9,850 research outputs found

    Entity Query Feature Expansion Using Knowledge Base Links

    Get PDF
    Recent advances in automatic entity linking and knowledge base construction have resulted in entity annotations for document and query collections. For example, annotations of entities from large general purpose knowledge bases, such as Freebase and the Google Knowledge Graph. Understanding how to leverage these entity annotations of text to improve ad hoc document retrieval is an open research area. Query expansion is a commonly used technique to improve retrieval effectiveness. Most previous query expansion approaches focus on text, mainly using unigram concepts. In this paper, we propose a new technique, called entity query feature expansion (EQFE) which enriches the query with features from entities and their links to knowledge bases, including structured attributes and text. We experiment using both explicit query entity annotations and latent entities. We evaluate our technique on TREC text collections automatically annotated with knowledge base entity links, including the Google Freebase Annotations (FACC1) data. We find that entity-based feature expansion results in significant improvements in retrieval effectiveness over state-of-the-art text expansion approaches

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Parameterized Neural Network Language Models for Information Retrieval

    Full text link
    Information Retrieval (IR) models need to deal with two difficult issues, vocabulary mismatch and term dependencies. Vocabulary mismatch corresponds to the difficulty of retrieving relevant documents that do not contain exact query terms but semantically related terms. Term dependencies refers to the need of considering the relationship between the words of the query when estimating the relevance of a document. A multitude of solutions has been proposed to solve each of these two problems, but no principled model solve both. In parallel, in the last few years, language models based on neural networks have been used to cope with complex natural language processing tasks like emotion and paraphrase detection. Although they present good abilities to cope with both term dependencies and vocabulary mismatch problems, thanks to the distributed representation of words they are based upon, such models could not be used readily in IR, where the estimation of one language model per document (or query) is required. This is both computationally unfeasible and prone to over-fitting. Based on a recent work that proposed to learn a generic language model that can be modified through a set of document-specific parameters, we explore use of new neural network models that are adapted to ad-hoc IR tasks. Within the language model IR framework, we propose and study the use of a generic language model as well as a document-specific language model. Both can be used as a smoothing component, but the latter is more adapted to the document at hand and has the potential of being used as a full document language model. We experiment with such models and analyze their results on TREC-1 to 8 datasets

    Toward a Deep Neural Approach for Knowledge-Based IR

    Get PDF
    International audienceThis paper tackles the problem of the semantic gap between a document and a query within an ad-hoc information retrieval task. In this context, knowledge bases (KBs) have already been acknowledged as valuable means since they allow the representation of explicit relations between entities. However, they do not necessarily represent implicit relations that could be hidden in a corpora. This latter issue is tackled by recent works dealing with deep representation learning of texts. With this in mind, we argue that embedding KBs within deep neural architectures supporting document-query matching would give rise to fine-grained latent representations of both words and their semantic relations. In this paper, we review the main approaches of neural-based document ranking as well as those approaches for latent representation of entities and relations via KBs. We then propose some avenues to incorporate KBs in deep neural approaches for document ranking. More particularly, this paper advocates that KBs can be used either to support enhanced latent representations of queries and documents based on both distributional and relational semantics or to serve as a semantic translator between their latent distributional representations

    A Topic Modeling Guided Approach for Semantic Knowledge Discovery in e-Commerce

    Get PDF
    The task of mining large unstructured text archives, extracting useful patterns and then organizing them into a knowledgebase has attained a great attention due to its vast array of immediate applications in business. Businesses thus demand new and efficient algorithms for leveraging potentially useful patterns from heterogeneous data sources that produce huge volumes of unstructured data. Due to the ability to bring out hidden themes from large text repositories, topic modeling algorithms attained significant attention in the recent past. This paper proposes an efficient and scalable method which is guided by topic modeling for extracting concepts and relationships from e-commerce product descriptions and organizing them into knowledgebase. Semantic graphs can be generated from such a knowledgebase on which meaning aware product discovery experience can be built for potential buyers. Extensive experiments using proposed unsupervised algorithms with e-commerce product descriptions collected from open web shows that our proposed method outperforms some of the existing methods of leveraging concepts and relationships so that efficient knowledgebase construction is possible
    • …
    corecore