10 research outputs found

    Numerical method for three-dimensional macroscale simulations of two-phase flows with moving contact lines

    Get PDF
    Un modèle d'angle de contact dynamique est développé avec une méthode level-set pour simuler des écoulements macroscopiques tridimensionnels avec lignes de contact mobiles. Le code est validé à partir de simulations numériques directes et résultats expérimentaux d'étalement de gouttelette en régimes visqueux et inertiel. Le code permet de simuler des écoulements tridimensionnels avec ligne de contact mobile en tenant compte de l'hystérésis de l'angle de contact

    A locally signed-distance preserving level set method (SDPLS) for moving interfaces

    Full text link
    It is well-known that the standard level set advection equation does not preserve the signed distance property, which is a desirable property for the level set function representing a moving interface. Therefore, reinitialization or redistancing methods are frequently applied to restore the signed distance property while keeping the zero-contour fixed. As an alternative approach to these methods, we introduce a novel level set advection equation that intrinsically preserves the norm of the gradient at the interface, i.e. the local signed distance property. Mathematically, this is achieved by introducing a source term that is proportional to the local rate of interfacial area generation. The introduction of the source term turns the problem into a non-linear one. However, we show that by discretizing the source term explicitly in time, it is sufficient to solve a linear equation in each time step. Notably, without adjustment, the method works naturally in the case of a moving contact line. This is a major advantage since redistancing is known to be an issue when contact lines are involved (see, e.g., Della Rocca and Blanquart, 2014). We provide a first implementation of the method in a simple first-order upwind scheme.Comment: 18 pages, 5 figure

    A Novel Methodology for Simulating Contact-Line Behavior in Capillary-Driven Flows

    Get PDF
    Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes. Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities. To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh. All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.</p

    Estudo numérico do transporte de bolhas/gotas em fluidos newtonianos através das metodologias VOF e S-CLSVOF utilizando o OpenFOAM.

    Get PDF
    Escoamentos bifásicos são encontrados comumente em muitas aplicações industriais tais como no transporte de óleo, em reatores químicos, em resfriamento de reatores nucleares, em processos de aeração e outros. O estudo numérico das bolhas ascendendo em meios viscosos e gotas escoando em microcanais com junções em T são alguns destes exemplos e ainda existem muitos desafios em seus estudos numéricos, especialmente os relacionados com a definição correta da forma da interface entre os dois fluidos. No caso das bolhas ascendendo em meios líquidos, sua forma final tem dependência direta com os números adimensionais Eötvös, Morton e Reynolds. Em gotas escoando em microcanais através de junções em T, o regime de ruptura é fortemente influenciado pelo número de Capilaridade e por fatores geométricos como a razão entre o comprimento inicial da gota (ₒ) a dimensão transversal do microcanal (). Várias técnicas numéricas de modelagem destes tipos de escoamentos bifásicos estão disponiveis na literatura e as mais comuns são os métodos de captura da interface tais como o método de Volume de Fluido (VOF) e método Level Set (LS). O objetivo do presente trabalho é estudar numericamente a dinâmica de uma bolha de gás ascendendo em um fluido estacionário e uma gota escoando em um microcanal com junção em T, por meio das metodologias VOF e o acoplamento VOF e LS (S-CLSVOF). As simulações foram realizadas com o software aberto OpenFOAM, no qual a metodologia VOF está implementada no módulo interFoam, e o acomplamento S-CLSVOF que foi implementado durante o desenvolvimento deste trabalho. Os resultados obtidos permitiram comparar as vantagens e desvantagens das duas metodologias. Uma das grandes dificuldades na simulação de gotas em microcanais é o fato de que, com baixos números de capilaridade, as correntes parasitárias tendem a deformar a interface. Nas simulações realizadas estes erros numéricos afetaram o regime de ruptura da gota através da junção em T. Para contornar este problema foi escolhido um número de Courant adequado para cada simulação, porém, com a implementação da metodologia S-CLSVOF conseguiu-se reduzir a formação destas correntes parasitárias. Os resultados das simulações tanto de bolhas ascendendo em meios líquidos quanto de gotas escoando em microcanais tiveram boa concordância com a literatura consultada

    Level set reinitialization at a contact line

    No full text
    When a level-set signed distance function is reinitialized in the vicinity of a contact line, there is a “blind spot” that prevents an accurate reconstruction of a signed distance function. The numerical method can create parasitic velocity currents near this region. If additional contact-line physics are included, the parasitic velocity currents would pollute the solution and alter the physical behavior. In this study, a modified reinitialization routine is proposed that combines the standard Hamilton–Jacobi equation with a relaxation equation for those grid cells along a wall in the blind spot. Two test cases, an angled fluid wedge (zero curvature) and a circular fluid arc (constant curvature), are used to evaluate the numerical error induced by different methods. The proposed method has less numerically-induced interface distortion than other techniques examined. Furthermore, this routine can be easily extended to three dimensions. Drops sliding on a wall are simulated in both two and three dimensions to demonstrate the advantages of this method. A spreading fluid interface further shows that this method allows contact lines to merge naturally

    Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes

    Full text link
    [EN] The main topic of the present thesis is the improvement of fabrication processes simulation by means of the Level Set (LS) method. The LS is a mathematical approach used for evolving fronts according to a motion defined by certain laws. The main advantage of this method is that the front is embedded inside a higher dimensional function such that updating this function instead of directly the front itself enables a trivial handling of complex situations like the splitting or coalescing of multiple fronts. In particular, this document is focused on wet and dry etching processes, which are widely used in the micromachining process of Micro-Electro-Mechanical Systems (MEMS). A MEMS is a system formed by mechanical elements, sensors, actuators, and electronics. These devices have gained a lot of popularity in last decades and are employed in several industry fields such as automotive security, motion sensors, and smartphones. Wet etching process consists in removing selectively substrate material (e.g. silicon or quartz) with a liquid solution in order to form a certain structure. This is a complex process since the result of a particular experiment depends on many factors, such as crystallographic structure of the material, etchant solution or its temperature. Similarly, dry etching processes are used for removing substrate material, however, gaseous substances are employed in the etching stage. In both cases, the usage of a simulator capable of predicting accurately the result of a certain experiment would imply a significant reduction of design time and costs. There exist a few LS-based wet etching simulators but they have many limitations and they have never been validated with real experiments. On the other hand, atomistic models are currently considered the most advanced simulators. Nevertheless, atomistic simulators present some drawbacks like the requirement of a prior calibration process in order to use the experimental data. Additionally, a lot of effort must be invested to create an atomistic model for simulating the etching process of substrate materials with different atomistic structures. Furthermore, the final result is always formed by unconnected atoms, which makes difficult a proper visualization and understanding of complex structures, thus, usually an additional visualization technique must be employed. For its part, dry etching simulators usually employ an explicit representation technique to evolve the surface being etched according to etching models. This strategy can produce unrealistic results, specially in complex situations like the interaction of multiple surfaces. Despite some models that use implicit representation have been published, they have never been directly compared with real experiments and computational performance of the implementations have not been properly analysed. The commented limitations are addressed in the various chapters of the present thesis, producing the following contributions: - An efficient LS implementation in order to improve the visual representation of atomistic wet etching simulators. This implementation produces continuous surfaces from atomistic results. - Definition of a new LS-based model which can directly use experimental data of many etchant solutions (such as KOH, TMAH, NH4HF2, and IPA and Triton additives) to simulate wet etching processes of various substrate materials (e.g. silicon and quartz). - Validation of the developed wet etching simulator by comparing it to experimental and atomistic simulator results. - Implementation of a LS-based tool which evolves the surface being etched according to dry etching models in order to enable the simulation of complex processes. This implementation is also validated experimentally. - Acceleration of the developed wet and dry etching simulators by using Graphics Processing Units (GPUs).[ES] El tema principal de la presente tesis consiste en mejorar la simulación de los procesos de fabricación utilizando el método Level Set (LS). El LS es una técnica matemática utilizada para la evolución de frentes según un movimiento definido por unas leyes. La principal ventaja de este método es que el frente está embebido dentro de una función definida en una dimensión superior. Actualizar dicha función en lugar del propio frente permite tratar de forma trivial situaciones complejas como la separación o la colisión de diversos frentes. En concreto, este documento se centra en los procesos de atacado húmedo y seco, los cuales son ampliamente utilizados en el proceso de fabricación de Sistemas Micro-Electro-Mecánicos (MEMS, de sus siglas en inglés). Un MEMS es un sistema formado por elementos mecánicos, sensores, actuadores y electrónica. Estos dispositivos hoy en día son utilizados en muchos campos de la industria como la seguridad automovilística, sensores de movimiento y teléfonos inteligentes. El proceso de atacado húmedo consiste en eliminar de forma selectiva el material del sustrato (por ejemplo, silicio o cuarzo) con una solución líquida con el fin de formar una estructura específica. Éste es un proceso complejo pues el resultado depende de muchos factores, tales como la estructura cristalográfica del material, la solución atacante o su temperatura. De forma similar, los procesos de atacado seco son utilizados para eliminar el material del sustrato, sin embargo, se utilizan sustancias gaseosas en la fase de atacado. En ambos casos, la utilización de un simulador capaz de predecir de forma precisa el resultado de un experimento concreto implicaría una reducción significativa del tiempo de diseño y de los costes. Existen unos pocos simuladores del proceso de atacado húmedo basados en el método LS, no obstante tienen muchas limitaciones y nunca han sido validados con experimentos reales. Por otro lado, los simuladores atomísticos son hoy en día