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Abstract

Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no

consensus on an accurate and general simulation methodology. Most prior numerical work has im-

posed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently

limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may

be history dependent and, thus, any single mathematical function is inappropriate. Given these lim-

itations, the present work has two primary goals: 1) create a numerical framework that allows the

contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and

numerical methods such that contact-line simulations may be performed on coarse computational

meshes.

Fluid flows affected by contact lines are dominated by capillary stresses and require accurate

curvature calculations. The level set method was chosen to track the fluid interfaces because it is

easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers

from an ill-posed mathematical problem at contact lines: a “blind spot” exists. Standard techniques

to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform

freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reini-

tialization is proposed to remove these spurious velocity currents and its concept is further explored

with level-set extension velocities.
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To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity

boundary condition and a fixed contact angle, are implemented in direct numerical simulations

(DNS). DNS are found to converge only if the slip length λ is well resolved by the computational

mesh. Unfortunately, since λ is often very small compared to fluid structures, these simulations

are not computationally feasible for large systems. To address the second goal, a new methodology

is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms,

an average curvature κ̄ and a viscous shear VS, are proposed to represent the missing microscale

physics on a coarse mesh.

All of these components are then combined into a single framework and tested for a water

droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of

the contact diameter in time between the experimental measurements and the numerical simulation.

Such comparison would not be possible with prior methods, since the Reynolds number Re and

capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio ε

is well outside of the range currently achievable by DNS. This framework is a promising first step

towards simulating complex physics in capillary-dominated flows at a reasonable computational

expense.
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Chapter 1

Introduction

... not even Herakles could sink a solid if the physical model were

entirely valid ...

— Huh and Scriven [67]

1.1 Motivation

Contact lines, the intersection of three immiscible material phases, are ubiquitous throughout na-

ture and industrial applications. A contact line in 2D is a point and in 3D is a contour. Usually,

in fluid mechanics, the contact-line phenomenon refers to the location where two fluids meet on a

solid wall at a contact angle θ (Fig. 1.1). In capillary-driven fluid flows (large surface tension σ,

small characteristic length scale), the contact-line behavior can control the flow. This thesis aims to

develop a numerical framework where flows affected by contact lines can be studied and optimized

efficiently. Interest in contact lines can be broken into three classes, namely understanding nature,

industrial applications, and fundamental science.

Understanding nature:

Many optimal surface structures already exist in nature; by studying these biological surfaces, im-

proved products can be designed. For example, lotus flowers and other plants (Fig. 1.2a) have super-

hydrophobic surfaces that shed water droplets using a combination of chemistry and microstructures

[8, 104]. Analogous self-cleaning surfaces can be used for clothing, wind shields, or microfabrication
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Solid Wall

θ

Fluid 1 Fluid 2 

Contact line

Figure 1.1: Contact line in 2D between fluid 1 and fluid 2. θ is the contact angle.

( a ) ( b )

Figure 1.2: a) Lotus leaf [17]. b) Namibian beetle [106]. Images reproduced with permission from
the Nature Publishing Group under licenses 3374961113213 and 3374931001319.

tools. Indeed, artificial surfaces have already been inspired by these leaves [17]. While lotus leaves

repel water, other organisms such as beetles in the Namib Desert (Fig. 1.2b) have surfaces that

collect water [55]. The beetle’s wings have alternating hydrophobic and hydrophilic patches where

water is gathered from the surrounding desert air [106]. This structure would be useful in fresh

water condensers.

Industrial applications:

There are three broad geometries for most industrial contact-line applications: a single flat wall,

surrounding flat walls, or porous media. For a single wall, the upper surface of the fluid is compara-

tively free. Applications of this type are inkjet printing [136], free-form manufacturing [101], airfoils

[95], and ship hydrodynamics [144]. When a surrounding surface is present, the fluid is constrained

on multiple sides by contact lines. Examples are pipe flows [7, 68, 84], microfluidic devices [139], and

“low-g coffee cups” [161]. Lastly, porous media applications are the ultimate goal. Understanding

flow in this geometry is important for optimizing reservoir oil and water recovery [74], water removal
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Figure 1.3: Diagram of the interfacial surface tensions for Young’s equation (Eq. 1.1). θS is the
equilibrium contact angle.

in polymer-electrolyte-membrane fuel cells [76, 150], and reaction control in microreactors [75]. With

energy demands expected to rise by a third in the next 25 years [5], it is critical to maximize energy

resource usage. While porous media are the ideal target, the first two cases should be developed

beforehand due to their relative simplicity. These simpler cases will be used in the present work.

Fundamental science:

Despite their omnipresence and importance, understanding of contact lines is limited. Young [167]

proposed the traditional formulation for the static contact angle θS at equilibrium which is now

referred to as Young’s equation (Fig. 1.3):

σs2 + σcos(θS) = σs1 (1.1)

The free energies per unit area σ, σs1, and σs2 are material properties and in thermodynamic

equilibrium. Young’s equation is only valid at equilibrium. Away from equilibrium, a new dynamic

contact angle θD forms. This angle θD is sometimes represented by the unbalanced Young’s force

FY oung,

FY oung = σ (cos(θS)− cos(θD)) (1.2)

For a steady state flow, the contact angle can also be determined by, among other quantities, the

amount of slip at the solid wall. While the standard no slip boundary condition has been widely

accepted in fluid mechanics [10], this boundary condition has a complication at contact lines. If the
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concept of no slip were indeed strictly valid, fluid 1 would never be able to replace fluid 2 along the

solid and vice versa (Fig. 1.1). Examining Stokes flow in a liquid wedge at the contact line, Huh and

Scriven [67] showed that the no slip boundary condition causes the shear stress to diverge as 1/r,

where r is the radial distance along the wall to the contact line. This non-integrable shear stress

yields an infinite shear force which inspired the quote at the beginning of this chapter. The interface

must be able to move with a contact line velocity UCL. Contact lines challenge the postulates of

fluid mechanics (namely the no slip condition) and must be handled differently both analytically

and numerically. The following section describes the existing models for this region.

1.2 Prior contact-angle models

While contact lines have been studied extensively over the last 40 years, there is no universal theory.

The physical definition of the dynamic contact angle is not even the same across different studies. The

notation adopted here follows that of Sui et al. [140]: the contact angle observed at the macroscale is

the apparent contact angle θapp (Fig. 1.4a) while the angle observed on the microscale is the dynamic

contact angle θD (Fig. 1.4b). These two angles are not equal in general. The existing models follow

either a microscale (molecular kinetic) or macroscale (hydrodynamic) approach. From these scalings,

molecular kinetic theory tends to approximate the dynamic contact angle θD while the hydrodynamic

approach approximates the apparent contact angle θapp. A brief overview for the molecular kinetic

and hydrodynamics theories is presented in Secs. 1.2.1 and 1.2.2, respectively. A much larger variety

of opinions exists in the literature describing potential models [14, 18, 29, 30, 114, 131, 135, 140, 162].
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Figure 1.4: a) Apparent contact angle θapp for a liquid droplet. b) Dynamic contact angle θD at the
microscale.

