3 research outputs found

    Distributed-Pair Programming can work well and is not just Distributed Pair-Programming

    Full text link
    Background: Distributed Pair Programming can be performed via screensharing or via a distributed IDE. The latter offers the freedom of concurrent editing (which may be helpful or damaging) and has even more awareness deficits than screen sharing. Objective: Characterize how competent distributed pair programmers may handle this additional freedom and these additional awareness deficits and characterize the impacts on the pair programming process. Method: A revelatory case study, based on direct observation of a single, highly competent distributed pair of industrial software developers during a 3-day collaboration. We use recordings of these sessions and conceptualize the phenomena seen. Results: 1. Skilled pairs may bridge the awareness deficits without visible obstruction of the overall process. 2. Skilled pairs may use the additional editing freedom in a useful limited fashion, resulting in potentially better fluency of the process than local pair programming. Conclusion: When applied skillfully in an appropriate context, distributed-pair programming can (not will!) work at least as well as local pair programming

    Knowledge transfer in pair programming: an in-depth analysis

    Get PDF
    Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is known about how knowledge transfer is achieved in this setting. This is particularly pertinent for novice-expert constellations, but knowledge transfer takes place to some degree in all constellations. We ask “what does it take to be a good “expert” and how can a “novice” best learn from a more experienced developer?”. An in-depth investigation of video and audio excerpts of professional pair programming sessions using Interaction Analysis reveals: six teaching strategies, ranging from “giving direct instructions” to “subtle hints”; and challenges and benefits for both partners. These strategies are instantiations of some but not all teaching methods promoted in cognitive apprenticeship; novice articulation, reflection and exploration are not seen in the data. The context of pair programming influences the strategies, challenges and benefits, in particular the roles of driver and navigator and agile prioritisation which considers business value rather than educational progression. Utilising these strategies more widely and recognizing the challenges and benefits for both partners will help developers to maximise the benefits from pairing sessions
    corecore