considerados los simuladores más avanzados pero tienen algunos inconvenientes como la necesidad de un proceso de calibración previo para poder utilizar los datos experimentales. Además, debe invertirse mucho esfuerzo para crear un modelo atomístico para la simulación de materiales de sustrato con distintas estructuras atomísticas. Asimismo, el resultado final siempre está formado por átomos inconexos que dificultan una correcta visualización y un correcto entendimiento de aquellas estructuras complejas, por tanto, normalmente debe emplearse una técnica adicional para la visualización de dichos resultados. Por su parte, los simuladores del proceso de atacado seco normalmente utilizan técnicas de representación explícita para evolucionar, según los modelos de atacado, la superficie que está siendo atacada. Esta técnica puede producir resultados poco realistas, sobre todo en situaciones complejas como la interacción de múltiples superficies. A pesar de que unos pocos modelos son capaces de solventar estos problemas, nunca han sido comparados con experimentos reales ni el rendimiento computacional de las correspondientes implementaciones ha sido adecuadamente analizado. Las expuestas limitaciones son abordadas en la presente tesis y se han producido las siguientes contribuciones: - Implementación eficiente del método LS para mejorar la representación visual de los simuladores atomísticos del proceso de atacado húmedo. - Definición de un nuevo modelo basado en el LS que pueda usar directamente los datos experimentales de muchos atacantes para simular el proceso de atacado húmedo de diversos materiales de sustrato. - Validación del simulador comparándolo con resultados experimentales y con los de simuladores atomísticos. - Implementación de una herramienta basada en el método LS que evolucione la superficie que está siendo atacada según los modelos de atacado seco para habilitar la simulación de procesos comple[CA] El tema principal de la present tesi consisteix en millorar la simulació de processos de fabricació mitjançant el mètode Level Set (LS). El LS és una tècnica matemàtica utilitzada per a l'evolució de fronts segons un moviment definit per unes lleis en concret. El principal avantatge d'aquest mètode és que el front està embegut dins d'una funció definida en una dimensió superior. D'aquesta forma, actualitzar la dita funció en lloc del propi front, permet tractar de forma trivial situacions complexes com la separació o la col·lisió de diversos fronts. En concret, aquest document es centra en els processos d'atacat humit i sec, els quals són àmpliament utilitzats en el procés de fabricació de Sistemes Micro-Electro-Mecànics (MEMS, de les sigles en anglès). Un MEMS és un sistema format per elements mecànics, sensors, actuadors i electrònica. Aquests dispositius han guanyat molta popularitat en les últimes dècades i són utilitzats en molts camps de la indústria, com la seguretat automobilística, sensors de moviment i telèfons intel·ligents. El procés d'atacat humit consisteix en eliminar de forma selectiva el material del substrat (per exemple, silici o quars) amb una solució líquida, amb la finalitat de formar una estructura específica. Aquest és un procés complex ja que el resultat de un determinat experiment depèn de molts factors, com l'estructura cristal·logràfica del material, la solució atacant o la seva temperatura. De manera similar, els processos d'atacat sec son utilitzats per a eliminar el material del substrat, no obstant, s'utilitzen substàncies gasoses en la fase d'atacat. En ambdós casos, la utilització d'un simulador capaç de predir de forma precisa el resultat d'un experiment en concret implicaria una reducció significativa del temps de disseny i dels costos. Existeixen uns pocs simuladors del procés d'atacat humit basats en el mètode LS, no obstant tenen moltes limitacions i mai han sigut validats amb experiments reals. Per la seva part, els simuladors atomístics tenen alguns inconvenients com la necessitat d'un procés de calibratge previ per a poder utilitzar les dades experimentals. A més, deu invertir-se molt d'esforç per crear un model atomístic per a la simulació de materials de substrat amb diferents estructures atomístiques. Així mateix, el resultat final sempre està format per àtoms inconnexos que dificulten una correcta visualització i un correcte enteniment d'aquelles estructures complexes, per tant, normalment deu emprar-se una tècnica addicional per a la visualització d'aquests resultats. D'altra banda, els simuladors del procés d'atacat sec normalment utilitzen tècniques de representació explícita per evolucionar, segons els models d'atacat, la superfície que està sent atacada. Aquesta tècnica pot introduir resultats poc realistes, sobretot en situacions complexes com per exemple la interacció de múltiples superfícies. A pesar que uns pocs models son capaços de resoldre aquests problemes, mai han sigut comparats amb experiments reals ni tampoc el rendiment computacional de les corresponents implementacions ha sigut adequadament analitzat. Les exposades limitacions son abordades en els diferents capítols de la present tesi i s'han produït les següents contribucions: - Implementació eficient del mètode LS per millorar la representació visual dels simuladors atomístics del procés d'atacat humit. - Definició d'un nou model basat en el mètode LS que puga utilitzar directament les dades experimentals de molts atacants per a simular el procés d'atacat humit de diversos materials de substrat. - Validació del simulador d'atacat humit desenvolupat comparant-lo amb resultats experimentals i amb els de simuladors atomístics. - Implementació d'una ferramenta basada en el mètode LS que evolucione la superfície que està sent atacada segons els models d'atacat sec per, d'aquesta forma, habilitar la simulació de processoMontoliu Álvaro, C. (2015). Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58609TESI
    corecore