317 research outputs found

    Bibliographie

    Get PDF

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Partielle Differentialgleichungen

    Get PDF
    The workshop dealt with partial differential equations in geometry and technical applications. The main topics were the combination of nonlinear partial differential equations and geometric measure theory, conformal invariance and the Willmore functional, and regularity of free boundaries

    The ground state of a Gross–Pitaevskii energy with general potential in the Thomas–Fermi limit

    Get PDF
    We study the ground state which minimizes a Gross–Pitaevskii energy with general non-radial trapping potential, under the unit mass constraint, in the Thomas–Fermi limit where a small parameter tends to 0. This ground state plays an important role in the mathematical treatment of recent experiments on the phenomenon of Bose–Einstein condensation, and in the study of various types of solutions of nonhomogeneous defocusing nonlinear Schrodinger equations. Many of these applications require delicate estimates for the behavior of the ground state near the boundary of the condensate, as the singular parameter tends to zero, in the vicinity of which the ground state has irregular behavior in the form of a steep corner layer. In particular, the role of this layer is important in order to detect the presence of vortices in the small density region of the condensate, understand the superfluid flow around an obstacle, and also has a leading order contribution in the energy. In contrast to previous approaches, we utilize a perturbation argument to go beyond the classical Thomas–Fermi approximation and accurately approximate the layer by the Hastings–McLeod solution of the Painleve–II equation. This settles an open problem, answered very recently only for the special case of the model harmonic potential. In fact, we even improve upon previous results that relied heavily on the radial symmetry of the potential trap. Moreover, we show that the ground state has the maximal regularity available, namely it remains uniformly bounded in the 1/2-Holder norm, which is the exact Holder regularity of the singular limit profile, as the singular parameter tends to zero. Our study is highly motivated by an interesting open problem posed recently by Aftalion, Jerrard, and Royo-Letelier, and an open question of Gallo and Pelinovsky, concerning the removal of the radial symmetry assumption from the potential trap

    The Resurgence of Instantons in String Theory

    Full text link
    Nonperturbative effects in string theory are usually associated to D-branes. In many cases it can be explicitly shown that D-brane instantons control the large-order behavior of string perturbation theory, leading to the well-known (2g)! growth of the genus expansion. This paper presents a detailed treatment of nonperturbative solutions in string theory, and their relation to the large-order behavior of perturbation theory, making use of transseries and resurgent analysis. These are powerful techniques addressing general nonperturbative contributions within non-linear systems, which are developed at length herein as they apply to string theory. The cases of topological strings, the Painleve I equation describing 2d quantum gravity, and the quartic matrix model, are explicitly addressed. These results generalize to minimal strings and general matrix models. It is shown that, in order to completely understand string theory at a fully nonperturbative level, new sectors are required beyond the standard D-brane sector.Comment: 108 pages; v2,v3: references added; v4: improved pedagogical content, final version for CNTP; v5: typos correcte

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers

    Real Algebraic Geometry With a View Toward Moment Problems and Optimization

    Get PDF
    Continuing the tradition initiated in MFO workshop held in 2014, the aim of this workshop was to foster the interaction between real algebraic geometry, operator theory, optimization, and algorithms for systems control. A particular emphasis was given to moment problems through an interesting dialogue between researchers working on these problems in finite and infinite dimensional settings, from which emerged new challenges and interdisciplinary applications

    Bifurcation analysis of the Topp model

    Get PDF
    In this paper, we study the 3-dimensional Topp model for the dynamicsof diabetes. We show that for suitable parameter values an equilibrium of this modelbifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests thatnear this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arisethrough period doubling cascades of limit cycles.Keywords Dynamics of diabetes · Topp model · Reduced planar quartic Toppsystem · Singular point · Limit cycle · Hopf-saddle-node bifurcation · Perioddoubling bifurcation · Shilnikov homoclinic orbit · Chao

    Abelian Surfaces over totally real fields are Potentially Modular

    Get PDF
    We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse--Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces A over Q with End_C(A)=Z. We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.Comment: 285 page
    corecore