3 research outputs found

    Sytare: a Lightweight Kernel for NVRAM-Based Transiently-Powered Systems

    Get PDF
    International audienceIn a near future, energy harvesting is expected to replace batteries in ultra-low-power embedded systems. Research prototypes of such systems have recently been proposed. As the power harvested in the environment is very low, such systems need to cope with frequent power outages. They are referred to as transiently-powered systems (TPS). In order to execute non-trivial applications, TPS need to retain information between power losses. To achieve this goal, emerging non-volatile memory (NVM) technologies are a key enabler: they provide a lightweight solution to retain, between power outages, the state of an application and of its peripheral devices. These include sensors, serial interface or radio devices for instance. Existing works have described various checkpointing mechanisms to adapt embedded applications to TPS but the use of peripherals was not yet handled. in these works. This paper proposes a solution for embedded applications using any peripheral device to run despite transient power. We follow a kernel-oriented approach resulting in minimal impact on the programming model of the application. We implement the new concepts in our lightweight kernel called Sytare, running on an MSP430FR5739 micro-controller and we analyze the cost of the proposed solution

    Leveraging energy harvesting and wake-up receivers for long-term wireless sensor networks

    No full text
    Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.ISSN:1424-822

    Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks

    Get PDF
    International audienceWireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes
    corecore