1.2.1 Molecular kinetic theory

Yarnold and Mason [164] first proposed that the relationship between contact line velocity UCL and

the dynamic contact angle might be controlled by the molecular statistical dynamics. The driving

force is the unbalanced Young’s force (Eq. 1.2) and the contact-line motion occurs due to thermally-

driven molecular response. The key parameters are the equilibrium frequency of random molecular

displacements κ0 and the average distance of displacement υ. Blake and Haynes [16] quantified the

molecular kinetic theory as

UCL = 2κ0υsinh

[
σ(cosθS − cosθD)υ2

2kBT

]
(1.3)

where kb is the Boltzmann constant and T the absolute fluid temperature. Neither of the key

parameters in this model can be easily measured and are typically fitted to experimental data.

1.2.2 Hydrodynamic theory

Unlike molecular kinetic theory which emphasizes the molecular energy dissipation, the hydrody-

namic theories focus on the fluid viscous dissipation in the corner at the contact line (Fig. 1.1).

There are two pieces to any hydrodynamics formulation: 1) a method to relieve the stress singularity

inherent to the no slip boundary condition and 2) a macroscopic contact angle behavior that returns

the contact angle θ to θS at equilibrium. Shikhmurzaev [130] gives an extensive overview of the

different pieces used in literature.
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A common choice to relieve the stress singularity is to use a Navier-slip boundary condition [98],

∂u

∂n
=
u

λ
(1.4)

where u is the velocity tangential to a solid wall, n is the direction normal to that wall, and λ is the

slip length. The slip velocity is proportional to the shear rate which decays away from the contact

line. This slip length λ is estimated to be on the order of nanometers [39, 92]; it is related to, but

not equal to υ in the molecular kinetic theory.

Matched asymptotic, analytic solutions have been derived in the hydrodynamic framework as

the ratio of the micro and macro length scales ε = Lm/LM → 0 and the capillary number Ca

= µUCL/σ → 0 where µ is the fluid dynamic viscosity. Cox [28] derived the apparent contact angle

for a liquid-liquid system as

g(θapp)− g(θm) = Ca · log(
1

ε
) (1.5)

where g is a known function. The microscale contact angle θm was set as the static contact angle θS

in his analysis. He assumed a no slip boundary condition far away and stated that the slip condition

at the contact line (whichever chosen) would only show up as an additional constant. Unfortunately,

this relation cannot be used for finite Reynolds number flows (Re = ρUCLLM/µ 6= 0 ), nor when

the capillary number Ca is large. Furthermore, it is unclear how the small or large length scales

in the ratio ε should be defined. When typical length scales have been used, the resulting slip

lengths can be unrealistically small [11, 92]. To fit more realistic slip lengths, other studies have

combined molecular kinetic ideas and hydrodynamic models through the microscopic contact angle

θm [20, 107, 128]. This approach, however, risks over-parameterizing the problem since there are

now at least three parameters to fit experimental data.
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1.2.3 Non-unique contact angles

In both the molecular kinetic theory and hydrodynamic models, the contact angle is assumed to be

a unique function of material properties and standard parameters: however, there is experimental

evidence that implies the contact angle may be multivalued for finite Reynolds number. Blake et al.

[15] performed a series of curtain-coating experiments and found that the flow rate of the curtain

fluid affected the contact angle. This result implies that the hydrodynamics far away from the

contact line are important. For example, in curtain coating, the finite film thickness and its free

fluid surface can affect the contact angle. A subsequent study by Clark and Stattersfield [27] found

similar results where a recirculation region could form. In addition, a series of experiments and

simulations by Ding and Spelt [36], Ding et al. [35], and Sui and Spelt [142] for rapidly spreading

drops showed that the apparent contact angle is non-unique when inertial effects are important.

Since a single equation cannot easily capture this multivalued function, a simulation framework is

sought where the contact angle evolves naturally from all physical effects involved.

1.3 Numerical methods for multiphase flow and contact lines

From the existing model descriptions of the dynamic or apparent contact angles (Sec. 1.2), it is clear

that the contact line phenomenon is a multiscale problem in most applications: the scale λ (∼ nm)

is much smaller than the fluid structure dimension (> mm). Existing numerical techniques to han-

dle these multiphase flows are discussed briefly below. They can be defined by the chosen length

scale: atomistic (Sec. 1.3.1) or continuum (Sec. 1.3.2) approaches. The particular continuum,

front-capturing approach used throughout this work is the level set method; it is discussed more

extensively. Only the most common methods are mentioned here to contrast with the level set

method; more complete numerical method reviews are available in Refs. [52, 99, 140, 162].
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1.3.1 Atomistic methods

Atomistic approaches seek to model the interaction of molecular particles and subsequently cap-

ture the macroscale fluid behavior [72]. Molecular dynamics (MD) is the most well-known of these

techniques. In MD, discrete atoms affect each other through interaction potentials such as the

Lennard-Jones potential [85]. All results are subject to the validity of the chosen potential. The

macroscale fluid properties such as the flow velocity are calculated from suitable particle averages.

Examples of molecular dynamics studies for contact lines are Koplik et al. [79], Thompson and

Robbins [151], Qian et al. [112], and Ren and E [115]. The advantages of MD are that it is a very

fundamental approach and may capture physics more accurately (particularly on the nanoscale)

than continuum methods. Furthermore, it does not require the solution of multidimensional, par-

tial differential equations. The major disadvantage is MD’s computational expense: computational

effort increases linearly with the number of particles and simulation run-time. Historically, MD sim-

ulations have been limited to only small collections of molecules [72]. One of the largest simulations

to date [51] has 7 orders of magnitude fewer particles than are necessary to simulate a cubic mil-

limeter of water. While some hybrid atomistic-continuum simulation methods have been proposed

[50, 53, 54], other authors argue that these two approaches are inherently incompatible and should

not be coupled in this way [132]. While MD simulations are useful for probing scientific questions,

their applicability to realistic problems is limited.

1.3.2 Continuum methods

While the atomistic methods target the length scale of molecular processes λ, continuum methods

are more appropriate for focusing on the length scale of fluid structures. Front-tracking and front-

capturing methods are described in Sec. 1.3.2.1 and 1.3.2.2, respectively.
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Figure 1.5: Diagrams for the different reinitialization schemes. (•) are the marker particles in a
front-tracking method. Note: the values in (b) and (c) are for illustration only.

1.3.2.1 Front-tracking methods

These methods explicitly track the location of the fluid interface, usually using marker particles.

A circular interface with marker particles (dots) is shown in Fig. 1.5a. These marker particles are

transported with the local fluid velocity in a Lagrangian fashion and the new interface is identified

by these points. One of the earliest front-tracking methods is the marker-and-cell (MAC) approach

of Harlow and Welch [57] for free surface flows. In the MAC method, each liquid grid cell was seeded

with marker particles. Any cell containing a marker particle after transport was identified as fluid.

There is no connectivity between the particles in this formula and they are spread throughout the

fluid volume. Unverdi and Tryggvason [154] proposed a front-tracking method using particles only

on the interface with known connectivity. The advantages of this method are that it is easy to

visualize and the exact location of the interface is known. However, while it is conceptually simple,

its implementation is not. Special numerical rules are needed to remove / add marker particles as

neighboring particles get too close / far apart. Front-tracking methods have particular difficulties

handling merging surfaces; thin fluid filaments will persist unless a devoted routine removes them.

