
Open Research Online
The Open University’s repository of research publications
and other research outputs

Knowledge transfer in pair programming: an in-depth
analysis

Journal Article
How to cite:

Plonka, Laura; Sharp, Helen; van der Linden, Janet and Dittrich, Yvonne (2015). Knowledge transfer
in pair programming: an in-depth analysis. International Journal of Human-Computer Studies, 73(1) pp.
66–78.

For guidance on citations see FAQs.

c© 2014 Elsevier Ltd
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.ijhcs.2014.09.001

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other
copyright owners. For more information on Open Research Online’s data policy on reuse of materials please
consult the policies page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.ijhcs.2014.09.001
http://oro.open.ac.uk/policies.html

 Elsevier Editorial System(tm) for International Journal of Human-Computer Studies
 Manuscript Draft

Manuscript Number: IJHCS-D-14-00134R1

Title: Knowledge Transfer in Pair Programming: An In-depth Analysis

Article Type: Original Article

Keywords: pair programming; knowledge transfer; interaction analysis; cognitive apprenticeship;
qualitative analysis

Corresponding Author: Prof. Helen Sharp,

Corresponding Author's Institution: The Open University

First Author: Laura Plonka

Order of Authors: Laura Plonka; Helen Sharp; Janet Van der Linden; Yvonne Dittrich

Abstract: Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming,
little is known about how knowledge transfer is achieved in this setting. This is particularly pertinent
for	 novice−expert	 constellations,	 but	 knowledge	 transfer	 takes	 place	 to	 some	 degree	 in	 all	
constellations. We ask "what does it take to be a good "expert" and how can a "novice" best learn from
a more experienced developer?". An in-depth investigation of video and audio excerpts of professional
pair programming sessions using Interaction Analysis reveals six teaching strategies ranging from
giving direct instructions to subtle hints, and challenges and benefits for both partners. These
strategies are instantiations of some but not all teaching methods promoted in cognitive
apprenticeship; novice articulation, reflection and exploration are not seen in the data. The context of
pair programming influences the strategies, challenges and benefits, in particular the roles of driver
and navigator and agile prioritisation which considers business value rather than educational
progression. Utilising these strategies more widely and recognizing the challenges and benefits for
both partners will help developers to maximise the benefits from pairing sessions.

The Open University is incorporated by Royal Charter (RC 000391), an exempt charity in England & Wales and a
charity registered in Scotland (SC 038302)

Dear Editor-in-Chief

I wish to submit this revision of the paper Knowledge Transfer in Pair Programming: An In-depth
Analysis by Laura Plonka, Helen Sharp, Janet Van der Linden and Yvonne Dittrich.

I trust everything is in order and Iook forward to hearing from you.

Yours sincerely

Professor Helen Sharp

helen.sharp@open.ac.uk

Faculty of Mathematics,
Computing and Technology

Computing and Communications

The Open University
Walton Hall
Milton Keynes
United Kingdom
MK7 6AA

Editor-in-Chief
International Journal of Human-
Computer Studies

25 July 2014

For Editor only: Cover Letter

helen.sharp@open.ac.uk

Comments:

Reviewer #1: This review is provided under a Creative Commons Attribution
license (CC-BY).
This means the author must be mentioned when the text is distributed.
The author of this review is Lutz Prechelt.

Author Response: I understand from the IJHCS editorial office that we do not
need to respond to this, e.g. by including the reviewer in acknowledgements

Judgment:
This work asks three research questions the answers of which have practical
applicability and manages to provide answers for all of them that are both
understandable and tangible.

The research uses a qualitative method based on a rather small amount of data (less
than 30 minutes of live action) and so the completeness of the results is unlikely and
the generalizability is unclear. However, the approach and discussion are very
convincing and the validity and credibility of the results are very high.

The article is nicely readable overall. The writeup has many small problems (see the
detailed comments), but no large ones. I nevertheless ask the authors to consider
my suggestion ##E##.

My only two criticisms of substantial weight concern one conclusion that I find
unwarrantedly negative (see detailed comment ##A##) and a terminological
problem: Although the whole article revolves around expert-novice relationships,
these two concepts are defined only in a highly fuzzy manner (see detailed comment
##N##, also ##S##).

My overall perception is very positive and I am sure that this work ought to be
published eventually. However, as the number of issues is large and at least the
terminological problem is important, I still suggest to ask the authors for a major
revision first.

Detailed comments (formulated chronologically while reading):

Comment Author Response
Abstract:
"reveals six teaching strategies ranging
from giving direct instructions to subtle
hints, and challenges and benefits for
both partners" The last part of this
sentence does not quite fit in.

Punctuation changed to clarify meaning

*For Reviewers and Editor: Revision Notes

1 Introduction:

- "Several benefits of PP have been
claimed including improved
understandability and maintainability of
code and design [34, 36], decreased
defect rates [24, 18, 23, 10, 25] and
knowledge transfer."
 Oops! The abstract called knowledge
transfer "one of the most widely-claimed
benefits of pair programming" and now
there is not a single literature reference
for it?

References added to introduction

- "Although knowledge transfer is widely
reported as a benefit of PP,"
Again, no literature reference?

References added above so not repeated
at this point.

- "RQ3: What challenges are faced when
pairing developers with different skill
levels?"
 Are faced? Strange wording. What
perspective is this going to be? I guess
that of the developers themselves? Then
please phrase it like that.

Rephrased	 as	 “What	 challenges	 do	
developers with different knowledge
levels face	 when	 pairing	 together?”

2 Knowledge Transfer in Pair
Programming:

- "They found that PP reduced the
mentoring needed per day from 37% to
26%"
Percent of what? Time? And does that
include the time used for PP?

Modified	 to	 “They	 found	 that	 PP	 reduced	
the mentoring needed per day from 37%
of	 a	 developer’s	 time	 to	 26%	 of	 their	
time”

- "some developers in an industrial team
had issues when they worked with a
partner with similar expertise"
 The term "issues" is rather too vague
here. Did not like it? Quarreled? Felt
inefficient? Were inefficient?

Modified	 to	 “Jensen	 [18]	 found	 that	
pairing developers with similar
expertise was counter-productive,”. This
is the way it is described in the
reference.

3 Research design:

- "full-resolution screen shot"
 It would be better to call this a screen

Changed	 to:	 “and	 a	 full-resolution
recording of the screen, showing the

video, as most people will consider a
screen shot to be a still image and may
get confused.

code	 and	 capturing	 the	 developers’	
computer	 activities.”

- Table 1: In line 1, the minimum PP
experience is larger than the minimum
programming experience.

This is a typo. Changed to 0-20.

- 3.1: Did those teams use PP always,
often, or only occasionally?

Sentences	 added	 “There	 was	 no	 set	
pattern for pairing. Developers decided
themselves when it was appropriate to
pair,	 and	 with	 whom.”

- 3.2: "reviews observations and
hypotheses that emerge through the
group viewing sessions"
Group viewing is not mentioned before.

Sentence	 deleted	 “During	 this	 procedure	
the researcher reduces the data to be
analysed and reviews observations and
hypotheses that emerge through the
group	 viewing	 sessions.”

- 3.2.1: "We identified five suitable
exemplars with a length of 4 to 6
minutes each from three different PP
sessions"
 This sentence is unambiguous in
principle but, I guess, will often be
misread as talking of 15 exemplars.
Suggestion:
 "We identified five suitable exemplars
with a length of 4 to 6 minutes each; they
come from three different PP sessions"

Modified	 to	 “We	 identified	 five	 suitable	
exemplars, each between 4 and 6
minutes	 in	 length.”

##S##
- "Developers with different skill levels
are aiming to transfer knowledge."
 You appear to equate "different
knowledge" with "different skill level".
 I find this problematic: Not only are
skill and knowledge two different
concepts (where knowledge contributes
to skill, but other ingredients are
relevant as well), knowledge is also not a
scalar attribute, so that "levels" of
knowledge should at most be considered
with respect to one particular topic, if at
all.
(In a highly productive pair, each partner
will be more knowledgable than the
other in some respects.)

This has been changed	 to	 “different	
levels	 of	 knowledge”. Throughout, we
now refer only to knowledge and not
skills, unless we are referring to another
reference	 in	 which	 ‘skill’	 is	 used.

- "We used the background
questionnaires and the interviews with
the developers to identify sessions in
which a more knowledgeable developer
(expert) worked with a less
knowledgeable developer (novice)"
 Is the expert status always general
(senior, vs. junior) or is it sometimes
topic-specific?

This is not generic but is always subject-
specific. Earlier in that paragraph, we
say	 “Given	 that	 developers	 never	 have	
the exact same knowledge, it can be
assumed that knowledge transfer takes
place	 in	 every	 PP	 session.”,	 hence	
acknowledging this matter.
We have included a more detailed
description	 of	 “novice	 versus	 expert	 “	 in	
the exemplars used for this analysis, in
section	 3.2.1	 under	 “Step	 1”,	 as	 follows:
“In the context of this study, the definition of
an expert and a novice is based on the
developers’ perceptions of their knowledge for
a particular pair programming session. We
chose excerpts from PP sessions for which
developers explicitly stated that the aim of the
session was to transfer knowledge from the
more knowledgeable developer (expert) to the
less knowledgeable developer (novice) for the
topic covered in this session. In addition we
only chose sessions in which both developers
agreed who is the expert and who is the novice
in this particular session.”

- Is there any difference between
"excerpt" and "exemplar"?
 If so, please explain it.
 If not, please unify the terminology.

Step 3 in the procedure was modified as
follows “Firstly,	 the	 researcher	 extracted
exemplar excerpts of the data (this
process	 is	 referred	 to	 as	 “cannibalising”	
[19, p. 46]). An excerpt is regarded as an
“exemplar”	 if	 it	 is	 a	 typical	 or	
representative example of the data being
studied.”

- Step 2: "all video and audio data was in
German"
All _video_ was in German??

“video”	 removed

- Step 3: Very good description. And the
different focus of the non-German
speakers is a beautiful argument!

- Step 4: "The findings from the
interviews were then compared to the
findings from the group viewing
session."
 What happened if they disagreed?

Modified	 to	 “The	 findings	 from	 the	
interviews were then used to
contextualise the findings from the
group	 viewing	 session”

4 Findings:

- 4.1.1: "Other subtle guidance can
include physical hints such as pointing to
something on the screen"
 I am not sure if the adjective "subtle" is
appropriate here.(meta-remark: The
above remark is about as subtle as the
pointing, I guess. Does it feel subtle to
you?) The same holds for some of the
uses of "subtle" further down.

The point being made here is that the
guidance is subtle rather than that the
pointing is subtle.
Further	 down,	 one	 ‘subtle’	 is	 removed	
and	 another	 is	 modified	 to	 ‘gentle’

- "In this excerpt, the expert places the
cursor"
 This should say "In the _following_
excerpt".

Modified	 to	 say	 “Example	 2”	 not	 “this	
excerpt”

- Example 3: "Twice statement.close"
 Huh? Is "statement.close" a quote from
the source code?
 Then please typeset it differently.
 (There are more such cases below, e.g.
in Example 5.
 Example 9 uses quotes.)

Typeface changed to consolas for code
statements

- Example 4: Line 2 is missing its quotes.

Modified

- "ALT N" should probably be spelled
"Alt-N".

Modified

- There appears to be no clear criterion
for the position of the examples with
respect to the text discussing them. For
instance, example 5 appears far below its
discussion, whereas example 4 appears
before even the section heading under
which it will be discussed.
(Examples 9 and 12 appear not just
outside their subsubsection, but even
outside their subsection.)
 For the reader, seeing the example
just before the discussion provides the
best readability in my opinion, at least in
most cases.

Tables moved to be closer to their first
reference point

##E##
- The discussions of the examples are a
bit tiring to read. Have you considered
adding the discussions' _local_
commentary (that which is refering to
only one specific statement) directly into
the example's table and keeping the
discussion in the text short and focused
on the _global_ characterization of the
example?
 (Yes, a bit of work. But the result will be
so much nicer.)

The commentary in the example tables
describes what the participants are
doing, while the descriptions in the text
are our interpretation of their activity.
The current presentation keeps the data
and our interpretation separate. We
believe that it would not be appropriate
to put them both into the tables.

- Example 5: In the unnumbered lines, an
annotation such as "[2sec]" indicates the
duration of what appears before.
In contrast, in the numbered lines I
guess it indicates the duration of a
pause.
 (Also applies in other examples.) Please
make sure your notation has an
unambiguous meaning.

We have added an explanation about the
notation of pauses in section 4.1.2, and
have made some changes to ensure
consistency of use.

