3 research outputs found

    Automatic domain-specific learning: towards a methodology for ontology enrichment

    Get PDF
    [EN] At the current rate of technological development, in a world where enormous amount of data are constantly created and in which the Internet is used as the primary means for information exchange, there exists a need for tools that help processing, analyzing and using that information. However, while the growth of information poses many opportunities for social and scientific advance, it has also highlighted the difficulties of extracting meaningful patterns from massive data. Ontologies have been claimed to play a major role in the processing of large-scale data, as they serve as universal models of knowledge representation, and are being studied as possible solutions to this. This paper presents a method for the automatic expansion of ontologies based on corpus and terminological data exploitation. The proposed ¿ontology enrichment method¿ (OEM) consists of a sequence of tasks aimed at classifying an input keyword automatically under its corresponding node within a target ontology. Results prove that the method can be successfully applied for the automatic classification of specialized units into a reference ontology.Financial support for this research has been provided by the DGI, Spanish Ministry of Education and Science, grant FFI2011-29798-C0201.Ureña Gómez-Moreno, P.; Mestre-Mestre, EM. (2017). Automatic domain-specific learning: towards a methodology for ontology enrichment. LFE. Revista de Lenguas para Fines Específicos. 23(2):63-85. http://hdl.handle.net/10251/148357S638523

    Semi-Automated Development of Conceptual Models from Natural Language Text

    Get PDF
    The process of converting natural language specifications into conceptual models requires detailed analysis of natural language text, and designers frequently make mistakes when undertaking this transformation manually. Although many approaches have been used to help designers translate natural language text into conceptual models, each approach has its limitations. One of the main limitations is the lack of a domain-independent ontology that can be used as a repository for entities and relationships, thus guiding the transition from natural language processing into a conceptual model. Such an ontology is not currently available because it would be very difficult and time consuming to produce. In this thesis, a semi-automated system for mapping natural language text into conceptual models is proposed. The model, which is called SACMES, combines a linguistic approach with an ontological approach and human intervention to achieve the task. The model learns from the natural language specifications that it processes, and stores the information that is learnt in a conceptual model ontology and a user history knowledge database. It then uses the stored information to improve performance and reduce the need for human intervention. The evaluation conducted on SACMES demonstrates that (1) designers’ creation of conceptual models is improved when using the system comparing with not using any system, and that (2) the performance of the system is improved by processing more natural language requirements, and thus, the need for human intervention has decreased. However, these advantages may be improved further through development of the learning and retrieval techniques used by the system

    Lexical Acquisition with WordNet and the Mikrokosmos Ontology

    No full text
    This paper discusses an approach to augmenting a lexicon for knowledge-based machine translation (KBMT) with information derived from WordNet. The Mikrokosmos project at NMSU's Computing Research Laboratory has concentrated on the creation of the Spanish and Japanese lexicons, so the English lexicon is less developed. We investigated using WordNet as a means to autonmte p0rtions of the English lexicon development. Several heuristics axe used to find the WordNet synonym sets corresponding to the concepts in the Mikrokosmos language-independent ontology. Two of these heuristics exploit the WordNet /s-a hierarchy: one performs hierarchical matching of both taxonomies, and the other computes similarity based on frequency of defining words and their ancestors in a corpus. The result is a lexicon acquisition tool that produces plausible lexical mappings from English words into the Mikrokosmns ontology. Initial performance results axe included, which indicate good accuracy in the mappings
    corecore