1.3.2.2 Front-capturing methods

Unlike front-tracking methods, front-capturing methods do not explicitly track the fluid interface;

rather, each grid node is assigned a scalar value related to the interface. The exact interface location

is unknown; however, an appropriate location can be reconstructed from the scalar values. One of
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the major benefits of these methods over front-tracking methods is that they naturally handle merg-

ing interfaces and topological changes. This benefit comes at the loss of fine scale features on coarse

meshes, features that front-tracking methods preserve. Capturing merging interfaces and fine fluid

threads are nearly mutually exclusive conditions. Furthermore, whereas front-tracking methods may

require special data constructs to store the interface information and connectivity, the scalar values

of front-capturing methods are stored like any other scalar variable. These methods, therefore, are

easily extended to 3D. Three types of front-capturing methods are volume of fluid, phase field, and

level set methods.

Volume of fluid method:

The volume of fluid method (VOF) was first introduced by Hirt and Nichols [62]. VOF methods

have been previously used by Renardy et al. [116], Afkhami et al. [3, 4], and Dupont and Legendre

[37] to simulate contact line movement. In a VOF method, each grid cell is assigned a color function

C (or volume fraction) that represents the amount of fluid 1 present in the cell. If the cell is entirely

fluid 1, C = 1; if it is entirely fluid 2, C = 0. An example of volume fractions for a circular interface

is shown in Fig. 1.5b. The color function C is transported using the advection equation,

∂C

∂t
+ ~u · ∇C = 0 (1.6)

where ~u is the local fluid velocity. The primary benefit of VOF methods for incompressible flows is

that mass is exactly conserved if Eq. 1.6 is reformulated in its conservative form. The major dis-

advantage is the difficulty in reconstructing the fluid interface; the interface location is not obvious

[121]. This disadvantage raises concerns when calculating interface normals and curvature. If the

interface is sharp (an abrupt transition between C = 0 and 1), these quantities are poorly calculated.

VOF methods, therefore, typically smear the fluid interface over several grid cells to facilitate easier

calculations; all VOF methods have some level of numerical smearing [122]. This diffuse interface

has other spurious effects for large fluid density and viscosity ratios, although the effects disappear
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with shrinking grid dimensions. Since curvature must be accurate in surface-tension-dominated fluid

flows, the VOF method is not appropriate for the present work.

Phase field method:

Like VOF methods, phase-field methods use a color function C to distinguish between fluids. A

chemical transport equation, the Cahn-Hilliard equation

∂C

∂t
+ (~u · ∇)C = ∇ · (M∇µC) , (1.7)

is used instead of Eq. 1.6 for VOF methods [162]. The interface is spread over several cells to indicate

the transition layer between the two fluids. M(C) is a diffusion parameter called the mobility. This

chemical diffusion is one of the strengths of this approach; the contact line can diffuse along the

surface and the contact-line stress singularity is relieved even for a no slip boundary condition. The

rate of change of free energy is µC . This parameter contains the two drawbacks of the phase field

method. µC is expressed as

µC =
∂ψ

∂C
− ε2C∇2C (1.8)

where εC is a width indicative of the fluid-fluid interface thickness and ψ is the bulk energy density.

For realistic cases, εC may be very small, requiring high resolution simulations. Furthermore, when

Eq. 1.8 is used in Eq. 1.7, the Cahn-Hilliard equation contains fourth-order derivatives of the color

function C. These high-order derivatives require special treatment. Examples of studies using the

phase field method for multiphase flows are Jacqmin [69, 70], Lowengrub and Truskinovsky [88], Yue

et al. [169], and Carlson et al. [22].

Level set method:

In the level set method of Osher and Sethian [103], the fluid interface is embedded as the zero value

of a scalar variable φ [102]. The choice of φ is arbitrary, but it is subject to two constraints: it must

be smooth and continuous. These constraints allow accurate interpolation of the zero level set and
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computation of isocontour normal vectors n̂ and curvatures κ,

n̂ = ∇φ
|∇φ| , κ = −∇ · n̂ . (1.9)

The level set method is used in the present work for this reason; accurate curvature is important in

capillary-dominated fluid flows. Two common choices of φ are a signed distance function (interface

φ = 0) [97, 26] and a conservative hyperbolic tangent distance function [100, 170, 34] (interface φ

= 0.5). Only the signed distance function, the more common choice in literature, is considered in

this work. A signed distance function for a circular interface is shown in Fig. 1.5c. If φ > 0, the

cell center is in fluid 1; if φ < 0, it is in fluid 2. The mathematical condition for a signed distance

function is a unity gradient magnitude, |∇φ| = 1.

The level set function φ is typically evolved in two steps: an advection step and a reinitialization

step. First, to transport the interface, the level-set variable φ is advected with the local fluid velocity

~u to determine the new interface location using an advection equation

∂φ

∂t
+ ~u · ∇φ = 0 . (1.10)

Unfortunately, after transport, φ is in general no longer a distance function. While the simulation

can proceed using a non-distance function φ, the constraints (namely, a smooth and continuous φ

field) may no longer be satisfied after multiple iterations. If the gradients of φ become large or

small, the benefit of accurate curvature is lost. This distortion of level set isocontours caused by

fluid motion necessitates the second step, reinitialization [24, 145, 171].

The reinitialization step was first introduced by Chopp [26] to correct the “tent pole” phe-

nomenon where level set isocontours became bunched. The fundamental idea of reinitialization is to

return the level set φ to a signed distance function (|∇φ| = 1), while preserving the location of the

interface φ = 0. The simplest approach is to track marker particles on the surface, similar to the
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front-tracking method (Fig. 1.5a). A grid node’s distance d to each marker is calculated and the

smallest value d is set as the new level set magnitude. This direct method is very computationally

expensive. In addition, its extension to 3D is non-trivial and requires constructing fluid interface

panels [144].

The second approach is Fast Marching Method (FMM) [1, 124, 125]. The FMM solves the

Eikonal equation,

|∇φ|2 = 1 (1.11)

for the distance function and marches values out from the interface. This method is quite efficient

computationally. However, this method is usually only first order accurate. Therefore, the curvature

would be less accurate since it requires second-order derivatives of φ (Eq. 1.9). While second-order

FMM methods do exist [124], they are more challenging to implement. Other authors have been

unable to extend the FMM to even higher order accuracy; there are finite-difference stencil and

stability issues [99].

The third reinitialization technique iterates a partial differential equation in pseudo-time τ until

steady state. A standard equation is the Hamilton-Jacobi equation given by [145]

∂φ

∂τ
+ sign (φ0) (|∇φ| − 1) = 0 . (1.12)

φ0 is the value of φ prior to reinitialization. This equation is hyperbolic and its characteristics are

normal to the interface φ = 0 (Fig. 3.1). At steady state, |∇φ| = 1, the condition for a signed

distance function. This approach is used here because it is more efficient than the direct approach

and can use high-order discretizations easily, unlike the FMM.

The main disadvantage of the level set method is poor mass conservation, particularly after

reinitialization. Many approaches have been proposed to alleviate this loss. The simplest method
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is to readjust the value of the level set φ after reinitialization such that the fluid volume before and

after reinitialization are equal [137]. This approach may artificially move the fluid interface. Another

strategy modifies Eq. 1.12. Russo and Smereka [117] proposed a different discretization with better

mass conservation. Hartmann et al. [58, 59] added additional source terms to pin the location of the

zero level set. In addition, there are several hybrid techniques that couple two techniques: level set

and front-tracking [99, 133], level set and VOF [94, 146], and level set and particle methods [40, 61].