- 4.2: Example 7:
 The topic here is explanation (as
opposed to verbalization).
 However, line 4 is explicitly called
verbalization.
 Should we take all the rest to be
explanation?
 And _one_ explanation (because there
was only one question)?
 The discussion text in 4.2.1 is not
explicit in this regard, but should be.

The expert only says these few words,
and then stops, which does not
correspond to the verbalise strategy.
This sentence has been modified to
“Expert	 keeps	 typing	 for	 5	 sec	 without	
any comments and then briefly
verbalises what he is typing”,	 and	 the	
following one has been modified to
“Expert stops verbalizing and keeps
typing for the next 10 sec without saying
anything”

- 4.3: "In line 11, the expert mentions
that it is time to switch roles."
 The "Haha" uttered at that point
deserves an explanation/interpretation.

This piece of dialogue is not relevant to
the discussion here and so we have
removed	 the	 “Haha”.

- Example 11 appears to be identical to
Example 5.
Please prepare the reader for that or
even use a cross reference to Example 5

Sentence	 added	 “Example	 11	 is	 the	 same	
as Example 5, but it is repeated below to
emphasise that it is a continuation of
Example 10 in the PP session.”

instead of repeating the whole thing.
 (You are using this approach already
below in 4.4.2.)

- Also, Example 11 is only _almost_
identical to Example 5. For example, 11
ends with "interfere" where 5 has
"intervene".

Examples 5 and 11 are the same. The
wording has been changed for both
examples to use the word “intervene”.

- "This example illustrates the novice's
change of behaviour from a passive
listener [...]"
 I know what you mean here, but still: It
is not helpful that you have called the
"passive listener" behavior of the novice
"active listener" above...

“passive	 listener”	 has been changed to
“passive	 participant”

- 4.4: Example 13:
"The transcription here does not follow
immediately after the transcription in
Example 9." This statement should not
be about "transcription". And it could tell
us, specifically, how many seconds or
minutes later in the session the scene
occurred.

This comment is not relevant to the
discussion of this example and so it has
been removed.

- "The novice has a different problem
solving approach and tries to
communicate that idea to the expert but
is not successful." Is that so?
Does this refer to line 2 (then please say
so)?
To me, line 4 looks as if the novice is
perfectly happy with the reaction of the
expert.
And what you call "eventually the expert
realises that the novice had the right
idea" looks immediate to me, not
"eventually". Please elaborate.

This has been clarified by adding
“immediately”	 and	 replacing	
“eventually”	 with	 “then”:	 “The	 novice	 has	
a different problem solving approach
and tries to communicate that idea to the
expert but is not immediately
successful. The expert reacts to the
novice’s	 comments	 but	 does	 not	 really	
take	 the	 novice’s	 suggestions	 into	
account. However, then the expert
realises that the novice had the right
idea”

- 4.4.2: "This indicates that explanations
that are not related to the current
activity lead to an additional cognitive
effort."
This is a hasty conclusion: First, you

We changed the sentence to phrase this
more carefully by saying that "This
indicates that explanations that are not
related to the current activity can lead to
an additional cognitive effort."

have no clear notion of relatedness.
Second, it may simply be that explaining
the use of the debugger is the much
simpler task, no matter what context.

- 4.4.3: Please mention that the second
quote is from a different pair, not the
novice of the same pair. (For some
reason that was my initial assumption.)

The	 sentence	 “These	 quotes	 from	 two	 of	
the	 interviews	 illustrate	 the	 developers’	
perspectives:”	 has	 been	 added

5 Discussion:

- Please repeat the identifiers RQ1 etc. in
the headings for clarity.

RQ numbers added. Heading for section
5.3 modified to reflect RQ3.

- "These strategies are particular
instantiations of the teaching methods
suggested in cognitive apprenticeship"
 They are specializations, not
instantiations, right?

Changed	 ‘instantiation’	 to	 ‘specialisation’

- 5.1: Cognitive apprenticeship is now
taking a prominent role.
 Please shortly explain why you are
using it (rather than something else or
nothing at all).

Further explanation of cognitive
apprenticeship and its applicability to
software development has been added at
the beginning of section 5.1

- "Strategies (5) and (6) are examples of
modeling"
 I suggest to treat the names of the
strategies as identifiers (with
capitalization) and refer to them by
name to make reading easier. Use
mnemonic abbreviations if that gets too
cumbersome.
 If you don't like this, we need at least a
line-itemized enumeration of the
strategies that is prominent and easy to
find.

Capitalisation applied

##A##
- Articulation: I find your interpretation
overly pessimistic.
 That expressing one's thoughts "was

We	 have	 changed	 this	 sentence	 to	 “In	
this case, it seemed that articulation was
used…”	

used as a method to get reassurance"
does not rule out that it is also proper
articulation and has all the usefulness
expected of articulation.
 The point of articulation is that it is
done, not that the teacher asks for it.
 Please go back to your data, consider
this view, and possibly modify your
conclusion.

We also note that the novice’s	 body
language indicated that she sought
reassurance, but as we have not
analysed body language in any detail this
is not included in the paper.

- Exploration: You may not have seen
any exploration in your data, but I
wouldn't say that choosing follow-up
tasks that foster learning is "not decided
during PP sessions".
 Please rephrase.

Modified	 to	 “and	 identifying	 such	 tasks	
would not normally be decided during
PP	 sessions”

- You say that in the context of PP "tasks
are chosen according to agile
prioritisation which considers business
value, not educational progression".
 I find this statement overly general.
(For instance consider Brooks' Law
situations such as those in [41] is may
make sense to behave otherwise, in
particular if PP is not used throughout.)
 Please insert a "typically" at least.

“typically”	 inserted.	 Note	 that	 this	
review comment may have some words
missing, but this is how it appears in our
communication from IJHCS

- 5.3: "We did not observe challenges for
the novice in this study,"
 Is this also due to your selection of
sessions, which is guess was more
interested in ones that ran smoothly?
(And then perhaps add a bullet for this in
3.2.1's step 1)

Changed to “We	 do	 not	 report	 on	
challenges for the novice in this paper,
but novice challenges such as social
pressure	 are	 described	 in	 [29].”

6 Limitations:

- I agree with almost everything of what
you say, but overall the section feels
unsatisfactory. This is because the
limitations you discuss lack clear
categorization, which in turn happens
because you often only discuss an issue,

The limitations section has been
modified to include statements that this
limitation	 “potentially	 affects	
generalizability/completeness”	
accordingly. In addition, the sentence
below has been added to the limitations

but not its likely effects for the validity of
your results. As far as I can see, the
limitations of your study concern three
types of threat: to validity, to
completeness, and to generalizability:
6.1 concerns completeness, 6.2 concerns
generalizability, 6.3 concerns
completeness and generalizability.
None of them concerns validity -- and
you ought to say so.
Loudly.

introduction:	 “Note	 that	 none	 of	 these	
limitations affect the validity of the
findings”

Thank you for pointing this out

7 Conclusions and future work:

- Some of my above remarks apply here
again.

Capitalisation of teaching strategies,
insertion	 of	 ‘typically’	 regarding	 agile	
prioritization

- "However, novice articulation, where a
novice verbalizes their own thought
process, was not encouraged"
 This _is_ probably a result of the small
size of your data sample, don't you think
so?
 (Or do you intend to claim no expert
has ever done this?)

Added	 “Not	 only	 was	 novice	 Articulation	
not encouraged in any of the exemplars
we analysed in detail, we can also claim,
due to step 1 in our procedure, that it
also did not feature in any of the sessions
we	 recorded.”

References:

- At least the following entries in the
references list need checking and
potentially correction:
3, 5, 6, 10, 21, 23, 24, 27, 38, 41
(many have _only_ capizalization and
hyphenation issues, but some have them
mixed with other problems)

References have been checked and
modified.

Global:

##N##
- Right through to the end it remained
unclear whether "novice" refered to
 a) someone with much lower
knowledge in a general, broad sense or
 b) someone with much lower

The definition of novice and expert for
this study was added to section 3.2.1 as
described above. The article does
recognize that all PP sessions will
involve some level of knowledge transfer
and	 that	 we	 chose	 ‘extreme’s	 in	 order	 to	

knowledge wrt a single, specific topic.
 As all your subjects are software
professionals, case (b) would be a much
more appropriate reason for calling
someone a novice (w.r.t. to the one topic
only), but most of the text sounded a lot
more like case (a).
I have two requests:
 - Please explain in Section 1 or 2
whether you have (a) in mind or rather
(b).
 - If it is (a), please change the term
"novice" into the more appropriate term
"junior" (latin for "younger")
throughout.

be able to identify clearly the strategies
being used.

- The article could use a round of
proofreading.
 There are a number of issues for
instance with
 - singular vs. plural,
 - third-person "s",
 - adverb "ly",
 - "err" vs. "er",
 - missing quotes,
 - "seem" vs. "appear",
 - "another" vs. "a different",
 - hyphenation issues,
 - missing words,
 and the like.

Proofread and changes made.

- Please indicate the identity of the
session from which each example is
taken.

We have not added this information. The
excerpts chosen were exemplars of the
data set, as explained above. Adding
which session each example came from
would emphasise an aspect of the
analysis that is not relevant, and indeed
would be distracting from the main
findings.

Reviewer #2: Review of "Knowledge Transfer in Pair Programming: An in-depth
Analysis"

This article describes an interaction analysis of pair programming sessions, focusing
on knowledge transfer between experts and novices. The research questions are 1)
What teaching strategies do developers use in pair programming, 2) In which ways
do the roles of driver and navigator influence knowledge transfer in pair
programming, and 3) What challenges are faced when pairing developers with
different skill levels.

I find knowledge transfer in pair programming a very interesting topic, pair
programming has been one of the agile practices that has received most attention,
but most studies focus on other aspects than knowledge transfer. Thus, a study on
knowledge transfer is very valuable both to academia and to practice, and I see a
clear contribution in this work. The main strength of this study is the micro-level
analysis of the videorecorded pair programming sessions, that results in a very
detailed analysis. The article is very well written, and I found the mixture of tables
with data material and text interpreting the data to make the study very readable.
Research questions are clear, and the research method sufficiently described.
Limitations are discussed, and I see the limited number of sessoins as the main
limitation.

In total, I found this a very interesting article, but have some comments that I think
need to be adressed before this aritcle should be accepted for publicaton:

Comment Author Response
1) Method: I am not familiar with
interaction analysis, so if there are
common criteria for evaluating studies
within this domain, I think these should
be used. Otherwise, I think the
arguments for a "sufficient" sample
could be strenthened by explicitly
arguing for saturaturaton.

The	 notion	 of	 ‘saturation’	 is	 not	 used	 in	
interaction analysis, but the method
itself aims to ensure that the samples
chosen are typical of all the data, e.g.
developing a content log and checking
back with the participants. We have
modified the limitations section to be
clearer about the type of limitations in
the study

2) Method: Would it be possible to state
more about the difference between the
"novice" and the "expert" in your study?
Would an "expert" also be senior in age,
or just be more skilled on the topic
under discussion in the session?

We have added clarification to this issue,
as described above

3) Theory: Most of the theory part is
now devoted to rather shallow prior
studies on other aspects of pair

The response to this comment is broken
into 3 parts:
1. Existing studies on pair programming

programming. I would rather have
referred to an overview article on pair
programming, and examined more in
detail the ones that actually address
knowledge transfer. However, what I
think could lift the theory part is to
provide more details on
relevant "knowledge transfer" from
work situations similar to pair
programming. For example von Krogh et
al.s book on knowledge creation focuses
on tacit knowledge and the role of
conversations. I would also have liked
more information on the model by
Collins et al. described in the theory part.

are generally rather shallow, which is
why we have conducted more in-depth
analyses.
2. We have considered the knowledge
creation reference provided and believe
that this would change the paper
considerably and direct the work in a
completely different way
3. We have added some more
information about why Collins was used
in our study in response to Reviewer 1,
however including it in the initial theory
section may imply that we started with
this theory in mind but we did not.

I was surprised not to see references to
very similar work by Lutz and Zieris,
who also have done very detailed
analysis of pair programming sessions. It
would be very interesting to see a
comparison between their findings and
the ones in this study.

This reference has been added to the
introduction section of the paper:
"Indeed, Salinger et al (2013) have
identified PP roles other than driver and
navigator, including one called task
expert which brings in task expertise
relevant to the session. This
acknowledges the fact that all sessions
include some level of knowledge
transfer"

4) Discussion: What is really of interest
for practitioners, is how effective is pair
programming as a mechanism for
knowledge transfer. I know that this is
very difficult to measure, and that you
probably do not have measures of the
learning effect. But given the strategies
for learning that you found in the study,
would it be possible to compare this
technique to other techniques in order to
assess the likelihood that the technique
will lead to geniune learning? Would for
example a retrospective be likely to
generate the same type of learning in
shorter time?

