19,292 research outputs found

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations

    Efficient algorithms for analyzing large scale network dynamics: Centrality, community and predictability

    Get PDF
    Large scale networks are an indispensable part of our daily life; be it biological network, smart grids, academic collaboration networks, social networks, vehicular networks, or the networks as part of various smart environments, they are fast becoming ubiquitous. The successful realization of applications and services over them depend on efficient solution to their computational challenges that are compounded with network dynamics. The core challenges underlying large scale networks, for example: determining central (influential) nodes (and edges), interactions and contacts among nodes, are the basis behind the success of applications and services. Though at first glance these challenges seem to be trivial, the network characteristics affect their effective and efficient evaluation strategy. We thus propose to leverage large scale network structural characteristics and temporal dynamics in addressing these core conceptual challenges in this dissertation. We propose a divide and conquer based computationally efficient algorithm that leverages the underlying network community structure for deterministic computation of betweenness centrality indices for all nodes. As an integral part of it, we also propose a computationally efficient agglomerative hierarchical community detection algorithm. Next, we propose a network structure evolution based novel probabilistic link prediction algorithm that predicts set of links occurring over subsequent time periods with higher accuracy. To best capture the evolution process and have higher prediction accuracy we propose multiple time scales with the Markov prediction model. Finally, we propose to capture the multi-periodicity of human mobility pattern with sinusoidal intensity function of a cascaded nonhomogeneous Poisson process, to predict the future contacts over mobile networks. We use real data set and benchmarked approaches to validate the better performance of our proposed approaches --Abstract, page iii

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation
    • …
    corecore