1.4 Thesis outline

The first goal of this work is to create a numerical framework that allows the contact angle

to evolve naturally with appropriate contact-line physics. Unlike prior work, no dynamic

or apparent contact-angle law is strictly applied. Such an approach is particularly useful for cases

where the Reynolds number Re and capillary numbers Ca are large since there are no complete

theories in these regimes at this time. Furthermore, the multivalued contact angle mentioned in Sec.

1.2.3 is not problematic since a contact-angle law is not prescribed. The framework will be derived

with certain physical assumptions, but other physical mechanisms can be incorporated if necessary.

The second goal of this work is to develop equations and numerical methods such that

contact-line simulations may be run on coarse computational meshes. Surface tension is

usually treated explicitly due to the non-linearity of curvature with the level set variable φ (Eq.

1.9). The explicit stability condition for surface tension (Eq. 2.20) is particularly severe because

highly refined grids are necessary for multiscale contact line problems. Therefore, it is useful to not

resolve the smallest length scales such as the slip length λ. Normally, relevant contact-line physics

are missed if this length scale is not resolved. By capturing the relevant contact-line physics on

coarse meshes, simulations are feasible on moderate capability computer clusters.
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The first goal is accomplished in Chap. 3–5. This goal focuses on reducing numerical errors of

existing methods for floating (non-prescribed) contact angles and creating physical source terms.

The second goal of computationally efficient simulations is attained in Chap. 5 and 6. Contact-line

physics are not included in Chap. 3 and 4; the numerical methods alone are examined. The contact-

line physics are reintroduced in Chap. 5.

Chapter 2 describes the governing equations for multiphase flow and credits the existing numerical

methods that are employed throughout. This chapter may be skipped without loss of continuity.

Before the level set method is used at a contact line, the numerical methods for a freely floating

contact angle must be checked to ensure that they do not introduce spurious effects. Chapter 3

resolves a subtle point about level set reinitialization. This has to do with the “blind spot” created

near the contact line; this region has no characteristics from the Hamilton-Jacobi equation (Eq.

1.12). A relaxation equation is then proposed that minimizes the errors caused by this ill-posed

problem.

Chapter 4 expands the concepts of Chap. 3 to level-set extension velocities and offers a solution to

ensure correct contact angles in the relaxation equation. The reinitialization technique is completed

by supplementing it with an angle propagation algorithm. This combined algorithm is referred to

as the relaxation equation reinitialization.

The physics at a contact line are included in Chap. 5. Classical boundary conditions are used to

derive the volumetric source terms that need to be considered when the mesh grid is much larger

than the slip length λ. These terms, the average curvature and viscous shear force, are then approx-

imated from DNS of contact lines.
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In Chap. 6, all of the previously derived source terms and numerical methods are combined into

a complete framework. Drop impacts are difficult to capture using existing contact angle relations

because of the large fluid velocities (Re> 1, Ca> 1). A drop impact experiment and its simulated

counterpart are compared. The slip length λ is adjusted to the experimental data and the value

obtained is surprisingly realistic. Good agreement is shown: the methods created here are quite

promising.

Chapter 7 presents a brief summary of this work and suggestions for future extension are discussed.

1.5 Contributions

This work makes the following contributions:

• A new relaxation equation is added to the level-set reinitialization which holds curvature

constant in the blind spot. This technique introduces minimal numerical errors and is easily

extended to 3D. (Chap. 3)

• The concept of fixed curvature is included in a new technique to create consistent level-set

extension velocities along the solid boundary. (Chap. 4)

• The level-set relaxation equation is completed by including angle propagation. This surface

propagation has not been previously seen in the literature. (Chap. 4)

• The former contributions create a framework where the contact angle can be left floating; it

is determined by the physics. This approach is important for finite Reynolds number effects.

(Chap. 3–4)

• A weak boundary condition forcing term is used to apply a constant angle in the direct nu-

merical simulations. Prior approaches reinitialized at every time step to force a contact angle.

The weak condition with the relaxation equation allows the reinitialization frequency to be

reduced, greatly reducing the simulation computational cost. (Chap. 5)
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• Two modeled terms, the average curvature and the viscous shear force, are determined as

necessary for simulations where the mesh size is much larger than the slip length λ. These

terms are analyzed for a Navier-slip boundary condition and fixed angle. The shear force has

never been fully analyzed as a function of slip length and contact angle before with these

boundary conditions. (Chap. 5)

• All the pieces are combined for a realistic experimental comparison. Only one parameter, the

slip length, is determined empirically using the experimental data. The slip length predicted is

outside of the current range of existing DNS and is surprisingly realistic. This is the first step

towards simulations that are under-resolved and efficient, yet, still capture the contact-line

physics. (Chap. 6)
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Chapter 2

Numerical methods

Study the past, if you would divine the future.

— Confucius

2.1 Introduction

The purpose of this chapter is not to introduce any new techniques, but to credit the existing numer-

ical methods used throughout this work. When appropriate, alternative methods and justification

for the choices used here are discussed. Section 2.2 describes the equations governing fluid motion.

The underlying numerical framework is the research code Next Generation ARTS (NGA) [33]. The

fluid mechanics equations are solved at full time steps N∆t and changes in the level set φ occur

at half time steps (2N + 1)∆t/2 where N is a positive integer. Sections 2.3 and 2.4 describe the

methods used in these steps, respectively.

2.2 Governing equations

The two fluids are assumed to be immiscible, incompressible, and Newtonian. The equations of

motion are the incompressible Navier-Stokes and continuity equations,

∂ρ~u

∂t
+∇ · (ρ~u⊗ ~u) = ∇ · (−pI + D) + ρ~g, (2.1)
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∇ · ~u = 0, (2.2)

where t is the simulation time, ~u the velocity vector, p the fluid pressure, ~g the gravity vector, ρ the

density, I the identity matrix, and D the deviatoric stress tensor [10]. For a Newtonian fluid, the

deviatoric stress tensor D is

D = µ

(
∇~u+∇~uT − 1

3
(∇ · ~u) I

)
= µ

(
∇~u+∇~uT

)
(2.3)

where µ is the dynamic viscosity. The velocity boundary conditions at a solid surface with normal

~n are the no penetration,

~u · ~n = 0 , (2.4)

and the Navier-slip boundary condition (Eq. 1.4).

At the fluid-fluid interface, in the absence of phase changes, the fluid velocity field is continuous,

[~u] = 0 , (2.5)

where the square brackets represent a jump between fluid 1 and 2. There is no slip between the

two fluids. The fluid-fluid interface moves with the fluid velocity ~u by advection. Let t̂1, t̂2, and n̂

be the two tangential vectors and normal vector to the interface, respectively. Surface tension σ is

assumed constant such that there are no Marangoni effects. The tangential stress at the interface is

continuous, [
t̂1 · (−pI + D) · n̂

]
=
[
t̂2 · (−pI + D) · n̂

]
= 0 , (2.6)

and the normal stress jump is given by the Laplace condition [82]

[p] = σκ+ 2 [µ] n̂ · ∇~v · n̂ (2.7)

where κ is the interface curvature.
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2.3 Fluid mechanics numerical methods

The numerical methods used in this work for the fluid mechanics can be broken into two categories.