This paper does not attempt to measure
the learning effect and the data does not
support this kind of work.
This could potentially be pursued in
further work, but it would require a
different and quite extensive new study.

Other aspects that would be interesting
is what kind of learning a technique can
generate. Argysis and Schön distinguish
between single-loop and double-loop

This could potentially be pursued in
further work, but focusing on single or
double-loop learning in a PP context
would require a different and quite

learning, would pair programming
primarily function as a mechanism for
single-loop learning? I think these topic
could be interesting to raise in the
discussion.

extensive new analysis

Figure 1: Great that you include this
figure, but both elements should be
enlarged to increase readability.

The image is included to illustrate the
recording set up and what the data
looked like for the researcher. A higher
quality version can be submitted with
the final manuscript, should the paper be
accepted, but it is not necessary for the
reader to be able to read the code on the
screen.

Section 3.2.1: Great if you could be more
precise some places, like stating why you
chose 5 exemplars of PP sessions, and
how many illustrated RQ1 and RQ2?

The wording	 was	 modified	 to	 be:	 “Five	
suitable exemplars were identified, each
between 4 and 6 minutes in length, that
together represented the set of typical
situations	 in	 the	 data.”
There was no particular mapping
between the RQs and the exemplars; all
of the exemplars illustrated all of the
RQs

"ex-pert" -> "expert"

The article has been fully proofread

Reviewer #3: The paper is interesting and deals with a very popular set of
problems that need to be investigated deeply. The study leverages on a wide set of
previous investigations performed in the area and focuses on specific aspects that
are investigated in depth.
There are some aspects of the paper that need improvement:

Comment Author Response
- it is not clear for how long the different
couples have been recorded

Section 3.2.1 states that the data was 37
hours of video recording of 21 PP
sessions. We have added	 “each	 PP	
session lasted between one and a half
and three and a half hours.”

- it is not clear how the authors have
identified the 6 groups

There were 5 exemplars and they were
chosen according to the criteria in
section 3.2.1. There were six strategies
which emerged from the data, so they
were	 not	 ‘identified’	 by	 the	 authors.

- it is not clear if the analysis describes The analysis identifies certain

just single behaviors or it groups
together similar cases (the 6 strategies
identified by the paper)

behaviours that we observe participants
performing. The examples given are
used to illustrate the behaviour that is
typical of the whole data set.

- the paper could be improved providing
a more detailed analysis of the single
experiments and trying to group them in
clusters to identify common behaviors
keeping also the connection between the
single experiments and the grouped ones

These were not single experiments but a
set of recordings from a field study
involving four companies, as set out in
the paper.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Knowledge Transfer in Pair Programming: An In-depth Analysis

Laura Plonka, Helen Sharp, Janet van der Linden,

Centre for Research in Computing

The Open University Milton Keynes, UK

(Laura.Plonka; Helen.Sharp; Janet.VanderLinden@open.ac.uk)

Yvonne Dittrich

Software Development Group IT University of Copenhagen Copenhagen, Denmark (ydi@itu.dk)

Abstract

Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is

known about how knowledge transfer is achieved in this setting. This is particularly pertinent for

novice−expert constellations, but knowledge transfer takes place to some degree in all constellations.

We ask “what does it take to be a good “expert” and how can a “novice” best learn from a more

experienced developer?”. An in-depth investigation of video and audio excerpts of professional pair

programming sessions using Interaction Analysis reveals: six teaching strategies, ranging from “giving

direct instructions” to “subtle hints”;; and challenges and benefits for both partners. These strategies are

instantiations of some but not all teaching methods promoted in cognitive apprenticeship; novice

articulation, reflection and exploration are not seen in the data. The context of pair programming

influences the strategies, challenges and benefits, in particular the roles of driver and navigator and agile

prioritisation which considers business value rather than educational progression. Utilising these

strategies more widely and recognizing the challenges and benefits for both partners will help

developers to maximise the benefits from pairing sessions.

*Manuscript
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 Introduction

“Two heads are better than one” is a common idiom referring to the advantages of collaborative work.

The value of collaboration is explicitly encouraged in software development through a practice known

as pair programming. Pair programming (PP) is a software development technique where two

developers work closely together to solve a development problem [41, 1].

Several benefits of PP have been claimed including improved understandability and maintainability of

code and design [35, 37], decreased defect rates [24, 18, 23, 10, 25] and knowledge transfer [21, 20, 23,

32, 34, 35, 36, 38, 40]. This paper focuses on knowledge transfer in PP. Indeed, Salinger et al [31] have

identified PP roles other than driver and navigator, including one called task expert which brings in task

expertise relevant to the session. This acknowledges the fact that all sessions include some level of

knowledge transfer.

Most software development teams are composed of developers with different knowledge levels of some

kind, including different programming experience, different domain expertise and knowledge about

different technologies. PP is one way to share their knowledge with other team members while also

achieving meaningful work. In some cases, knowledge transfer is the explicit goal of a PP session [29].

This is common when a more experienced developer teaches a less experienced developer, for example,

to bring new staff up to speed [3, 42]. However, given that developers never have identical knowledge, a

certain degree of knowledge transfer would be expected within every PP constellation.

Pairing with someone who has a different knowledge level can be problematic [2, 7] and developers

tend to interact differently in this situation in comparison to pairing with other developers with similar

knowledge levels [9, 7]. For example, Plonka et al. [29] showed that less knowledgeable developers

(novices) can disengage in PP sessions and can sometimes not follow their more knowledgeable partner

(expert).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Although knowledge transfer is widely reported as a benefit of PP, there is currently not much insight

into how developers approach this in practice nor how knowledge transfer can be improved. What does

it take to be a good “expert” and how to learn best as a “novice”? What are the challenges? Here, we

present an in-depth investigation of knowledge transfer in professional PP sessions to address the

following research questions:

 RQ1: What teaching strategies do developers use in pair programming?

 RQ2: In which ways do the roles of driver and navigator influence knowledge transfer in pair

programming?

 RQ3: What challenges do developers with different knowledge levels face when pairing

together?

These three questions are addressed through a qualitative analysis (using Interaction Analysis [19]) of

video recordings of professional developers working together on their day to day tasks. As a result, we

identified a set of teaching strategies and behaviours that are related to the roles of driver and navigator

and influence teaching and learning, together with associated challenges and benefits for both pairing

partners. An increased awareness of working practices for knowledge transfer in PP will help developers

to maximise the benefits from such sessions.

The remainder of the paper is organized as follows. Section 2 overviews existing research on knowledge

transfer in PP. In section 3, we present the research methodology including data collection and analysis

approach, followed by the findings of this study (section 4). In section 5, the findings are discussed with

respect to existing literature and section 6 discusses the limitations of the study. The last section 7

presents conclusions and implications for developers.

2 Knowledge Transfer in Pair Programming

The positive effect of PP on knowledge transfer, no matter what may be the knowledge levels of the

developers, is widely acknowledged across a range of studies in industry [21, 20], [38, 35, 23] and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

academia [32, 36, 34, 40]. Knowledge transfer is also one of the main perceived benefits according to

two surveys: Schindler [33] surveyed developers and managers in 42 Austrian companies; and Begel

and Nagappan [2] conducted a web-based survey of 487 Microsoft developers. Three industrial case

studies [21, 35, 38] report more detail on developers’ perceptions. In [21], developers report that PP

increased their knowledge of the code and in [35], developers report increased knowledge of the

software system. Gaining knowledge about development tools, work practices, refactoring old code, new

technologies and programming languages are all perceived benefits reported in [38].

Belshee [3] suggested very frequent changes of the pair constellation to promote fast knowledge transfer

and to spread knowledge among different team members. Pandey et al. [23], suggests that this can

reduce project risk because multiple developers are familiar with the code and there is less reliance on

one individual. Increased flexibility also means that developers can pick up a variety of different tasks.

For example, Hodgetts [17] reports on one team that had only one database expert, but too much work

for one expert. When this caused a bottleneck, the team decided to use PP to spread the database

knowledge among developers. They learned quickly through pairing with the database expert and were

then able to do database tasks by themselves.

PP has also been studied in the context of training and mentoring, but not always with a positive effect.

For example, in the context of developing firmware for processors, Greene [16] found that the training

effect of PP was not as high as expected, which may be due to the very specialized and complex domain

knowledge needed in that context. On the other hand, Williams et al. [42] investigated PP for mentoring

and hence focused on pair constellations with different levels of expertise. They examined the

relationship between PP and Brooks’ Law1 based on a survey and a case study. They found that PP

reduced the mentoring needed per day from 37% of a developer’s time to 26% of their time, and that PP

reduced the time for a developer to be independently productive from 27 to 12 days.

1 Brooks Law says that “adding manpower to a late software project makes it later” [6]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The developers’ view of combining different knowledge levels when pairing was investigated by Jensen

[18] and Vanhanen et al. [38, 37]. Jensen [18] found that pairing developers with similar expertise was

counter-productive, while Vanhanen and Lassanius [37] found two good partner combinations: when the

pair consists of a senior and a junior developer; or partners have complementary knowledge.

When asked about the challenges of PP, developers surveyed by Begel and Nagappan [2] perceived

working with someone with different skills as one of the main challenges. Williams and Kessler [41]

also point out that pairing experts and novices can be problematic. Novices can slow down experts and

some experts might not have a mentoring attitude.

One study by Cao and Xu [7] examined the interactions of pairs in more detail according to their

expertise. They assigned students according to expertise and found that the expert asked for the novices’

opinions frequently at the beginning of the session but stopped asking after realising that they did not get

valuable information.

Although there is some evidence that pairing developers with different knowledge is useful but

challenging, there is currently a lack of understanding about what interactions take place to achieve

knowledge transfer and what challenges developers face.

3 Research Design

It is known that people working jointly on a computer use a combination of gesture, language and screen

object manipulation to construct an understanding of the problem (see [30] for example). In PP

developers work closely together on one computer and all these aspects needs to be considered when

analysing knowledge transfer between the developers. For this study, we chose a data gathering

approach that captures rich data about the PP sessions and an analysis approach that allows for a detailed

investigation of how human beings interact with each other, and with objects in their environment (both

verbally and non-verbally) [19].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3.1 Data gathering

Different aspects of the PP session were captured by using a combination of data gathering methods:

 Audio and video recordings were used to record the developers’ interactions during their PP

sessions: audio recordings of all verbal communication; a video of the programmers; and a full-

resolution recording of the screen, showing the code and capturing the developers’ computer

activities. These were fully synchronized into a single video file (see figure 1).

 Questionnaires were used to gather background information about the developers, the aim of the

session, and their experience in programming and PP.

 Interviews were conducted with both developers one day after the session to capture the

developers’ account of their session.

Table 1: Companies’ and developers’ background

Industry Company size Team size Programming

experience

PP experience

Geographic

information

systems

30-50 8 0.9-20 years 0-20 years

Traffic,

logistic and

transport

<500 2 teams, 5

developers

each

0.4-13 years 0-3 years

Email

marketing

50-100 8 1.3-10 years 0-5 years

Estate CRM

Software

50-100 10 1.5-12 years 0-3.6 years

We recorded PP sessions from four different companies. All companies used agile approaches and all

companies belonged to different industries. None of the companies provided developers with PP

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

training. Table 1 provides background about the companies and the developers. During our studies, the

developers worked on their day-to-day tasks in their usual working environment. There was no set

pattern for pairing. Developers decided themselves when it was appropriate to pair, and with whom. See

figure 1 for an example of a recording set-up in one of the participating companies.

3.2 Analysis

To analyze the data we used Interaction Analysis [19] which focuses on social interactions (verbal and

non-verbal) as they take place in their natural settings through analysing everyday interactions. Video

data supports Interaction Analysis because it captures the minutiae of interactions. Moreover, video data

allows sequences of interactions to be replayed which is crucial for re-examining and understanding

what happens in the session.

Figure 1: Left: Screenshot of a fully synchronized video showing Eclipse IDE and the developers.

Right: Recording setup in one of the companies.

Jordan and Henderson [19] originally published their description of Interaction Analysis in the context

of learning sciences. In recent years Interaction Analysis has been used in software engineering research.

For example, Børte et al. [5] successfully used Interaction Analysis to study software effort estimation

by investigating different types of knowledge, reasoning and decision-making in group based estimation

sessions, while Dittrich and Giuffrida [15] used the method to investigate the role of instant messaging

in a global software development project.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our analysis is based on the core procedures of Interaction Analysis but was tailored to the context of

this study. The following summarises the six core procedures and how they were tailored, see [26] for

details.

