturing of knowledge through out the product life cycle. Numerous attempts have been made to apply knowledge capture techniques to formalise engineering decision rationale and processes; however, these tend to be associated with substantial overheads on the engineer and the company through cognitive process interruptions and additional costs/time. Indeed, when life cycle deadlines come closer these capturing techniques are abandoned due the need to produce a final solution. This paper describes work carried out for non-intrusively capturing and formalising product life cycle knowledge by demonstrating the automated capture of engineering processes/rationale using user logging via an immersive virtual reality system for cable harness design and assembly planning. Associated post-experimental analyses are described which demonstrate the formalisation of structured design processes and decision representations in the form of IDEF diagrams and structured engineering change information. Potential future research directions involving more thorough logging of users are also outlined

    The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning

    Get PDF
    The research presented in this paper aims at investigating user interaction in immersive virtual learning environments (VLEs), focusing on the role and the effect of interactivity on conceptual learning. The goal has been to examine if the learning of young users improves through interacting in (i.e. exploring, reacting to, and acting upon) an immersive virtual environment (VE) compared to non interactive or non-immersive environments. Empirical work was carried out with more than 55 primary school students between the ages of 8 and 12, in different between-group experiments: an exploratory study, a pilot study, and a large-scale experiment. The latter was conducted in a virtual environment designed to simulate a playground. In this ‘Virtual Playground’, each participant was asked to complete a set of tasks designed to address arithmetical ‘fractions’ problems. Three different conditions, two experimental virtual reality (VR) conditions and a non-VR condition, that varied the levels of activity and interactivity, were designed to evaluate how children accomplish the various tasks. Pre-tests, post-tests, interviews, video, audio, and log files were collected for each participant, and analyzed both quantitatively and qualitatively. This paper presents a selection of case studies extracted from the qualitative analysis, which illustrate the variety of approaches taken by children in the VEs in response to visual cues and system feedback. Results suggest that the fully interactive VE aided children in problem solving but did not provide as strong evidence of conceptual change as expected; rather, it was the passive VR environment, where activity was guided by a virtual robot, that seemed to support student reflection and recall, leading to indications of conceptual change

    Real Virtuality: A Code of Ethical Conduct. Recommendations for Good Scientific Practice and the Consumers of VR-Technology

    Get PDF
    The goal of this article is to present a first list of ethical concerns that may arise from research and personal use of virtual reality (VR) and related technology, and to offer concrete recommendations for minimizing those risks. Many of the recommendations call for focused research initiatives. In the first part of the article, we discuss the relevant evidence from psychology that motivates our concerns. In Section “Plasticity in the Human Mind,” we cover some of the main results suggesting that one’s environment can influence one’s psychological states, as well as recent work on inducing illusions of embodiment. Then, in Section “Illusions of Embodiment and Their Lasting Effect,” we go on to discuss recent evidence indicating that immersion in VR can have psychological effects that last after leaving the virtual environment. In the second part of the article, we turn to the risks and recommendations. We begin, in Section “The Research Ethics of VR,” with the research ethics of VR, covering six main topics: the limits of experimental environments, informed consent, clinical risks, dual-use, online research, and a general point about the limitations of a code of conduct for research. Then, in Section “Risks for Individuals and Society,” we turn to the risks of VR for the general public, covering four main topics: long-term immersion, neglect of the social and physical environment, risky content, and privacy. We offer concrete recommendations for each of these 10 topics, summarized in Table 1
    • …
    corecore