The first (Sec. 2.3.1) consists of methods that apply to general solutions of the Navier-Stokes equa-

tions, for both single and multiphase flow. The second (Sec. 2.3.2) consists of methods that are

specific to multiphase flows. Section 2.3.3 discusses the numerical stability conditions associated

with these methods.

2.3.1 Implementation of the Navier-Stokes equations

In the NGA framework [33], the scalar information (φ, ρ, µ, p) and the velocity variables (u,v,w)

are staggered in space and time. The spatial staggering of variables is done in accordance with the

MAC grid [57]. This framework employs second-order accurate finite-difference discretizations for

Eqs. 2.1 and 2.2. The advection terms are always solved explicitly while the viscous terms can be

solved either explicitly or implicitly using the approximate factorization techniques similar to one

used by Choi and Moin [25]. The temporal integration is done using the second-order, semi-implicit

Crank-Nicolson scheme of Pierce and Moin [108]. In order to apply the incompressibility condition

(Eq. 2.2), a pressure projection method [45] is used and the velocity ~u is evaluated iteratively. The

HYPRE implementation of the Boomer algebraic multigrid (AMG) [60] is used to solve Poisson’s

equation for pressure in Cartesian coordinates and the streaming multigrid (SMG) implementation

in cylindrical coordinates. These solvers converge very rapidly and solve the linear algebra system

very efficiently; however, they did not always converge in some simulations. When the multigrid

solvers did not converge, a bi-conjugate gradient stabilized iterative solver (BiCGStab) [157] was

used instead. While BiCGStab in practice may be more stable than multigrid methods, it often

converges far more slowly [138].
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2.3.2 Multiphase flow treatment

For multiphase fluid mechanics, additional numerical components are required: momentum source

terms for the normal stress imbalance due to surface tension (Eq. 2.7) and mixture rules for density

ρ and dynamic viscosity µ. There are two general classes: diffuse and sharp interface methods. For

diffuse methods, the source terms and fluid property transitions are applied over several grid cells.

The continuum surface force (CSF) model of Brackbill et al. [19] is often used to apply surface

tension. In this model, the additional term

F = σκδ (φ) (2.8)

is added to the right side of Eq. 2.1 where δ is a smeared representation of the Dirac delta function.

Similarly for the fluid properties,

ρ (φ) = ρ2 + (ρ2 − ρ1)H (φ) (2.9)

µ (φ) = µ2 + (µ2 − µ1)H (φ) (2.10)

where H is a smeared Heaviside function. Examples of smeared Heaviside and Dirac delta functions

are

H (φ) =


0, φ < −ε

1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
, −ε ≤ φ ≤ ε

1, ε < φ

(2.11)

δ (φ) =


0, φ < −ε

1
2ε + 1

2εcos
(
πφ
ε

)
, −ε ≤ φ ≤ ε

0, ε < φ

(2.12)

where ε is a multiple of the grid spacing, N∆x, N > 1 [145]. While the interface is sharp, these

mixture rules for fluid properties are representative fluid properties at cell faces when the interface
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divides a grid cell. Diffusive methods, however, are known to generate unphysical fluid velocities,

“parasitic currents” [81]. These velocity currents are also known as spurious currents. Popinet and

Zaleski [110] investigated the source of these currents for a 2D stationary fluid droplet of diameter D.

They hypothesized that parasitic currents result from inconsistent modelling of the surface tension

terms and the associated pressure jump. For cases where the Laplace number La = σρD/µ2 was

large, they noted “spurious currents develop a kind of turbulence, shaking the droplet in a kind of

Zitterbewegung”. In the cases studied here where the surface tension is dominant, such interface

deformations will make the solution inaccurate. Popinet and Zaleski concluded that sharp interface

methods that capture the discontinuity may relieve these parasitic currents. One sharp interface

method, the ghost fluid method (GFM), creates ghost values of each fluid in the other. The method

was first developed for the inviscid Euler equations [43], but has been extended to incompressible

fluid flows [73]. Kang et al. [73] further showed the benefits of the sharp interface methods over their

diffuse counterparts. For both a 2D bubble and drop, the GFM had better area conservation as well

as a reduction of parasitic velocity currents by a factor of 1,000. In addition, for instabilities, the

CSF model was found to have a larger amount of numerical damping than the GFM. A further study

by Francois et al. [48] compared continuous and sharp interface methods (not GFM) for stationary

droplets with different fluid density ratios. Only the sharp interface method had machine-precision

spurious currents and pressure errors when the curvature of the droplet was exactly specified. This

work also studied rising bubbles with small Bond number, Bo = ρgD2/σ. The sharp-interface bub-

ble showed more deformation at the trailing bubble edges than the bubble with continuous pressure.

This difference suggests the importance of accurately capturing the pressure jump in multiphase

flow with large surface tension. While these results imply that the sharp interface methods are su-

perior for surface tension dominated flows, Francois et al. did note that the sharp interface methods

were more sensitive to curvature errors than their continuous formulation. Despite this potential

sensitivity, the GFM from Kang et al. [73] is used in this work since the flows studied are dominated

by surface tension.
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There are some differences between the mixture rules used in this work and in Kang et al. [73].

Density is a linear combination of ρ1 and ρ2,

ρ = ρ1ψ + ρ2(1− ψ) , (2.13)

and viscosity is a harmonic combination of µ1 and µ2,

µ =
µ1µ2

µ1(1− ψ) + µ2ψ
(2.14)

ψ is a height fraction : it is comparable to the amount of fluid 1 present in a VOF framework. For

a staggered grid, the height fraction ψ at cell faces is,

ψi+1/2,j =


1 φi+1,j ≥ 0 and φi,j ≥ 0

0 φi+1,j ≤ 0 and φi,j ≤ 0

φ+
i+1,j+φ+

i,j

|φi+1,j |+|φi,j | otherwise

(2.15)

and for cell vertices

ψi+1/2,j+1/2 =


1 φi+1,j ≥ 0, φi,j ≥ 0, φi,j+1 ≥ 0, and φi+1,j+1 ≥ 0

0 φi+1,j < 0, φi,j < 0, φi,j+1 < 0, and φi+1,j+1 < 0

φ+
i+1,j+φ+

i,j+φ+
i,j+1+φ+

i+1,j+1

|φi+1,j |+|φi,j |+|φi,j+1|+|φi+1,j+1| otherwise

(2.16)

The “+” superscript is a shorthand notation for φ+ = max(φ, 0). Unlike the formulation of Kang et

al. [73], the viscous jump terms are not included. Excluding these terms results in a small amount

of numerical smearing, but a priori knowledge of the property jumps is not required. Since the

viscosity field is sharp but continuous, the Laplace condition (Eq. 2.7) is reduced to

[p] = σκ . (2.17)

and the tangential stress condition (Eq. 2.6) is automatically satisfied. The normal pressure jump
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in Eq. 2.17 is applied as a source term in the pressure projection method.