1. Procedure: Ethnographic context In order to provide context for the video data, Interaction

Analysis suggests to capture the ethnographic context in which the recordings take place. For the

data gathering of this study, the main researcher spent time at the organisations and in addition to

the video data three other types of data (questionnaires, interviews, and field notes) were

gathered during that stay.

2. Procedure: Content logs The intention of this procedure is to obtain an overview of the data

through an initial viewing and annotation to create content logs. In this study, the video data was

annotated through previous analyses [29, 27] and these annotations were used as content logs for

this study.

3. Procedure: Individual researcher’s work In this study, this procedure was divided into two

separate steps. Firstly, the researcher extracted exemplar excerpts of the data (this process is

referred to as “cannibalising” [19, p. 46]). An excerpt is regarded as an “exemplar” if it is a

typical or representative example of the data being studied. Secondly, after the group work

procedure (described below) the researcher reviewed the group viewing notes and analysed the

interview data.

4. Procedure: Transcription The video data to be analysed is transcribed. This procedure was

followed in this study and is described below in the second step of our analysis.

5. Procedure: Group work Group work is fundamental to Interaction Analysis. Group members

discuss observations and hypotheses, searching for “distinguishing practices” and “identifiable

regularities” in the interactions. In this study, this procedure was used in a slightly adapted form

which is described in section 3.2.1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6. Procedure: Video review sessions In this procedure the video segments are played back to the

participants. The intention of this step is to include the participants’ perspective for the analysis

to gather further insights. This procedure was not practical in the context of this study and was

replaced by analysing the interviews that were conducted after the sessions and which provide

the developers’ perspectives on their PP sessions.

3.2.1 Analysis steps

In the following sections the specific analysis steps in the order in which they were conducted are

described.

Step 1: Sampling of relevant video exemplars

Interaction analysis is a very detailed and time-consuming analysis procedure which means that

sampling of the relevant video exemplars is a crucial step. A detailed analysis of a 3-5 minute exemplar

can take about 2 hours. At the start of this analysis, we had about 37 hours of video recordings of 21 PP

sessions with 31 developers from four different companies. Each session lasted between one and a half

and three and a half hours. In previous studies [29, 27] we had analysed the full 37 hours using different

analysis methods. Hence, we had excellent knowledge of the data before the Interaction Analysis

started. This allowed us to effectively identify exemplars that exhibit typical situations in which

knowledge transfer between developers takes place. Five suitable exemplars were identified, each

between 4 and 6 minutes in length, that together represented the set of typical situations in the data. The

following criteria guided our selection.

 Developers with different levels of knowledge are aiming to transfer knowledge. Developers

never have exactly the same knowledge, and so it can be assumed that knowledge transfer takes

place in every PP session. However, in PP sessions where developers have similar levels of

expertise, knowledge transfer and the strategies used to achieve it might be difficult to identify.

In contrast, where pair constellations have an explicit aim to transfer knowledge from one

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

developer to another, knowledge transfer and associated strategies can be observed more easily

and explicitly. Moreover, in these sessions it is clear who is teaching whom. Hence, we used the

background questionnaires and the interviews with the developers to identify sessions in which a

more knowledgeable developer (expert) worked with a less knowledgeable developer (novice).

In the context of this study, the definition of an expert and a novice is based on the developers’

perceptions of their knowledge for a particular pair programming session. We chose excerpts

from PP sessions for which developers explicitly stated that the aim of the session was to transfer

knowledge from the more knowledgeable developer (expert) to the less knowledgeable

developer (novice) for the topic covered in this session. In addition we only chose sessions in

which both developers agreed who is the expert and who is the novice in this particular session.

 Experts are trying to teach novices. To address RQ1 excerpts were selected in which experts

tried to teach the novices rather than excerpts in which no communication, explanations or

verbalisations took place.

 Both expert and novice are driving within the excerpt. To answer RQ2 some excerpts were

chosen in which the novice was driving and some in which the expert was driving or where the

developers switched roles.

 Behaviour is not unique to one pair constellation. Although we only selected a small number of

exemplars to conduct the in-depth interaction analysis the first author watched all video

recordings to ensure that the selected excerpts represent behaviours observed in multiple pair

constellations.

Step 2: Transcription

The conversations of the developers together with timestamps and pauses were transcribed. Short pauses

in the communication are marked as […] and for longer pauses the number of seconds [sec] is provided

in the transcriptions. The collaborator companies were based in Germany and all audio data was in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

German. The transcription was based on the original data. The main researcher who conducted the data

gathering is a native German speaker and the other researchers have different language skills (see table

2).

Step 3: Group viewing

The video excerpts were analysed collaboratively during group viewing sessions. The group size varied

between two and five members. In each group viewing session at least one German and one non-

German speaker were present. Table 2 provides an overview of the members of the group, their

language skills and their relevant experience. Each group member had a different background. This

strengthened the analysis as each member provided a different perspective on the data. For example, the

different language skills of the group members influenced the initial focus when watching the excerpts;

usually, the non-German speakers focused first on the non-verbal communication and on the computer

activities of the developers while the German-speaking members focused on the conversation first. To

allow every member to understand the full picture of the events the transcripts were translated during the

group viewing session.

For each video excerpt (4-6 min) the group session took approximately 2 hours in order to accommodate

intense discussions. During the whole group viewing session the first author took detailed notes of the

discussion. The group viewing session had the following activities (steps 3 and 4 were iterated):

1. Watching the whole video excerpt The group watched the excerpt from the beginning to the end

without stopping. The group was not provided with the context of the excerpt before watching it,

in order to counter researcher bias.

2. Discussing initial observations Each team member shared their initial observations with the

group, drawing on their specific expertise.

3. Providing context for the segment After the initial discussion, the group members were told the

context of the excerpt: who is the expert and who is the novice; is this excerpt from a beginning,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

middle or end of a session; and what developers reported in the interviews about their knowledge

transfer experience.

4. Stop-and-go watching of the video excerpt The excerpt was watched again but this time, team

members stopped the video to discuss different dimensions of the interaction in detail. During

this, certain events or the whole excerpt were re-played several times.

5. Finding themes The results of group viewing sessions were brought together and the emerging

themes were discussed.

Table 2: Members of the interaction analysis group

Research experience Relevant languages Relevant experience

Experienced researcher English Empirical software engineering,

qualitative research, research on

agile methods

Experienced researcher German (intermediate),

English

Empirical research, qualitative

research, gesture analysis,

advanced programming

Experienced researcher German, English Empirical research on

cooperative and human aspects of

software engineering, interaction

analysis

PhD student English Empirical research, qualitative

research

PhD student German, English Empirical research, qualitative

research, pair programming

research

The analysis was exploratory and did not follow a pre-defined coding scheme. During the group

viewing, observations were not restricted to the research objectives because a restriction early on in the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

analysis process might lead to important aspects being overlooked. Once the group decided that all

relevant observations were discussed, the group viewing session was over and the next group session

focused on a new excerpt.

Step 4: Analysis of group viewing notes and interview data

The themes that emerged during the group viewing were reviewed with respect to the research

questions. The first author reviewed the extensive notes from the group session and revisited the data for

each theme for validation. The results of this procedure were discussed with other group members. In

addition, the interviews from the three selected PP sessions were analysed focusing on developers’

statements related to their experience of knowledge transfer within their sessions. The findings from the

interviews were then used to contextualise the findings from the group viewing session.

4 Findings

This section presents the findings focusing on the teaching strategies used by developers (RQ1) the roles

of driver and navigator (RQ2) and the challenges when pairing developers with different knowledge

levels (RQ3). Our findings are illustrated through examples from the selected transcriptions and

descriptions of what developers were doing. The analysis highlighted that experts use a combination of

different strategies to teach novices and that each expert uses a variety of strategies even within the same

pair programming session.

4.1 What teaching strategies do developers use when a novice is driving?

We identified four different strategies that experts use when the novice is driving; Verbal nudging and

physical hints, pointing out problems, gradually adding information, and giving clear instructions.

4.1.1 Verbal nudging and physical hints

Verbal nudging and physical hints are teaching strategies that provide directions without providing the

solutions for the novice. For example, using verbal nudging an expert will make suggestions rather than

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

explicitly tell the novice what to do. Other subtle guidance can include physical hints such as pointing to

something on the screen or placing the cursor in a particular location. These different types of

behaviours are illustrated in Example 1 and Example 2.

In Example 1, the novice is driving and has just finished writing a line of code that checks an entry in a

list. The novice suggests that they can now move on (line 1) but the expert proposes (using the word

“could” in line 2) that they should test this code first. The novice agrees without any resistance and

instead of moving on, the novice starts testing the code.

Example 1 Nudging

Line Speaker Talk

1 Novice: “Ok, so this is done now, so we can move on to

the next bit.”

2 Expert: “We could also test that first.”

3 Novice: “Yes, ok.”

In Example 2, the expert places the cursor in a certain position before handing the keyboard over to the

novice. Later in the excerpt, it becomes apparent that this is the point in the code where the problem

should be addressed. The fact that the expert switched to this test class after finishing his explanations

and while preparing the handover, indicates his intention to provide a hint for the novice.

Example 2 Indirect hint: Preparing the environment

The expert is driving and explains a problem to the novice. The expert opens different Java classes and

test files to illustrate his explanations. He finishes his explanations by pointing something out in a Java

class. Afterwards he says with a smile on his face: “OK, so now it is time to switch driver.” While

saying this, he switches from the Java class to a test class, looks for a specific location in this test class

and moves the cursor there before he hands the keyboard to the novice.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The excerpts illustrate that verbal nudging and physical hints are used by experts to provide a learning

opportunity for the novice. In Example 1, the expert uses a gentle form of verbal nudging which is

immediately picked up by the novice. Without telling the novice how exactly to solve the problem, the

expert provides successful directions. Following the excerpt in Example 1, the novice starts writing a

test. In addition to verbal hints, we also observed indirect non-verbal hints where an expert physically

moves the cursor around the programming environment to nudge the novice towards the right place.

Example 2 illustrates such a situation in which the expert sets up the environment for the novice before

handing over the keyboard to provide the novice with a starting point. These subtle strategies were

observed in pairs where the expert seemed to be patient and the novice had some initial knowledge of

the task at hand.

4.1.2 Pointing out problems

Experts point out problems for novices without suggesting how the problem should be solved. This is

illustrated in Example 3.

Example 3 Pointing out a problem

Line Speaker Talk

The novice has just finished writing some code.

1 Expert: “I see at least three mistakes.”

2 Novice: “You see three mistakes?”

3 Expert: “I see three mistakes.”

4 Novice: “OK.”

5 Expert: “Twice statement.close and one

uninitialized member variable.”

6 Novice: “Yes.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This is followed by the novice suggesting how to address the problems.

In Example 3, the novice has finished writing some code. The expert points out that there are at least

three mistakes in it without explicitly explaining how to address them. The expert thus gives the novice

the space to think about how to solve the problem without simply solving it for him and the novice starts

suggesting how to address the problems. In comparison to verbal nudging and physical hints, in the

example above the novice receives no direction on what to do next. This strategy prompts the novice to

suggest how to address the problems, giving the novice the opportunity to think the problems through by

herself/himself. We observed that this strategy can be time-consuming because it might take the novice

some time to identify solutions to the problem. In cases where this strategy does not work, we observed

that experts use a follow-up strategy (gradually adding information). This strategy is presented next and

is also used independent of the pointing out problems strategy.

4.1.3 Gradually adding information

Gradually adding information means that the expert supports the novice in finding a solution for a

problem on an “as needed” basis. Instead of suggesting how to solve an issue experts wait and see

whether novices are capable of solving a problem by themselves with a certain amount of information

given. If the novice is not capable of solving the task, the expert gradually adds more information in

order to help the novice (as illustrated in Examples 4 and 5).

Example 4 Gradually adding information (1) and Giving clear instructions

Line Speaker Talk

1 Novice: “We would maybe need a constructor here, wouldn’t we?”

2 Expert: “Right. That would be good.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3 No communication, no typing [3sec].

4 Expert: “At the top.”

Novice is moving the cursor to the top of the class.

5 Expert: “ALT-N.”

Novice presses ALT-N.

Example 5 Gradually adding information (2)

Line Speaker Talk

1 Novice: “Ok, technically, we’d have to call a [...] job instead of

calling a PreSQLStatements.”

No communication/no driving [3sec].

2 Expert: “In our case, we’d call a [...] job instead now. Right.”

3 Novice: “Right. Ok, that means we somehow build us a class now

that then just gets the job and executes it.”

