6 research outputs found

    Liberating language research from dogmas of the 20th century

    Get PDF
    A commentary on the article "Large-scale evidence of dependency length minimization in 37 languages" by Futrell, Mahowald & Gibson (PNAS 2015 112 (33) 10336-10341).Comment: Minor correction

    A commentary on "The now-or-never bottleneck: a fundamental constraint on language", by Christiansen and Chater (2016)

    Get PDF
    In a recent article, Christiansen and Chater (2016) present a fundamental constraint on language, i.e. a now-or-never bottleneck that arises from our fleeting memory, and explore its implications, e.g., chunk-and-pass processing, outlining a framework that promises to unify different areas of research. Here we explore additional support for this constraint and suggest further connections from quantitative linguistics and information theory

    The sum of edge lengths in random linear arrangements

    Get PDF
    Spatial networks are networks where nodes are located in a space equipped with a metric. Typically, the space is two-dimensional and until recently and traditionally, the metric that was usually considered was the Euclidean distance. In spatial networks, the cost of a link depends on the edge length, i.e. the distance between the nodes that define the edge. Hypothesizing that there is pressure to reduce the length of the edges of a network requires a null model, e.g., a random layout of the vertices of the network. Here we investigate the properties of the distribution of the sum of edge lengths in random linear arrangement of vertices, that has many applications in different fields. A random linear arrangement consists of an ordering of the elements of the nodes of a network being all possible orderings equally likely. The distance between two vertices is one plus the number of intermediate vertices in the ordering. Compact formulae for the 1st and 2nd moments about zero as well as the variance of the sum of edge lengths are obtained for arbitrary graphs and trees. We also analyze the evolution of that variance in Erdos-Renyi graphs and its scaling in uniformly random trees. Various developments and applications for future research are suggested

    Edge crossings in random linear arrangements

    Get PDF
    In spatial networks vertices are arranged in some space and edges may cross. When arranging vertices in a 1-dimensional lattice edges may cross when drawn above the vertex sequence as it happens in linguistic and biological networks. Here we investigate the general of problem of the distribution of edge crossings in random arrangements of the vertices. We generalize the existing formula for the expectation of this number in random linear arrangements of trees to any network and derive an expression for the variance of the number of crossings in an arbitrary layout relying on a novel characterization of the algebraic structure of that variance in an arbitrary space. We provide compact formulae for the expectation and the variance in complete graphs, complete bipartite graphs, cycle graphs, one-regular graphs and various kinds of trees (star trees, quasi-star trees and linear trees). In these networks, the scaling of expectation and variance as a function of network size is asymptotically power-law-like in random linear arrangements. Our work paves the way for further research and applications in 1-dimension or investigating the distribution of the number of crossings in lattices of higher dimension or other embeddings.Comment: Generalised our theory from one-dimensional layouts to practically any type of layout. This helps study the variance of the number of crossings in graphs when their vertices are arranged on the surface of a sphere, or on the plane. Moreover, we also give closed formulae for this variance on particular types of graphs in both linear arrangements and general layout

    The optimality of syntactic dependency distances

    Get PDF
    It is often stated that human languages, as other biological systems, are shaped by cost-cutting pressures but, to what extent? Attempts to quantify the degree of optimality of languages by means of an optimality score have been scarce and focused mostly on English. Here we recast the problem of the optimality of the word order of a sentence as an optimization problem on a spatial network where the vertices are words, arcs indicate syntactic dependencies and the space is defined by the linear order of the words in the sentence. We introduce a new score to quantify the cognitive pressure to reduce the distance between linked words in a sentence. The analysis of sentences from 93 languages representing 19 linguistic families reveals that half of languages are optimized to a 70% or more. The score indicates that distances are not significantly reduced in a few languages and confirms two theoretical predictions, i.e. that longer sentences are more optimized and that distances are more likely to be longer than expected by chance in short sentences. We present a new hierarchical ranking of languages by their degree of optimization. The statistical advantages of the new score call for a reevaluation of the evolution of dependency distance over time in languages as well as the relationship between dependency distance and linguistic competence. Finally, the principles behind the design of the score can be extended to develop more powerful normalizations of topological distances or physical distances in more dimensions

    Liberating language research from dogmas of the 20th century

    No full text
    A commentary on the article “Large-scale evidence of dependency length minimization in 37 languages” by Futrell, Mahowald & Gibson (PNAS 2015 112 (33) 10336-10341)
    corecore