2.3.3 Numerical stability

The simulation time step can be specified by either a fixed time step ∆t or a suitable Courant-

Friedrichs-Lewy (CFL) number for the explicit numerical discretizations. CFL numbers are a func-

tion of the time step ∆t, the grid spacing ∆x, and appropriate fluid parameters for a numerical

discretization of a fluid mechanics term. As long as the CFL number is less than a fixed value,

normally 1, the numerical methods should be stable although CFL values less than the limit can be

used for higher temporal accuracy. There are three relevant CFL conditions in the NGA framework

that correspond to different parts of the fluid mechanics: an advective CFL condition for the inertial

terms of the Navier-Stokes equations, a viscous CFL condition for the deviatoric term, and a surface

tension CFL condition for the normal stress jump condition. While some conditions depend on the

direction (x, y, z), for simplicity only the x-direction conditions are shown below. The standard

advective CFL condition [148],

CFLa =
umax∆t

∆x
(2.18)

is not dominant for the flows considered here. The corresponding term in Eq. 2.1 are treated

explicitly without stability concerns. The viscous CFL condition [153],

CFLv =
4µ∆t

ρ∆x2
(2.19)

is restrictive for Stokes flow (when Reynolds number Re < 1) since the Navier-Stokes equations (Eq.

2.1) would become elliptic. Therefore, the viscous terms of Eq. 2.1 are often treated in an implicit

manner in this work, thereby removing this restriction. The last CFL condition, associated with

surface tension, gives rise to the most restrictive time constraint for surface tension dominated flows.

The standard formulation is

CFLσ = ∆t

√
πσ

(ρ1 + ρ2)∆x3
, (2.20)
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which is associated with the propagation of capillary waves [153]. This time restriction is particularly

severe for grid-resolved solutions because the time step ∆t scales like ∆x3/2. Kang et al. [73]

proposed a less restrictive condition using the interface curvature κ,

CFLσ = ∆t

√
σ|κ|

min(ρ1, ρ2)∆x2
(2.21)

which has the same scaling as Eq. 2.20 when the maximum grid-resolved curvature of |κ| = 1/∆x

occurs. In practice, the first condition (Eq. 2.20) is more common in literature and may be more

robust than the second (Eq. 2.21). The time step is chosen such that all CFL conditions are satisfied.

2.4 Level set formulation

The level set formulation at half-time steps is composed of four components. These methods are

specific to handling the fluid-fluid interface location. Sections 2.4.1 and 2.4.2 discuss the numerical

methods for the advection and reinitialization of the level set φ, respectively. Computationally effi-

cient narrow band methods are described in Sec. 2.4.3: this variant decreases the total simulation

run-time. Finally, the interface curvature calculation for the normal stress jump condition (Eq. 2.17)

is specified in Sec. 2.4.4. These techniques are the basis for fluid flows without contact lines and

will be expanded upon in subsequent chapters.

2.4.1 Level set advection

Equation 1.10 is a scalar advection equation when fluid velocity ~u is used to transport the level

set φ. A plethora of numerical techniques exist for equations of this form [41]. Broadly speaking,

two categories are Eulerian and semi-Lagrangian (characteristic) techniques. Eulerian schemes

use discretized approximations for ∇φ and this form is directly substituted in Eq. 1.10. These

approaches are easy to implement explicitly and the simulation error decreases with time step ∆t.

However, Eulerian schemes can have restrictive CFL conditions and high-order implementations
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suffer from Runge’s phenomenon at discontinuities. Neither of these disadvantages are a problem in

this study since the advection CFL condition (Eq. 2.18) is not limiting the time step and the signed

distance function should be smooth. Semi-Lagrangian schemes, on the other hand, back trace along

characteristics to transport the level set. These techniques are popular for DNS of turbulent flows

since they are more stable and allow much larger simulation time steps ∆t than Eulerian techniques

[93, 163]. The overall error for these methods, however, does not decrease monotonically with time

step ∆t [42, 159]. The time step ∆t throughout this work has a very low advection CFL number;

therefore, a semi-Lagrangian scheme is ill-suited for this work because the error from the advection

equation can be large. Hence, an Eulerian method will be used.

A finite-difference form of the quadratic upstream interpolation for convective kinematics (QUICK)

scheme [86] was used to discretize Eq. 1.10. Although the basic scheme uses third-order finite-

difference approximations for the derivatives of φ, reduced-order finite-difference stencils are used

along the walls to approximate the normal derivative in the advection equation (Eq. 1.10). This

change excludes information stored in the wall cells (when applicable). Since wall normal velocities

are small due to the no penetration boundary condition, these low-order stencils should not signifi-

cantly affect the solution.

In Chap. 4, an alternative to the advection equation with fluid velocity ~u is shown. A discussion

of this variant is left until that chapter.

2.4.2 Reinitialization

For reinitialization, the modified reinitialization equation (HCR2) proposed by Hartmann et al. [59]

is used instead of Eq. 1.12,

∂φ

∂τ
+

φ0√
φ2

0 + δ2
(|∇φ| − 1) =

1

2
F . (2.22)



27

The coefficient φ0/
√
φ2

0 + δ2 is an approximation for the sign function where δ is a small parameter

(10−9). The right hand term F is a forcing function that acts on the cells immediately next to the

interface (φ = 0) and is intended to pin the zero level set at a point in each cell. This form of the

equation has been shown to have better mass conservation properties than the original Hamilton-

Jacobi equation [59]. For all points adjacent to the wall, the forcing term F is set to zero and the

reinitialization equation reduces to Eq. 1.12. While some of the other techniques discussed in Sec.

1.3.2.2 may have better mass conservation, this variant was chosen for its computational efficiency,

ease of implementation, and simple extension to high-order discretizations. To have exact mass con-

servation, an additional reinitialization step could adjust the interface level set φ [137]. For example,

the redefining the level set φ = −0.1 as the interface would increase the amount of fluid 1. This

approach, however, would artificially redistribute mass from areas smoothed during reinitialization

( i.e., cusps) over the entire material surface. As such, the HCR2 scheme is used without additional

modification.

The reinitialization equation (Eq. 2.22) is integrated in pseudo-time τ using a second-order

Runge-Kutta scheme with a CFL number of 0.5. This medium-size CFL number ensures the sta-

bility of the integration as well as quick convergence to steady state. Unless otherwise noted, the

gradient ∇φ is discretized using the weighted essentially non-oscillatory (WENO) scheme of Jiang

and Peng [71]. Third-order discretizations are used for the reinitialization equation because interface

curvature requires the second spatial derivatives of the level set variable φ and, thus, high accuracy

is desirable.

2.4.3 Narrow band methods

While it is possible to keep the level set variable φ in the entire domain, the exact values of φ are

only necessary near the fluid interface; the remaining information is superfluous. To reduce the

number of computational operations, Chopp [26] proposed only storing level set information in a
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Figure 2.1: Diagram of a 2 cell thick shell around a circle. The numbers and colors represent different
band numbers Ba.

narrow band, a “shell”, around the interface. A banded shell of thickness 2 cells around a circle

is shown in Fig. 2.1. The numbers at the cell centers, the band number Ba, have the same sign

as the level set φ and indicate the number of cells to the interface in the cardinal directions. This

additional variable is used to gauge the relative closeness of grid nodes to the interface. If a 2D

domain has approximately N points in both directions, the number of operations scales as O(N2) if

all points are considered; if the operations are only performed on a shell, the number of operations

scales as O(kN) where k is the number of bands. Adalsteinsson and Sethian [1] further investigated

the efficiency of these narrowband techniques. They observed a memory savings of a factor of 4

and simulation run-time decreases of around a factor of 3 for their narrow band implementation.