4 Expert: “Eventually, that would be the implementation. Yes.”

5 Novice: “Good.”

No communication/no driving [2sec]

6 Expert: “ We just have to tell the SQL FilterStatement

somehow […] that it executes it at the right time.”

No communication/no driving [3sec]

7 Expert: “Instead of using PreSQLStatement; […] use PreSQL

or PreListener or PostListener or all in one. I don’t

know.”

8 Novice: “Yes. Ok, but we would want to do that then by using the

Config-class.”

Novice puts his hands on the keyboard and starts typing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9 Expert: “Right. That is our only chance to intervene there.”

In Example 4, the novice is driving and suggests creating a constructor. He phrases this suggestion as a

question (line 1). The expert confirms that the novice’s suggestion is right without adding more

information (line 2). The novice hesitates to start typing. After a short pause, the expert gives the novice

additional instructions by telling him that the constructor should be written at the top of the class and

that he should use the shortcut “ALT-N” to do that.

This can be interpreted as the expert waiting to see whether the novice can create the constructor without

more information and only giving instructions when the novice hesitates.

Example 5 presents a second example of this strategy. Just before the start of this excerpt, the expert had

explained the code and the problem and then made it verbally explicit that it’s the novice’s turn to drive.

The novice does not immediately take the keyboard or mouse. Instead the novice starts suggesting what

to do next (line 1 and 3). In lines 2 and 4, the expert repeats and confirms the novice’s suggestion

without adding new information. When it is the novice’s turn to talk and type, the novice hesitates again.

The expert starts adding further information about how to solve the problem. After adding new

information (line 6) the expert waits. The novice does not react and after another moment of silence the

expert starts again to add new information (line 7). This time (line 7) the expert finishes his statement by

saying that he does not know what the best approach would be. In line 8, the novice suggests how to

address the problem and subsequently takes the keyboard and starts implementing the solution. The

expert confirms the novice’s suggestion in line 9.

Later on in the session (not provided as a transcript), it becomes clear that the expert knew how to

approach that problem, and that the “I don’t know” statement in line 7 was a hint that the novice should

solve the problem.

Both examples 4 and 5 show an expert not giving all the information to the novice at once but gradually

adding more information when necessary. This suggests that the expert wants the novice to actively

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

think about the problem rather than for him to just explain each step immediately. This also means that

the problem solving process might take more time in comparison to having the expert telling the novice

explicitly how to solve the problem (as described in the next section).

4.1.4 Giving clear instructions

Experts also use clear and direct instructions, both with and without additional explanations, to help

guide the novices. These instructions include dictating what to type, which shortcuts to use and where

the changes have to be made in the code. In some cases, experts explain their instructions thereby

providing the novices with the reasoning behind those instructions. In both cases, it was observed that

the novice follows the instructions of the expert immediately.

Looking back at example 4, this acts as a good example of an expert giving clear instructions when

noticing that the novice knows what to do (line 1), but hesitates about how to go about it (line 3). The

expert gives the novice clear instruction where to create it (line 4) and how to do it (“ALT-N” in line 5)

without providing any additional explanation.

A similar example of providing clear instructions on what to do is shown in example 6. However, here

we also note the expert providing an explanation on why the code had to be placed elsewhere (line 2).

In contrast to the three previous strategies, in this strategy the experts solves the problem for the novice.

This strategy doesn’t encourage the novice to solve the problem for himself/herself. This might be less

time-consuming but also provides the novice with less opportunity to explore different approaches.

However, in some cases this might be the only sensible strategy. For example, there is little value in

asking a novice to look up a shortcut rather than telling the novice what the shortcut is.

Example 6 Giving direct instructions with explanations

1 Novice: “Yes, so then ... we can create a nice method now.”

Novice start to create a new method.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 Expert: “You better do that above because this here is an inner class.”

Novice deletes the already written code and creates the new method outside of the inner class.

4.2 What teaching strategies do developers use when expert is driving?

Focusing now on strategies where it is the expert who is driving, rather than the novice as in the

previous section, we identified two strategies: explanations and verbalisations. It is difficult to

differentiate between explaining to oneself (verbalisation) and explaining interactively [14]. In this

paper, verbalisation refers to verbalising while performing activities without being asked for it, while

explanations are statements triggered by a question or a comment that makes it clear that the other

person needs additional information.

4.2.1 Explanations

When the novice asks for an explanation, experts can address the question verbally (Example 7) or by

showing the novice on the computer how to do certain steps (Example 8).

Example 7 Explanation

Line Speaker Talk

1 Expert: “So, and now we create some methods and call them test.

BasicFilter, isn’t it?”

2 Novice: “Was the style back then so different that, hm […], that err... all tests

were in one method?”

Expert keeps typing and replies while typing.

3 Expert: “Err.. no in terms of style not but err that happened quite often back

then just because err...

Expert keeps typing for 5 sec without any comments and then briefly verbalises what he is typing

4 Expert: “PreparedStatement with S, erm

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Expert stops verbalizing and keeps typing for the next 10 sec without saying anything

5 Expert: “Because one was lazy and just wrote it like this and the strict policy

did not exist either.”

4 Novice: “OK.”

6 Expert: “The number of parameters for the methods did not exist like today

either.

Expert keeps writing for the next 9 sec without saying anything

7 Expert: “Oh wow, they [methods] do all build upon each other.”

Expert keeps writing for the next 9 sec without saying anything

8 Expert: “ Ah that is stupid, that is no fun.”

Example 8 Explanation by showing

Line Speaker Talk

1 Expert: “So, now you can go over it and see whether it finds it. Have a look

whether the activities exist. So, you can [...]”

Novice leans a little bit back, takes her hand from the mouse, turns around, looks at the expert and says:

2 Novice: “The activities?”

Expert leans forward, takes the mouse and shows the novice how to use the debugger to check the

values for the list entries. He removes his hand from the mouse, leans back again and puts his hand

under the table.

Example 7 illustrates how the expert addresses the novice questions verbally. In the excerpt, the

developers are amending tests that have been written before. The expert is driving and the novice notes

that the structure of the old tests does not conform to the current coding policy. He asks (line 2) the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

expert about the different styles. The expert starts explaining how the coding standards evolved and at

the same time expresses his displeasure about the old structure of the existing code.

In Example 8 the expert initiates a short role switch to show something to the novice. The novice is

driving and the expert suggests what the novice should do next, which requires knowledge about the

debugger. The novice does not seem to know how to do that. The novice leans back, looks at the expert

and repeats the keyword “activities” as a question (line 2). The expert takes the mouse, shows the novice

what he meant and takes his hands immediately back from the mouse.

In both cases, the expert addresses the novice’s request for information. Depending on the information

request it seemed to be easier to explain the knowledge verbally (for example, how do certain processes

work, why have specific decisions been made) while in other cases it seemed to be easier, more

convenient and maybe less time consuming to show steps rather than explain them.

4.2.2 Verbalisation

Experts verbalise their activities and thoughts while driving. Verbalisation is not necessarily directed to

the novice, but might help the expert to structure his/her own thoughts; as a result, it may help the

novice to understand the expert’s thought process.

Example 9 Verbalisation

Line Speaker Talk

1 Expert: “Now, let’s have a look. I just open the tests. This is where I had started

already. I just wanted to show that to you and then you may (drive) as

well.”

Expert opens the test and then starts browsing through the code.

2 Novice: “And this (test) always has everything in it? It will get big.”

3 Expert: “Right, yes, that will get a bit bigger. I leave it all in here for now and

then we can think about whether we should create a second test class.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Novice: “And for this test, do all the other tests have to be run through before?

Or could we get a specific one?”

5 Expert: “So, I thought, we have this “before” here. Let’s go through it again. It

creates one CommissionCalculation. That is here and it ... the DNS.

This [experts navigates with mouse through the code] is adding a hint,

this is adding the “invoices”, and this one is adding a First-WorkFlow

among others. It sets the status in created, added and sets this as

current Workflow.

6 Novice: “Yes, this is what it just did.”

7 Expert: “And we also made sure it synchronises this automatically. Add the

“recipients”, err [...] maybe that is not as important at the moment.”

In Example 9, the expert had worked a particular part of the code before and now goes through it again

in order to explain the code to the novice (line 1). After some browsing through the code, the novice

asks a question about the size of the test (line2) and while the expert responds (line 3) he indicates that

they should not focus on the size issue. During this exchange the expert is very focused on the screen

(his eyes never leave the screen) and on understanding the code that he had written before. The

subsequent question by the novice (line 4) is in fact ignored by the expert (line 5) who proceeds to

verbalize his thought process about how the code works.

The fact that he does not react to her comments indicates that he verbalises his thoughts for himself

rather than to provide explanations for her, because if his main interest was to explain the code to her, he

would pay attention to her comments. However, he stated in line 1 that he does want to explain the code

to her, so it may be that he is concentrating on verbalising his thoughts and can’t take her viewpoint into

account. This stresses that there might be a conflict between self-verbalisation and verbalising for the

partner (this is discussed in detail in section 4.4).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.3 In which ways do the roles of driver and navigator influence knowledge transfer in

pair programming?

The role being taken had a clear influence on the developers’ interactions, and on the novice’s

engagement. In a previous study [29], we have shown that novices are at risk of disengaging from the PP

session when navigating and when there is a lack of communication. In contrast here we focus on

excerpts where experts and novice communicate and on excerpts when the novice is driving. We

observed that the novices tend to be more active when driving. This shift in behaviour is illustrated in

the next section. It also became apparent that novices are articulating what they doing when driving to

get reassurance from the expert as described in section 4.3.2.

4.3.1 From a listener to an active participant

We observed that novices act more like listeners when navigating and turn into active peraticipants that

verbalise their behaviours and ask questions when driving. Examples 10 and 11 describe role switches,

demonstrating the contrast between the novice’s behaviour when navigating with that of being the

driver. Example 11 is the same as Example 5, but it is repeated below to emphasise that it is a

continuation of Example 10 in the PP session.

Example 10 Role switch

Line Speaker Talk

Line 1-10: Expert is driving. He keeps moving the cursor to the code fragments that he explains. The

novice has his hands under the table.

1 Expert: “And that of course, leads to the point that not all entries are used, but [...]”

2 Novice: “Mhm, ok.”

3 Expert: “Or if you call execute twice at the same Prepared-Statement [...]”.

4 Novice: “OK.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 Expert: “And that of course leads to the fact that even when the fields are not used

[...]”

6 Novice: “OK.”

7 Expert: “So and we do the same somehow when the method is close and we [...]”

8 Novice: “Mhm.”

9 Expert: “That is the code that we have […]. What we want to do now - aside from

getting the big learning effect - err, is of course, eh, to instead of just using

SQL, to ehm, it would be easier [...]”

10 Novice: “Mhm.”

11 Expert: “OK? So then we can change driver now..”

Expert takes the hand from the mouse, leans back and grabs a drink. The novice puts his hands on the

table but not on the keyboard or mouse.

Example 11 Role switch (continued)

Line Speaker Talk

12 Novice: “Ok, technically, we’d have to call a [...] job instead of calling a

PreSQLStatement.”

No communication/no driving [3sec].

13 Expert: “In our case, we’d call a [...] job instead now. Right.”

14 Novice: “Right. Ok, that means we somehow build us a class now that then just gets

the job and executes it.”

15 Expert: “Eventually, that would be the implementation. Yes.”

16 Novice: “Good.”

No communication/no driving [2sec]

17 Expert: “We just have to tell the SQLFilterStatement somehow […] that it

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

executes it at the right time.”

No communication/no driving [3sec]

18 Expert: “By instead of doing PreSQLStatement […], PreSQL or PreListener

or PostListener or all in one. I don’t know.”

19 Novice: “Yes. Ok, but we would want to do that then by using the Config-

class.”

Novice puts his hands on the keyboard and starts typing.

20 Expert: “Right. That is our only chance to intervene there.”

In the first 11 lines, the expert is driving and explains the code to the novice, using the mouse to

highlight code snippets that are relevant for his explanation. While the expert is in control of the mouse,

the novice keeps his hands under the table indicating that he is not trying to take on the role of driver.

The novice appears to be an active listener but he is not asking any questions. In line 11, the expert

mentions that it is time to switch roles. This is when the body language and the verbal involvement of

the novice changes. The novice puts his hands on the desk but does not take the mouse or keyboard. He

starts asking questions and makes suggestions about the actual implementation (Example 11 lines 12,

14, 19). The expert initially repeats his suggestions without adding new information and then adds

information gradually (section 4.1.3). Eventually, the novice takes the keyboard and starts typing.

