90 research outputs found

    Power and area efficient clock stretching and critical path reshaping for error resilience

    Get PDF
    Process, voltage and temperature variations are on the rise with technology scaling. Nano-scale technology requires huge design margins to ensure reliable operation. Worst case design margining consumes significant amount of circuits and systems resources. In-situ error detection or correction is an alternative method for cost effective variation tolerance. However, existing in-situ error detection and correction circuits are power and area hungry since they use speculative error management, which gives less power savings at higher error rates. This paper proposes an error resilience technique utilizing available slack in the design. The proposed method uses a clock stretching circuit to relax timing margins on selected critical paths that has sufficient consecutive stage slack. We also propose a power optimization method which reshapes the critical path logic proportionate to the consecutive stage slack. Experimental results show that the proposed method achieves the power and area savings of 40% and 8% respectively compared to the worst case design approach. When compared to the TIMBER error resilience approach, the proposed method saves power more than 74% and area more than 13% at design time. Document type: Articl

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Microarchitectural Low-Power Design Techniques for Embedded Microprocessors

    Get PDF
    With the omnipresence of embedded processing in all forms of electronics today, there is a strong trend towards wireless, battery-powered, portable embedded systems which have to operate under stringent energy constraints. Consequently, low power consumption and high energy efficiency have emerged as the two key criteria for embedded microprocessor design. In this thesis we present a range of microarchitectural low-power design techniques which enable the increase of performance for embedded microprocessors and/or the reduction of energy consumption, e.g., through voltage scaling. In the context of cryptographic applications, we explore the effectiveness of instruction set extensions (ISEs) for a range of different cryptographic hash functions (SHA-3 candidates) on a 16-bit microcontroller architecture (PIC24). Specifically, we demonstrate the effectiveness of light-weight ISEs based on lookup table integration and microcoded instructions using finite state machines for operand and address generation. On-node processing in autonomous wireless sensor node devices requires deeply embedded cores with extremely low power consumption. To address this need, we present TamaRISC, a custom-designed ISA with a corresponding ultra-low-power microarchitecture implementation. The TamaRISC architecture is employed in conjunction with an ISE and standard cell memories to design a sub-threshold capable processor system targeted at compressed sensing applications. We furthermore employ TamaRISC in a hybrid SIMD/MIMD multi-core architecture targeted at moderate to high processing requirements (> 1 MOPS). A range of different microarchitectural techniques for efficient memory organization are presented. Specifically, we introduce a configurable data memory mapping technique for private and shared access, as well as instruction broadcast together with synchronized code execution based on checkpointing. We then study an inherent suboptimality due to the worst-case design principle in synchronous circuits, and introduce the concept of dynamic timing margins. We show that dynamic timing margins exist in microprocessor circuits, and that these margins are to a large extent state-dependent and that they are correlated to the sequences of instruction types which are executed within the processor pipeline. To perform this analysis we propose a circuit/processor characterization flow and tool called dynamic timing analysis. Moreover, this flow is employed in order to devise a high-level instruction set simulation environment for impact-evaluation of timing errors on application performance. The presented approach improves the state of the art significantly in terms of simulation accuracy through the use of statistical fault injection. The dynamic timing margins in microprocessors are then systematically exploited for throughput improvements or energy reductions via our proposed instruction-based dynamic clock adjustment (DCA) technique. To this end, we introduce a 6-stage 32-bit microprocessor with cycle-by-cycle DCA. Besides a comprehensive design flow and simulation environment for evaluation of the DCA approach, we additionally present a silicon prototype of a DCA-enabled OpenRISC microarchitecture fabricated in 28 nm FD-SOI CMOS. The test chip includes a suitable clock generation unit which allows for cycle-by-cycle DCA over a wide range with fine granularity at frequencies exceeding 1 GHz. Measurement results of speedups and power reductions are provided

    Hardware / Software Architectural and Technological Exploration for Energy-Efficient and Reliable Biomedical Devices

    Get PDF
    Nowadays, the ubiquity of smart appliances in our everyday lives is increasingly strengthening the links between humans and machines. Beyond making our lives easier and more convenient, smart devices are now playing an important role in personalized healthcare delivery. This technological breakthrough is particularly relevant in a world where population aging and unhealthy habits have made non-communicable diseases the first leading cause of death worldwide according to international public health organizations. In this context, smart health monitoring systems termed Wireless Body Sensor Nodes (WBSNs), represent a paradigm shift in the healthcare landscape by greatly lowering the cost of long-term monitoring of chronic diseases, as well as improving patients' lifestyles. WBSNs are able to autonomously acquire biological signals and embed on-node Digital Signal Processing (DSP) capabilities to deliver clinically-accurate health diagnoses in real-time, even outside of a hospital environment. Energy efficiency and reliability are fundamental requirements for WBSNs, since they must operate for extended periods of time, while relying on compact batteries. These constraints, in turn, impose carefully designed hardware and software architectures for hosting the execution of complex biomedical applications. In this thesis, I develop and explore novel solutions at the architectural and technological level of the integrated circuit design domain, to enhance the energy efficiency and reliability of current WBSNs. Firstly, following a top-down approach driven by the characteristics of biomedical algorithms, I perform an architectural exploration of a heterogeneous and reconfigurable computing platform devoted to bio-signal analysis. By interfacing a shared Coarse-Grained Reconfigurable Array (CGRA) accelerator, this domain-specific platform can achieve higher performance and energy savings, beyond the capabilities offered by a baseline multi-processor system. More precisely, I propose three CGRA architectures, each contributing differently to the maximization of the application parallelization. The proposed Single, Multi and Interleaved-Datapath CGRA designs allow the developed platform to achieve substantial energy savings of up to 37%, when executing complex biomedical applications, with respect to a multi-core-only platform. Secondly, I investigate how the modeling of technology reliability issues in logic and memory components can be exploited to adequately adjust the frequency and supply voltage of a circuit, with the aim of optimizing its computing performance and energy efficiency. To this end, I propose a novel framework for workload-dependent Bias Temperature Instability (BTI) impact analysis on biomedical application results quality. Remarkably, the framework is able to determine the range of safe circuit operating frequencies without introducing worst-case guard bands. Experiments highlight the possibility to safely raise the frequency up to 101% above the maximum obtained with the classical static timing analysis. Finally, through the study of several well-known biomedical algorithms, I propose an approach allowing energy savings by dynamically and unequally protecting an under-powered data memory in a new way compared to regular error protection schemes. This solution relies on the Dynamic eRror compEnsation And Masking (DREAM) technique that reduces by approximately 21% the energy consumed by traditional error correction codes

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Evolutionary Genomics

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward
    • …
    corecore