These savings increase with grid resolution. Although narrow band methods require slightly more

programming complexity, the computations can be significantly more efficient.

When the numerical methods of Chap. 3 and 4 are tested, a full band structure of points is

considered. A narrow band of approximately 20 cells thick is used for computational efficiency in

the examples of Chap. 3 and 4. Chapters 5 and 6 always use narrow band methods. For the narrow

bands, the outermost bands have reduced-order finite-difference discretizations in the reinitializa-

tion to preserve the hyperbolic nature of Eq. 2.22. Points outside of the narrow bands are assigned
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values with the correct sign and a large magnitude. Narrow band methods require the level set reini-

tialization to initialize these points as the interface moves and points are added to the narrow bands.

2.4.4 Curvature calculation

Since the GFM is a sharp interface technique, the curvature is only calculated for points were

|Ba| = 1. The interface curvature at a point of interest is calculated from a third-order, least-square

polynomial fit (LSQ) of the local level-set field φ [91]. This fit is the minimum order necessary to

approximate the curvature. Higher order polynomials were found unnecessary. All grid cells used

in the fit are equally weighted. In 2D Cartesian coordinates, the nine nearest grid cells (rectangle

around a point and itself) are used for fitting the polynomial. If the stencil points are located inside

of a wall, the nearest points are offset accordingly. In 3D Cartesian coordinates, the nineteen nearest

grid cells are used in the polynomial stencil. This configuration corresponds to a 3 x 3 x 3 cube

around the point of interest with the outside corner grid cells removed (Fig. 2.2a). Inclusion of

these corners was observed to give rise to unstable, parasitic oscillations. Against the wall, a pyra-

mid shaped stencil (Fig. 2.2b) with the point of interest in the middle of the base was used to have

sufficient information. The curvature κ is truncated such that −1/∆x < κ < 1/∆x in Cartesian co-

ordinates. These limits are the minimum/maximum resolved curvatures for the computational mesh.

In axisymmetric cylindrical coordinates, the mean curvature is the sum of the 2D Cartesian

curvature κ1 and the curvature due to the axis of symmetry κ2,

κ = κ1 + κ2 (2.23)

κ2 depends on the radial cylindrical coordinate r and can be expressed as

κ2 =
1

r

∂φ
∂r√(

∂φ
∂r

)2

+
(
∂φ
∂z

)2
(2.24)
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( a ) ( b )

Figure 2.2: Cells used in the least square polynomial fit in 3D: a) 19 cells centered on the point of
interest (non-wall), b) pyramid shaped collection of cells with the point of interest in the middle of
the base (wall).

where z is the axial cylindrical coordinate. This second curvature contribution will be added to the

2D Cartesian curvature for the axisymmetric simulations in Chap. 6.

Although Eq. 1.9 can be used with finite-difference discretizations to calculate the interface cur-

vature κ, the curvature varies more smoothly along the interface for the LSQ routine; the polynomial

fit naturally smooths the level set information. Since a linear system of equations is solved to fit the

data [56], this extra smoothness comes at the price of slightly increased computational overhead.

However, the curvature calculation accounts for a negligible portion of the time involved in each

simulation step and, thus, use of the LSQ routine does not significantly alter the simulation speed.

2.5 Summary

The numerical implementation uses second-order finite-difference discretizations of the incompress-

ible Navier-Stokes equations in the NGA framework. The fluid properties and normal stress jump

condition are treated using a sharp interface method, the ghost fluid method [73], which has been

shown to have smaller parasitic velocity currents than a diffuse interface approach. These spurious

fluid velocities would be particularly detrimental in the surface tension dominated fluid flows of the

present work. The level set variable φ is transported using the Eulerian advection scheme QUICK

[86] and the level set reinitialization is the modified Hamilton-Jacobi equation of Hartmann et al.

[59]. The interface curvature is calculated using a least-square polynomial fit to φ.
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Chapter 3

An improved method for level set
reinitialization at a contact line 1

Errors using inadequate data are much less than those using no

data at all.

— Charles Babbage

3.1 Introduction

The reinitialization step is examined in this chapter to analyze any artificial, purely numerical ef-

fects; the contact line physics are not included in this chapter.1 The Hamilton-Jacobi equation

(Eq. 2.22) is hyperbolic with characteristics normal to the interface φ = 0 (Fig. 3.1). While the

reinitialization works well if no contact lines are present, a “blind spot” occurs near contact lines:

there is a region where no characteristics exist because any characteristic would originate at the wall

(Fig. 3.1). This region will always occur on the obtuse-angle side of the interface, and it vanishes

only if the angle at the wall is θ = 90o (hereafter this wall portion is referred to as the obtuse side).

The mathematical solution for the Hamilton-Jacobi equation is, therefore, ill-posed because it lacks

the proper boundary conditions. Depending on the blind spot boundary condition along the wall, a

new type of numerical, parasitic current can be introduced due to interface curvature errors. Over

time, these currents cause spurious interface evolution.

1The information in this chapter has been published in the Journal of Computational Physics [32].
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Figure 3.1: Diagram of the blind spot (grey). The black solid line corresponds to the interface φ = 0.
The dashed lines are the characteristics for the Hamilton-Jacobi equation which are perpendicular
to the interface.

Wall

φ = 0

Figure 3.2: Example diagram of the level set isocontours (dashed lines) for a circular droplet on a
wall. The black line is the interface φ = 0.

To remedy this interface deformation, most previous studies using the standard level set or con-

servative level set methods have enforced a contact angle in the blind spot in one of two ways. In some

cases, the blind spot contours have a pre-specified contact angle θ [142, 143, 147, 170]. This contact

angle (spatially uniform and constant in time) is usually chosen as the static contact angle. In other

cases, a dynamic or apparent contact-angle law is used to impose a different isocontour angle value θ

at each time step [105, 137, 166, 168]. This angle is spatially uniform in the vicinity of a contact line.

Forcing the angle in these ways has two problems. First, a priori knowledge of a dynamic contact

angle law is required and, thus, the angle does not arise from physical mechanisms in the simulation.

If there were a consensus on a dynamic (or apparent) contact angle law, using such a relation would

represent the missing physics and would provide a basis for reinitialization. However, as discussed

in Chap. 1, there are numerous theories at this time and their applicability varies. Further, Yokoi
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et al. [166] showed a strong dependence of droplet spreading on the applied contact-angle law.

They found the correct spreading radius in time only when the contact angle was prescribed by an

experimentally-observed relation. Second, using either method, all isocontours in the blind spot have

the same contact angle. For a surface of constant curvature, such as a circular droplet (Fig. 3.2),

the isocontours have spatially varying angles at the wall. This aspect is not captured by either tech-

nique. This forced angle distorts the interface and the curvature distortion leads to parasitic currents.

The goal of this chapter is to develop a reinitialization technique that neither alters nor pre-

supposes the physics of the problem. This study is limited to reinitialization schemes based on the

Hamilton-Jacobi equation for a signed distance function. The numerical method should be stable

and should not induce changes to the level-set contact angle post-reinitialization. This new routine

can be viewed as a necessary step towards a framework for contact-line dynamics where additional

physics can be implemented without numerical biasing.