This example illustrates the novice’s change of behaviour from being a passive participant (as navigator)

to a more active participant (as driver). As a navigator it might be enough to understand the underlying

concepts but as a driver detailed knowledge is required of the code and the next steps are required to

perform the implementation. This means that letting the novice drive can be useful to ensure that

detailed knowledge is transferred. However, it also means that the process of solving the task at hand

might be slower as the novice will need detailed information about the task and possible solutions.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.3.2 Articulation and re-assurance

Novices tend to articulate their thoughts and verbalise their steps, their suggestions for solutions and

reasoning behind them. A closer look at the verbalisation shows that novices seek for re-assurance about

their actions from the experts. This is illustrated in Example 12. The novice verbalises her plans for the

next steps (lines 1 and 3) and also asks for reassurance (line 5). The comments and questions are very

detailed. This shows that letting the novice drive can encourage both expert and novice to be are actively

involved in discussing, understanding and solving the task at hand.

Example 12 Novice driving

Line Speaker Talk

Developers just switched roles and the novice takes the keyboard and starts creating a for-loop to check

entries in a list.

1 Novice: “So, now here we have a “subject”. […] “From”. […] So, I just go through

[the list] now and when I find one [activity], what am I doing with it then?”

2 Expert: “Technically, it should only find one, if we were good, then it should have

only one “activity” with that “subject”.

Novice deletes the for–loop.

3 Novice: “Then, then I say “assert”.”

4 Expert: “Right.”

5 Novice: “So we just check afterwards? ”

6 Expert: “Technically yes. Just, technically, it would be enough that there is exactly

one “activity”.”

7 Novice: “Ah, ok, in the test I can see, that, what is in there. I’m still with my old

Sys.Out.”

8 Expert: “No, we can debug that.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.4 What challenges do developers with different knowledge levels face when pairing

together?

In a previous study [29], we analysed and presented challenges faced by novices in expert−novice

constellations. For this paper, we focus on the challenges that experts face when trying to transfer

knowledge. Experts seem to face challenges when they are driving and guiding the novice at the same

time.

4.4.1 Conflict between self-verbalisation and communication with partner

Example 9 illustrates the conflict of self-verbalisation and communication with partner. It is particularly

interesting because the expert was intending to explain the code to the novice (line 1) but ends up

focusing on understanding the code himself.

As the session continues (shown in Example 13) the expert still focuses on the code and on his approach

to solving the problem. The novice has a different problem solving approach and tries to communicate

that idea to the expert but is not immediately successful. The expert reacts to the novice’s comments but

does not really take the novice’s suggestions into account. However, then the expert realises that the

novice had the right idea (Example 13, lines 7 and 10).

Example 13 Verbalisation (continued)

Line Speaker Talk

1 Expert: “The first checkpoint should have gotten an email already. Just because I saved it

here in the status edit […] because it is now in status created ”

2 Novice: “None.”

3 Expert: “ Created and None. ”

4 Novice: “Yes, Created and None. ”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 Expert: “That means, if our logic is correct, what we just programmed, then we could

indeed already search for an “activity”, that has the subject “from”, err, err from a

work-flow that goes to the first checkpoint.”

6 Novice: “Ah, but I understood that at the interface, the creator, so that the calculation will

be delivered to the creator. Hence, the interface, the “wizard” sets the “workflow”

to “first prove”. And we are at “first prove”. That means it must have passed it on.

7 Expert: “You’re right. I think this is how we did it here, didn’t we? I have to have a look

again.”

Expert navigates to another window.

8 Expert: “So, at the moment, here I can orientate myself better.”

9 Novice: “Yes, yes.”

10 Expert: “You’re right. For sure. That means that nothing has happened here yet. You’re

right, completely right.”

The behaviour of the expert indicates that he is not able to cope simultaneously with the novice’s

suggestions, with understanding the code and structuring his thoughts. However, neither of the

developers seems to realise that; the expert does not ask for time to finish his thoughts nor does the

novice stop making suggestions.

This issue of thinking and communicating at the same time was also identified by experts during the

interviews: “...complex, analytical and problems related to architecture. I prefer to work those kind of

problems through in my head first. [...] My point is I cannot communicate and share my thoughts when I

have to think about complicated problems.”

4.4.2 The effort needed to explain

Providing explanations for the novice can be an additional effort for the expert.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In Example 7 the expert explains former coding conventions while working on the current tests. Hence,

the expert has to switch context between his current activity of working on tests and his explanation

about former coding conventions. In this case, the explanation is not directly related to his current

activity. The expert’s explanations about the former coding conventions are frequently interrupted by

breaks (err or pauses) and by verbalising what he is currently typing (line 4). This indicates the effort of

switching the context between his task and his explanation. Furthermore, his typing slows down while

he is explaining.

In contrast, Example 8 provides an episode in which the explanation appears to be effortless for the

expert. In that situation, both developers focus on the same problem and the expert explains the use of

the debugger which is directly related to his current activity. This indicates that explanations that are not

related to the current activity can lead to an additional cognitive effort.

4.4.3 Benefits of verbalisation and explanation

Analysis of the interviews showed that novices can help experts to challenge their assumptions and

reflect on the existing code and that working with a novice provides them with opportunities to learn

themselves. These quotes from two of the interviews illustrate the developers’ perspectives:

“It is good to work with her. She is always asking the right questions. I don’t perceive that as slowing

me down [...] so she is asking automatically the right questions and that forces me to think about what

I’m actually doing.” and

“It is really helpful to work with him. When I work with someone who is already familiar with the code,

the risk is that we overlook things because we have always done it like this [...] That happens less when

working with a newbie because he does not know these parts of the code and so he asks questions about

it. And then I feel like I’m being forced to reflect and to explain what the software is doing.”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 Discussion

This section returns to the three research questions.

5.1 RQ1: What teaching strategies do developers use in pair programming?

Six strategies which experts combine to guide and teach novices in PP sessions emerged from our data

analysis: (1) indirect hints, (2) pointing out problems, (3) gradually adding information, (4) giving clear

instructions, (5) explanation, and (6) verbalisation.

The knowledge transfer aspect of pair programming can be viewed as a kind of apprenticeship, but

traditional apprenticeship involves learning a physical activity [11, 13] through social interactions while

focusing on a task. Cognitive apprenticeship, on the other hand, focuses on learning “cognitive and

meta-cognitive, rather than physical skills and processes” [12, p. 3]. Collins et al. [12, 11] stress the

importance of making tacit processes visible for learners by making thinking visible. Given that

software development requires cognitive and meta-cognitive skills and that the key to understanding

software development is the reasoning and concepts behind it, rather than the physical act of typing,

cognitive apprenticeship shares the same characteristics, and is therefore relevant to learning and

improving software development skills.

Comparing our strategies with the teaching methods suggested in cognitive apprenticeship [12], they can

be viewed as specialisations of the teaching methods described there. This then provides further insights

into strategies that might be used in PP as described below where we systematically relate the

knowledge transfer strategies that emerged from our data with the teaching methods put forward by

Collins:

Comparing our strategies with the teaching methods suggested in cognitive apprenticeship [12], and

viewing them as specialisations of the teaching methods described there provides insight into strategies

that might be used in PP. The six teaching methods suggested by Collins et al. and how they relate to the

six knowledge transfer strategies are described below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Modeling refers to the expert demonstrating a task and verbalising his or her thoughts at the same time

to make the process of thinking visible. Strategies (5) and (6) are examples of Modeling: experts

verbalised their thoughts while the expert is driving, and explained more when asked to.

Coaching and Scaffolding2 describes the process of observing the learner while solving a task and

providing support. Strategies (1)-(4) are examples of Coaching and Scaffolding used when the novice

was driving. Strategies (1) and (2) make the novice solve the problem themselves. Strategy (3) helps to

identify how much help the novice needs. Scaffolding should consider the current skill level of the

learner as described by Vygotsky’s [39] “Zone of Proximal Development”. He says that learners might

be able to solve a task in collaboration with a more capable peer that they would not be able to solve

independently. In contrast, strategy (4) does not enforce the same level of novice engagement. ”Giving

clear instruction” is a less time-consuming Coaching approach but learning may suffer as the novice is

not thinking for themselves.

Articulation refers to learners being encouraged to articulate their knowledge, reasoning and problem-

solving processes as Articulation refines the learner’s understanding. In none of the sessions did the

expert explicitly encourage the novice to articulate their knowledge. Some form of Articulation was

observed when the novice was driving (4.3.2). In this case, it seemed that articulation was used as a

method to get reassurance from the expert rather than to make thinking visible.

Reflection means that learners compare their own problem-solving process with those of others. This

behaviour was not observed during our study.

The method “exploration” is not included in the discussion because this method refers to helping a

novice to choose suitable follow-up tasks to foster and advance their learning, and identifying such tasks

would not normally be decided during PP sessions.

2 The strategies Coaching and Scaffolding were merged because Scaffolding is one form of Coaching

and no clear delineation is provided

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

So without any prior training, experts in a PP session are using cognitive apprenticeship teaching

methods for knowledge transfer. But why don’t pair programmers use all of these strategies? Firstly,

developers may just not be aware of cognitive apprenticeship. Secondly, Collins describes the methods

in the context of education which differs from the context of PP. Although developers work together

with the explicit aim to transfer knowledge from an expert to a novice, tasks are typically chosen

according to agile prioritisation which considers business value, not educational progression. Moreover,

knowledge transfer is not the exclusive aim of the session because developers work on their real-world

tasks with the focus of finishing the project on time. This means that developers have to balance

knowledge transfer and getting the task done effectively.

One strategy from cognitive apprenticeship that could be applied to improve knowledge transfer in PP is

that of articulation. Encouraging the novice to articulate was not observed in our PP sessions, yet it

could expose novice’s thoughts. Vygotsky’s [39] “Zone of Proximal Development” could be used to

identify suitable tasks and pair constellations to ensure that the task is manageable for the novice and

that developer skill levels are not too far apart.

5.2 RQ2: In which ways do the roles of driver and navigator influence knowledge transfer

in pair programming?

Experts adapt their teaching strategies according to their role: they engage the novice through

explanations and verbalisations while driving and guide the novice with instructions while navigating.

Novices’ behaviours are also influenced by whether they are driving or navigating.

Novices become more active and engage on a more detailed level when driving than they do when

navigating. Novices are encouraged to think through, understand and solve parts of the problems by

themselves when using strategies (1)-(3) and to perform the necessary steps by following the expert’s

instructions when using strategy (4). This means that novices “learn by doing” when driving rather than

observing. Example 11 shows that the novice asked more questions as soon as the expert suggested a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

role switch, thus seeming to engage more with the task. In the interviews, experts and novices agreed

that if the novice drives it is beneficial for the novice learning but acknowledged that having the novice

drive takes more time to solve the task than when the expert drives. This is in line with existing research

that an “extremely effective style of learning by doing” occurs when learners solve as much of the work

as possible guided by a tutor [22].

The novice’s behaviour in Example 11 indicates that novices hesitate when it is their turn to drive (in

line with the findings in [29]) even though it is supposed to be beneficial for their learning process.

Plonka et al. [28] showed that often the expert dominates the driving in expert−novice constellations.

This emphasises how important it is for the expert to encourage role switches, and for the novice to be

prepared to drive.

5.3 RQ3: What challenges do developers with different knowledge levels face when

pairing together

Expert−novice constellations provide learning opportunities for both partners, and experts also face

challenges working with a novice. We do not report on challenges for the novice in this paper, but

novice challenges such as social pressure are described in [29].

5.3.1 Opportunities for expert learning

Expert−novice constellations focus mainly on knowledge transfer from the expert to the novice, but this

research identified learning opportunities for experts as well. Novices are usually less familiar with the

code than the expert, so they can provide a different perspective on the problem and existing code.

Novices might ask “simple questions” (see Example 7) that force the expert to rethink previously-held

ideas thereby uncovering problems and leading to code improvements. The novice might also suggest

solutions that an expert had not seen or considered (see Example 13).

Novices have a “beginner’s mind”, which refers to people who are unfamiliar with a situation and who

might consider more possibilities than an expert. Belshee [3] points out the positive effect of the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

beginner’s mind on knowledge transfer in PP and in the context of requirements engineering. Berry [4]

points out that novices might ask questions that help to expose assumptions by experts.

In the context of expert−novice constellations, this means that experts can benefit and learn from the

fresh perspective of the novice and that simple questions might help the expert to challenge their own

assumptions about the existing code.

Another potential for expert learning is the process of verbalisation; talking about a problem might lead

to a better understanding of the problem itself [8]. In the interviews, experts stated that explaining their

thoughts to the novice helped them to structure their thoughts and think them through more thoroughly.

Cao and Xu [7] also found that the process of verbalisation was helpful for the expert in order to readjust

goals and reorganise thoughts even when the novice did not react to the explanation.

