6,344 research outputs found

    Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    Get PDF
    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications

    About the potential of lidars with different photodetectors under daytime sky radiation

    Get PDF
    Results of theoretical analysis and experimental developments implemented as advanced methods and means to improve a noise-immunity of lidar systems for practical applications are discussed. A particular attention is paid to assessing the developed methods and technical solutions effectiveness and their comparison with existing lidar systems and real receivers. © 2016 Owned by the authors, published by EDP Sciences.Peer ReviewedPostprint (published version

    Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    Get PDF
    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems

    Speckle noise in direct-detection lidar systems

    Get PDF
    The speckle noise is evaluated from some typical lidar systems. The governing equations are summarized. The mutual intensity function of the speckle pattern is calculated in terms of the laser radiation modes. Typical laser pulses are modeled and simplified expressions for the speckle noise power are derived. The signal-to-speckle-noise ratios for some proposed lidar systems are evaluated

    Speckle noise in satellite based lidar systems

    Get PDF
    The lidar system model was described, and the statistics of the signal and noise at the receiver output were derived. Scattering media effects were discussed along with polarization and atmospheric turbulence. The major equations were summarized and evaluated for some typical parameters

    Comparison of forest attributes derived from two terrestrial lidar systems.

    Get PDF
    Abstract Terrestrial lidar (TLS) is an emerging technology for deriving forest attributes, including conventional inventory and canopy characterizations. However, little is known about the influence of scanner specifications on derived forest parameters. We compared two TLS systems at two sites in British Columbia. Common scanning benchmarks and identical algorithms were used to obtain estimates of tree diameter, position, and canopy characteristics. Visualization of range images and point clouds showed clear differences, even though both scanners were relatively high-resolution instruments. These translated into quantifiable differences in impulse penetration, characterization of stems and crowns far from the scan location, and gap fraction. Differences between scanners in estimates of effective plant area index were greater than differences between sites. Both scanners provided a detailed digital model of forest structure, and gross structural characterizations (including crown dimensions and position) were relatively robust; but comparison of canopy density metrics may require consideration of scanner attributes

    Space-Based Lidar Systems

    Get PDF
    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements

    Three atmospheric dispersion experiments involving oil fog plumes measured by lidar

    Get PDF
    The Wave Propagation Lab. participated with the U.S. Environmental Protection Agency in a series of experiments with the goal of developing and validating dispersion models that perform substantially better that models currently available. The lidar systems deployed and the data processing procedures used in these experiments are briefly described. Highlights are presented of conclusions drawn thus far from the lidar data

    The use of lidar for stratospheric measurements

    Get PDF
    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques
    • …
    corecore