5.3.2 Expert challenges

On the other hand, explaining and verbalising can be an additional cognitive effort for the experts. In

Example 9, an expert was seen to struggle while working through a complex problem. The expert was

using verbalisation to assist himself to work through the problem. It was challenging because the expert

was verbalising in order to explain the code to the novice, and so the novice was free to ask questions

and make comments during this time. The expert was not able to deal with both his verbalisation and the

novice’s comments and questions. This stresses the importance of being aware that developers might

verbalise to structure their own thoughts and hence might not be able to react to their partner’s

comments until they have finished this process.

PP has been described by some as an exhausting practice [41, 37]. While [41] ascribes this to developers

focusing more on the task due to the pair pressure, our research shows that the effort of verbalization

and explanation could be another reason why PP is more tiring than solo programming.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Limitations

Whilst great care was taken in designing and conducting the study, we acknowledge that some issues in

the data gathering, research method and the analysis could be viewed as limitations of the research. In

particular we identify the following issues: Voluntary participation (potentially affecting completeness),

developers being observed and recorded (potentially affecting generalizability), and detailed qualitative

analysis based on a relatively small amount of data (potentially affecting completeness and

generalizability). Note that none of these limitations affect the validity of the findings.

6.1 Voluntary participation

Participation was voluntary for all developers. That is, developers from the identified companies were

invited to participate, but no pressure was used to attempt to get all developers from each company to be

involved. This means that developers who are confident in their pair programming skills or have a

positive attitude towards pair programming might have been more likely to participate. This in turn may

have affected the findings because less confident developers or developers with a negative attitude

towards pair programming might exhibit different behaviours. This limitation potentially affects the

completeness of our results.

6.2 Developers being observed and recorded

Video and audio data were gathered during the pair programming sessions. Developers were informed

about the recording before they started their sessions and it is possible that they modified their behaviour

due to the fact that they knew they were being studied. To minimise the effect of participants feeling

observed the recording setup was integrated in the developers workplace (using a webcam and wireless

microphones that do not restrict any kind of movement, for example getting up from the chair).

Additionally, in the interviews, developers were asked whether they had felt conscious of being

observed. Some developers stated that they were aware of the webcam, others stated that they

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

completely forgot about it once they started working on the task. Some developers even replied that they

felt more observed by their partner than by our recording setup. This last statement suggests that pair

programming sessions are situations in which developers might feel observed even without being

recorded. This limitation potentially affects the generalisability of our results.

6.3 Detailed qualitative analysis based on a small amount of data

In this paper, we used a detailed and qualitative analysis approach rather than a quantitative perspective

on knowledge transfer in PP. This means that the very time-consuming steps (for example group

viewing) of the interaction analysis were conducted on only a small subset of the overall data. However,

all 21 sessions had been analysed previously to ensure that the excerpts present typical pair

programming episodes. Therefore, these findings, while not generalisable, do capture a good degree of

the variability faced within pair programming sessions.

7 Conclusions and Future Work

So, what does it take to be a good “expert” and to learn best as a “novice”?

We have shown that developers, without any explicit training, use strategies to transfer knowledge

between expert and novice developers that are examples of some of the teaching methods used in

cognitive apprenticeship − in particular using forms of Modeling, where the expert verbalizes their

thought process, and Coaching and Scaffolding where novice developers are supported while they take

an active part in the task. Not all of the teaching methods from cognitive apprenticeship were seen, and

two of them (Reflection and Exploration) may not be easily transferrable to the specific context of agile

software practice, where business value is typically prioritised over training needs, and the main focus is

on producing code ready for integration. However, novice Articulation, where a novice verbalizes their

own thought process, was not encouraged, yet this would enhance the novice’s learning experience. Not

only was novice Articulation not encouraged in any of the exemplars we analysed in detail, we can also

claim, due to step 1 in our procedure, that it did not feature in any of the sessions we recorded.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Although experts need to make an effort to transfer knowledge, they regard sessions in which novices

ask questions as rewarding since it helps them to reflect on their own practices and thus learn from the

experience. An increased awareness of working practices for knowledge transfer in PP will help

developers to maximise the benefits from such sessions, and provide learning opportunities even for the

expert.

This study focused on expert−novice constellations in order to highlight knowledge transfer activities,

but a certain amount of knowledge transfer takes place in all PP sessions. One future direction will be to

investigate which (if any) of these findings are evident in other PP sessions where knowledge transfer is

not the main purpose.

Acknowledgements

We would like to thank all the developers and companies who made this research possible by

participating in the studies. "

References

[1] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional, 1999.

[2] A. Begel and N. Nagappan. Pair programming: what’s in it for me? In ESEM ’08: Proceedings of

the Second ACM-IEEE international symposium on Empirical Software Engineering and

Measurement, pages 120–128. ACM, 2008.

[3] A. Belshee. Promiscuous pairing and beginner’s mind: embrace inexperience. In Proceedings of the

Agile Development Conference, ADC ’05, pages 125–131, 2005.

[4] D. M. Berry. The importance of ignorance in requirements engineering. In Journal of Systems and

Software, 28, pages 179–184. Elsevier, 1995.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[5] K. Børte, S. R. Ludvigsen, and A. I. Mørch. The role of social interaction in software effort

estimation: Unpacking the “magic step” between reasoning and decision-making. Information and

Software Technology, 54(9), 985–996, Sept. 2012.

[6] F. Brooks. The mythical man-month. Addison-Wesley Reading, Mass, 1975.

[7] L. Cao and P. Xu. Activity patterns of pair programming. In HICSS’05. Proceedings of the 38th

Annual Hawaii International Conference on System Sciences, pages 88a–88a. IEEE, 2005.

[8] M. Chi, M. Bassok, M. Lewis, P. Reimann, and R. Glaser. Self-explanations: How students study

and use examples in learning to solve problems. Cognitive science, 13(2),145–182, 1989.

[9] J. Chong and T. Hurlbutt. The social dynamics of pair programming. In Proceedings of the 29th

International Conference on Software Engineering, ICSE ’07, pages 354–363, 2007.

[10] A. Cockburn and L. Williams. The costs and benefits of pair programming. In Extreme

Programming Examined, pages 223–248, Addison-Wesley, 2001.

[11] A. Collins, J. Brown, and A. Holum. Cognitive apprenticeship: Making thinking visible. volume 15,

pages 6–11. American Federation of Teachers, 1991.

[12] A. Collins, J. S. Brown, and S. Newman. Cognitive apprenticeship: Teaching the craft of reading,

writing, and mathematics. Technical report no. 403, BBN Laboratories, Cambridge, MA. Centre for

the Study of Reading, University of Illinois, January 1987.

[13] V. Dennen. Cognitive apprenticeship in educational practice: Research on scaffolding, modeling,

mentoring, and coaching as instructional strategies. Handbook of research on educational

communications and technology, 2, 813–828, 2004.

[14] P. Dillenbourg. What do you mean by collaborative learning? In Collaborative Learning: Cognitive

and Computational Approaches, pages 1–19. Emerald Group Publishing Limited, 1999.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[15] Y. Dittrich and R. Giuffrida. Exploring the role of instant messaging in a global software

development project. In 6th IEEE International Conference on Global Software Engineering

(ICGSE), pages 103–112, 2011.

[16] B. Greene. Agile methods applied to embedded firmware development. In Proceedings of the Agile

Development Conference, pages 71–77, 2004.

[17] P. Hodgetts. Refactoring the development process: Experiences with the incremental adoption of

agile practices. In Proceedings of the Agile Development Conference, ADC ’04, pages 106–113,

Washington, DC, USA, IEEE Computer Society, 2004.

[18] R. Jensen. A pair programming experience. CrossTalk: A Journal of Defense Software Engineering,

16(3), 22–24, 2003.

[19] B. Jordan and A. Henderson. Interaction analysis: Foundations and practice. The Journal of the

Learning Sciences, 4(1), 39–103, 1995.

[20] S. Katriou and E. Tolias. From twin training to pair programming. In Proceedings of the 2nd India

software engineering conference, ISEC ’09, pages 101–104, New York, NY, USA, 2009. ACM.

[21] G. Luck. Subclassing xp: Breaking its rules the right way. In Proceedings of the Agile Development

Conference, ADC ’04, pages 114–119, 2004.

[22] D. Merrill, B. Reiser, S. Merrill, and S. Landes. Tutoring: Guided learning by doing. Cognition and

Instruction, 13(3):pp. 315–372, 1995.

[23] A. Pandey, C. Miklos, M. Paul, N. Kameli, F. Boudigou, V. Vijay, A. Eapen, I. Sutedjo, and W.

Mcdermott. Application of tightly coupled engineering team for development of test automation

software - a real world experience. In Proceedings of the 27th Annual International Conference on

Computer Software and Applications (COMPSAC ’03), page 56, Washington, DC, USA, IEEE

Computer Society, 2003.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[24] N. Phaphoom, A. Sillitti, and G. Succi. Pair programming and software defects – an industrial case

study. In Agile Processes in Software Engineering and Extreme Programming, volume 77 of

Lecture Notes in Business Information Processing, pages 208–222. Springer, 2011.

[25] M. Phongpaibul and B. Boehm. An empirical comparison between pair development and software

inspection in Thailand. In Proceedings of the 2006 ACM/IEEE international symposium on

Empirical software engineering, ISESE ’06, pages 85–94, New York, NY, USA, ACM, 2006.

[26] L. Plonka. Unpacking Collaboration in Pair Programming in Industrial Settings. PhD thesis, The

Open University, 2012.

[27] L. Plonka, J. Segal, H. Sharp, and J. Linden. Collaboration in pair programming: Driving and

switching. In A. Sillitti, O. Hazzan, E. Bache, and X. Albaladejo, editors, Agile Processes in

Software Engineering and Extreme Programming, volume 77 of Lecture Notes in Business

Information Processing, pages 43–59. Springer, 2011.

[28] L. Plonka, J. Segal, H. Sharp, and J. van der Linden. Investigating equity of participation in pair

programming. In Proceedings of the 2012 Agile India, AGILEINDIA ’12, pages 20–29,

Washington, DC, USA. IEEE Computer Society, 2012.

[29] L. Plonka, H. Sharp, and J. van der Linden. Disengagement in pair programming: Does it matter? In

34th International Conference on Software Engineering (ICSE), pages 496–506, 2012.

[30] J. Roschelle and W. Clancey. Learning as social and neural. Educational Psychologist, 27(4), 435–

453, 1992.

[31] S. Salinger, F. Zieris, and L. Prechelt. Liberating Pair Programming Research from the Oppressive

Driver/Observer Regime. In 35th International Conference on Software Engineering (ICSE), pages

1201–1204, 2013.

[32] D. Sanders. Student perceptions of the suitability of extreme and pair programming. In Extreme

Programming Perspectives, Chapter 23, Addison Wesley, 2002.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[33] C. Schindler. Agile software development methods and practices in Austrian IT-industry: Results of

an empirical study. In Proceedings of the 2008 International Conference on Computational

Intelligence for Modelling Control & Automation, CIMCA ’08, pages 321–326, Washington, DC,

USA. IEEE Computer Society, 2008.

[34] T. VanDeGrift. Coupling pair programming and writing: learning about students’ perceptions and

processes. In Proceedings of the 35th SIGCSE technical symposium on Computer science

education, volume 36 of SIGCSE’04, pages 2–6, New York, NY, USA. ACM, Mar. 2004.

[35] J. Vanhanen and H. Korpi. Experiences of using pair programming in an agile project. In HICSS

’07: Proceedings of the 40th Annual Hawaii International Conference on System Sciences, page

274b, Washington, DC, USA. IEEE Computer Society, 2007.

[36] J. Vanhanen and C. Lassenius. Effects of pair programming at the development team level: an

experiment. In Proceedings of the 2005 International Symposium on Empirical Software

Engineering, page 10, 2005.

[37] J. Vanhanen and C. Lassenius. Perceived effects of pair programming in an industrial context. In

Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Advanced

Applications, pages 211–218, 2007.

[38] J. Vanhanen, C. Lassenius, and M. Mantyla. Issues and tactics when adopting pair programming: A

longitudinal case study. In Proceedings of the International Conference on Software Engineering

Advances, ICSEA ’07, page 70. IEEE Computer Society, 2007.

[39] L. Vygotsky. Mind in Society: The development of higher psychology processes. Cambridge MA:

Harvard University press, 1978.

[40] L. Williams. But, isn’t that cheating? In Frontiers in Education Conference, 1999. FIE’99. 29th

Annual Conference, volume 2, pages 12B9–26. IEEE, 1999.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[41] L. Williams and R. Kessler. Pair programming illuminated. Addison-Wesley Longman Publishing

Co., Boston, MA, USA, 2002.

[42] L. Williams, A. Shukla, and A. Anton. An initial exploration of the relationship between pair

programming and Brooks’ law. Agile Development Conference, pages 11–20, 2004.

Table 1: Companies’ and developers’ background

Industry Company size Team size Programming

experience

PP experience

Geographic

information

systems

30-50 8 0.9-20 years 0-20 years

Traffic, logistic

and transport

<500 2 teams, 5

developers each

0.4-13 years 0-3 years

Email marketing 50-100 8 1.3-10 years 0-5 years

Estate CRM

Software

50-100 10 1.5-12 years 0-3.6 years

Table 2: Members of the interaction analysis group

Research experience Relevant languages Relevant experience

Experienced researcher English Empirical software engineering,

qualitative research, research on

agile methods

Experienced researcher German (intermediate),

English

Empirical research, qualitative

research, gesture analysis, advanced

programming

Experienced researcher German, English Empirical research on cooperative

and human aspects of software

engineering, interaction analysis

PhD student English Empirical research, qualitative

research

PhD student German, English Empirical research, qualitative

research, pair programming

Table

research

Example 1 Nudging

Line Speaker Talk

1 Novice: “Ok, so this is done now, so we can move on to the

next bit.”

2 Expert: “We could also test that first.”

3 Novice: “Yes, ok.”

Example 2 Indirect hint: Preparing the environment

The expert is driving and explains a problem to the novice. The expert opens different Java
classes and test files to illustrate his explanations. He finishes his explanations by pointing
something out in a Java class. Afterwards he says with a smile on his face: “OK, so now it is
time to switch driver.” While saying this, he switches from the Java class to a test class, looks
for a specific location in this test class and moves the cursor there before he hands the
keyboard to the novice.

Example 3 Pointing out a problem

Line Speaker Talk

The novice has just finished writing some code.

1 Expert: “I see at least three mistakes.”

2 Novice: “You see three mistakes?”

3 Expert: “I see three mistakes.”

4 Novice: “OK.”

5 Expert: “Twice statement.close and one

uninitialized member variable.”

6 Novice: “Yes.”

This is followed by the novice suggesting how to address the problems.

Example 4 Gradually adding information (1) and Giving clear instructions

Line Speaker Talk

1 Novice: “We would maybe need a constructor here, wouldn’t

we?”

2 Expert: “Right. That would be good.”

3 No communication, no typing [3sec].

4 Expert: “At the top.”

Novice is moving the cursor to the top of the class.

5 Expert: “ALT-N.”

Novice presses ALT-N.

Example 5 Gradually adding information (2)

Line Speaker Talk

1 Novice: “Ok, technically, we’d have to call a [...] job instead of calling a

PreSQLStatements.”

No communication/no driving [3sec].

2 Expert: “In our case, we’d call a [...] job instead now. Right.”

3 Novice: “Right. Ok, that means we somehow build us a class now that

then just gets the job and executes it.”

4 Expert: “Eventually, that would be the implementation. Yes.”

5 Novice: “Good.”

No communication/no driving [2sec]

6 Expert: “ We just have to tell the SQL FilterStatement somehow

[…] that it executes it at the right time.”

No communication/no driving [3sec]

7 Expert: “Instead of using PreSQLStatement; […] use PreSQL or

PreListener or PostListener or all in one. I don’t know.”

8 Novice: “Yes. Ok, but we would want to do that then by using the

Config-class.”

Novice puts his hands on the keyboard and starts typing.

9 Expert: “Right. That is our only chance to intervene there.”

Example 6 Giving direct instructions with explanations

1 Novice: “Yes, so then ... we can create a nice method now.”

Novice start to create a new method.

2 Expert: “You better do that above because this here is an

inner class.”

Novice deletes the already written code and creates the new method outside of the inner

class.

Example 7 Explanation

Line Speaker Talk

1 Expert: “So, and now we create some methods and call them test.

BasicFilter, isn’t it?”

2 Novice: “Was the style back then so different that, hm […], that err...

all tests were in one method?”

Expert keeps typing and replies while typing.

3 Expert: “Err.. no in terms of style not but err that happened quite

often back then just because err...

Expert keeps typing for 5 sec without any comments and then briefly verbalises what he is

typing

4 Expert: “PreparedStatement with S, erm

Expert stops verbalizing and keeps typing for the next 10 sec without saying anything

5 Expert: “Because one was lazy and just wrote it like this and the

strict policy did not exist either.”

4 Novice: “OK.”

6 Expert: “The number of parameters for the methods did not exist

like today either.

Expert keeps writing for the next 9 sec without saying anything

7 Expert: “Oh wow, they [methods] do all build upon each other.”

Expert keeps writing for the next 9 sec without saying anything

8 Expert: “ Ah that is stupid, that is no fun.”

Example 8 Explanation by showing

Line Speaker Talk

1 Expert: “So, now you can go over it and see whether it finds it.

Have a look whether the activities exist. So, you can [...]”

Novice leans a little bit back, takes her hand from the mouse, turns around, looks at the

expert and says:

2 Novice: “The activities?”

Expert leans forward, takes the mouse and shows the novice how to use the debugger to

check the values for the list entries. He removes his hand from the mouse, leans back again

and puts his hand under the table.

Example 9 Verbalisation

Line Speaker Talk

1 Expert: “Now, let’s have a look. I just open the tests. This is where I

had started already. I just wanted to show that to you and then

you may (drive) as well.”

Expert opens the test and then starts browsing through the code.

2 Novice: “And this (test) always has everything in it? It will get big.”

3 Expert: “Right, yes, that will get a bit bigger. I leave it all in here for

now and then we can think about whether we should create a

second test class.”

4 Novice: “And for this test, do all the other tests have to be run through

before? Or could we get a specific one?”

5 Expert: “So, I thought, we have this “before” here. Let’s go through it

again. It creates one CommissionCalculation. That is here

and it ... the DNS. This [experts navigates with mouse through

the code] is adding a hint, this is adding the “invoices”, and this

one is adding a First-WorkFlow among others. It sets the

status in created, added and sets this as current

Workflow.

6 Novice: “Yes, this is what it just did.”

7 Expert: “And we also made sure it synchronises this automatically. Add

the “recipients”, err [...] maybe that is not as important at the

moment.”

Example 10 Role switch

Line Speaker Talk

Line 1-10: Expert is driving. He keeps moving the cursor to the code fragments that he

explains. The novice has his hands under the table.

1 Expert: “And that of course, leads to the point that not all entries are

used, but [...]”

2 Novice: “Mhm, ok.”

3 Expert: “Or if you call execute twice at the same Prepared-

Statement [...]”.

4 Novice: “OK.”

5 Expert: “And that of course leads to the fact that even when the fields

are not used [...]”

6 Novice: “OK.”

7 Expert: “So and we do the same somehow when the method is close

and we [...]”

8 Novice: “Mhm.”

9 Expert: “That is the code that we have […]. What we want to do now -

aside from getting the big learning effect - err, is of course, eh,

to instead of just using SQL, to ehm, it would be easier [...]”

10 Novice: “Mhm.”

11 Expert: “OK? So then we can change driver now..”

Expert takes the hand from the mouse, leans back and grabs a drink. The novice puts his

hands on the table but not on the keyboard or mouse.

Example 11 Role switch (continued)

Line Speaker Talk

12 Novice: “Ok, technically, we’d have to call a [...] job instead of calling a

PreSQLStatement.”

No communication/no driving [3sec].

13 Expert: “In our case, we’d call a [...] job instead now. Right.”

14 Novice: “Right. Ok, that means we somehow build us a class now that

then just gets the job and executes it.”

15 Expert: “Eventually, that would be the implementation. Yes.”

16 Novice: “Good.”

No communication/no driving [2sec]

17 Expert: “We just have to tell the SQLFilterStatement somehow […]

that it executes it at the right time.”

No communication/no driving [3sec]

18 Expert: “By instead of doing PreSQLStatement […], PreSQL or

PreListener or PostListener or all in one. I don’t know.”

19 Novice: “Yes. Ok, but we would want to do that then by using the

Config-class.”

Novice puts his hands on the keyboard and starts typing.

20 Expert: “Right. That is our only chance to intervene there.”

Example 12 Novice driving

Line Speaker Talk

Developers just switched roles and the novice takes the keyboard and starts creating a for-

loop to check entries in a list.

1 Novice: “So, now here we have a “subject”. […] “From”. […] So, I just go

through [the list] now and when I find one [activity], what am I

doing with it then?”

2 Expert: “Technically, it should only find one, if we were good, then it

should have only one “activity” with that “subject”.

Novice deletes the for–loop.

3 Novice: “Then, then I say “assert”.”

4 Expert: “Right.”

5 Novice: “So we just check afterwards? ”

6 Expert: “Technically yes. Just, technically, it would be enough that there is

exactly one “activity”.”

7 Novice: “Ah, ok, in the test I can see, that, what is in there. I’m still with my

old Sys.Out.”

8 Expert: “No, we can debug that.”

Example 13 Verbalisation (continued)

Line Speaker Talk

1 Expert: “The first checkpoint should have gotten an email already. Just because

I saved it here in the status edit […] because it is now in status

created ”

2 Novice: “None.”

3 Expert: “ Created and None. ”

4 Novice: “Yes, Created and None. ”

5 Expert: “That means, if our logic is correct, what we just programmed, then we

could indeed already search for an “activity”, that has the subject

“from”, err, err from a work-flow that goes to the first checkpoint.”

6 Novice: “Ah, but I understood that at the interface, the creator, so that the

calculation will be delivered to the creator. Hence, the interface, the

“wizard” sets the “workflow” to “first prove”. And we are at “first

prove”. That means it must have passed it on.

7 Expert: “You’re right. I think this is how we did it here, didn’t we? I have to

have a look again.”

Expert navigates to another window.

8 Expert: “So, at the moment, here I can orientate myself better.”

9 Novice: “Yes, yes.”

10 Expert: “You’re right. For sure. That means that nothing has happened here

yet. You’re right, completely right.”

Figure 1: Left: Screenshot of a fully synchronized video showing Eclipse IDE and the

developers. Right: Recording setup in one of the companies.

Figure

International Journal of Human -
Computer Studies

AUTHOR AGREEMENT FORM

Manuscript Title: Knowledge Transfer in Pair Programming: An In-depth
Analysis

List of All Authors: Laura Plonka, Helen Sharp, Janet Van der Linden,
Yvonne Dittrich

Corresponding Author: Helen Sharp

This statement is to certify that that the author list is correct, all Authors have seen
and approved the manuscript being submitted and agree to its submission to the
International Journal of Human - Computer Studies. The Authors also confirm that
this research has not been published previously and that it is not under consideration
for publication elsewhere. On behalf of all Co-Authors, the Corresponding Author
shall bear full responsibility for the submission.

All authors agree that the author list is correct in its content and order and that no
modification to the author list can be made without the formal approval of the Editor-
in-Chief. All authors accept that the Editor-in-Chief's decisions over acceptance,
rejection or retraction (the latter in the event of any breach of the Principles of Ethical
Publishing in the International Journal of Human - Computer Studies being
discovered) are final.

*For Editor only: Author Agreement Form

Whilst knowledge transfer is one of the most widely-claimed benefits of pair
programming, little is known about how knowledge transfer is achieved in this setting.
This is particularly pertinent for novice-expert constellations, but knowledge transfer
takes place to some degree in all constellations. We ask “what does it take to be a good
“expert” and how can a “novice” best learn from a more experienced developer?”. An in-
depth investigation of video and audio excerpts of professional pair programming
sessions using Interaction Analysis reveals six teaching strategies ranging from giving
direct instructions to subtle hints, and challenges and benefits for both partners. These
strategies are instantiations of some but not all teaching methods promoted in cognitive
apprenticeship; novice articulation, reflection and exploration are not seen in the data.
The con- text of pair programming influences the strategies, challenges and benefits, in
particular the roles of driver and navigator and agile prioritisation which considers
business value rather than educational progression. Utilising these strategies more widely
and recognizing the challenges and benefits for both partners will help developers to
maximise the benefits from pairing sessions.

*Abstract

Knowledge Transfer in Pair Programming: An In-depth Analysis

 We analyse professional pair programming sessions to investigate knowledge transfer
 We identify 6 knowledge transfer strategies
 Both experts and novices learn, face challenges, and benefit from knowledge transfer
 Driver and navigator roles influence these strategies, challenges and benefits
 Agile prioritisation influences these strategies, challenges and benefits

*Highlights (for review)