This chapter is organized as follows. Different methods for populating the blind spot with the

level set φ during reinitialization are discussed in Sec. 3.2. These strategies are demonstrated for

test cases of a fluid wedge (Fig. 3.3a) and arc (Fig. 3.3b) trapped between two walls with perfect

slip conditions. The effect of blind spot errors are easy to visualize for these cases. A relaxation

equation that holds the interface curvature nearly constant is proposed to avoid generating spurious

interface deformations in Sec. 3.3. Extensions to this method and limitations are discussed in Sec.

3.4. Finally, Sec. 3.5 and 3.6 show applications of the proposed method. In Sec. 3.5, both 2D

and 3D simulations are shown for a gravity-driven droplet sliding on a wall using this relaxation

equation. In Sec. 3.6, a block of fluid deforms under gravity and contact lines merge on both the

upper and lower walls.
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Figure 3.3: Test case geometries for (a) a wedge and (b) a circular arc. The coordinate system is
centered in the domain of width L and height H.

3.2 Blind spot methods

This section presents different methods for populating the blind spot. Section 3.2.1 introduces the

test cases used to evaluate the different methods. Section 3.2.2 presents a baseline for the error in-

herent purely to the QUICK transport scheme, i.e., without reinitialization. This case is sufficiently

simple that the transport without reinitialization performs well; all subsequent errors are due to the

reinitialization. Sections 3.2.3 and 3.2.4 discuss reinitialization methods which either are unstable

or significantly distort the fluid interface. These existing methods are presented to contrast with

the proposed solution. In Sec. 3.3, a new relaxation equation is coupled to the Hamilton-Jacobi

equation, and it is shown to produce minimal interface deformation from reinitialization.

3.2.1 Configuration

Two different test cases are considered. The first case is a wedge of fluid trapped between two walls

with an angle θ = 45o at the wall (Fig. 3.3a). This case has zero underlying curvature and has

both an obtuse and an acute angle for each fluid. The second case replaces the wedge by a circular

arc with a contact angle θ = 45o (Fig. 3.3b). This scenario corresponds to the constant curvature

(6= 0) expected for a fluid droplet at rest. Values of the angle θ other than 45o have also been tested.

Although smaller angles experienced more numerical error for every scheme tested, all the results

are qualitatively similar and thus only the 45o case is shown for clarity.
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In both configurations, 2D domains are used to test the blind spot routines. The two walls are

separated by a characteristic length scale H. The length of the walls are L= 70 H in the case of no

reinitialization (Sec. 3.2.2) and L = 3 H in all other cases. The inlet (left side) and outlet (right

side) boundary conditions are a uniform inlet velocity U and a zero Neumann boundary condition,

respectively. The domain is discretized using a uniform grid, ∆x = ∆y = 0.01 H. Convergence tests

showed this grid to be sufficient for qualitatively non-varying solutions. The time integration was

performed with a uniform time step of ∆t = 10−3 µH/σ. The reinitialization procedure is applied

at every time step. Equation 2.22 is evolved for 600 iterations.

For the present test cases the fluids on either side of the interface are set to the same properties

(ρ1 = ρ2, µ1 = µ2) to isolate the effects of the blind spot. This arbitrary choice limits neither

the scope nor the applicability of the present work as the presence of a blind spot is independent

of fluid properties. A dimensionless Ohnesorge number Oh = µ/
√
ρσH of 0.1 is used, which is

similar to values used in other studies [142]. Smaller Oh simulations have stronger parasitic currents

since the surface tension effects are more dominant. Gravity does not affect the reinitialization and

is therefore neglected. For these parameters, there are two relevant time scales in the system: a

viscous-capillary and characteristic simulation time scale τCa = µH/σ = 1 and an inertial-capillary

time scale τWe = τCa/Oh =
√
ρH3/σ = 10. All simulations in this section are performed until

t = 60, which is at least six times larger than the physical time scales.

To decouple the physics of the contact line from the numerical methods, a full slip boundary

condition is used for the velocity along the walls. Under these conditions, the exact solution is a

constant interface profile advected at a constant speed U ; there should be no interface deformation.

The error Ep in the profile shape is reported as the integrated quantity

Ep =

∫ H/2

−H/2
|xint(y, 0)− (xint(y, t) + U · t)|dy , (3.1)
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where xint is the x-coordinate of the interface φ = 0 as a function of time t and vertical distance y.

This choice accounts for deformation along the entire fluid interface, and it provides an estimate for

the global error. This error may average out local distortions of the interface at the wall. Therefore,

the contact angle θ at the bottom wall is also monitored; this angle represents the local numerical

error at the contact line. The contact angle is evaluated by fitting the three values of xint closest to

the wall with a second-degree polynomial in y, and the angle θ is calculated from the slope of that

polynomial at the wall.

An obtuse-side cell indicator is also useful to locate cells along the wall in the blind spot. To

identify obtuse-side cells on the wall, the quantity Φ,

Φ = φ0
∂φ

∂n
, (3.2)

is calculated where n is the outward normal direction to the wall. The sign of φ0 is used instead of

the sign of φ for stability similar to the Hamilton-Jacobi equation (Eq. 2.22). If Φ ≥ 0, then the

point is on the obtuse side of the interface (blind spot); if Φ < 0, then it is on the acute side.

3.2.2 Transport scheme errors

Pure transport with no reinitialization establishes a baseline for the error due to the transport

scheme. Transporting the interface profiles with Ca = µU/σ = 1, the wedge and arc do not change

qualitatively in time (Fig. 3.4). Quantitatively, the integrated error Ep is on the order of 10−4 for

the arc and much smaller for the wedge, on the order of 10−7 (Fig. 3.5a). The angle θ at the wall

also deviates by less than 1o so the angle locally at the contact line is maintained (Fig. 3.5b). In

summary, the transport alone appears to have negligible effects on the shape of the interface. As

a consequence, any future deviations observed with reinitialization can be safely assumed to be the

result of the parasitic currents from the contact line. Hence, all further simulations are performed
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38

with U = 0 and the profiles should always remain stationary. This restriction reduces the computa-

tional cost of the simulations and focuses strictly on the reinitialization results.

Although the results above are highly accurate, they do not imply that the reinitialization step

can be forgone. In any more general case with a deforming interface, such as droplet impacts, this

strategy cannot be used because the level set function φ will lose its smoothness. The reinitialization

step exists for precisely this reason [102].

3.2.3 WENO stencils with wall ghost values

The first reinitialization schemes considered are based on using ghost cells to complete the near-wall

WENO stencils used to evaluate the derivatives in the Hamilton-Jacobi equation. For each direction,

the scheme of Jiang and Peng [71] uses a four point derivative stencil biased either in the upwind

(∂φ/∂y+) or the downwind (∂φ/∂y−) direction. The stencils are depicted in Fig. 3.6a where the

shaded points a and b are inside of the wall. In order to evaluate the derivatives at point c, values

of φ are needed at points a and b. The schemes below are different methods to populate these ghost

cells.

3.2.3.1 Zero Neumann boundary condition

One of the simplest assumptions is that the blind spot has no effect on the evolution of the interface.

Under this assumption, the choice of boundary condition for the obtuse points can be arbitrary. One

boundary condition to use is a zero Neumann boundary condition,

∂φ

∂n
= 0 . (3.3)

To implement this boundary condition, the ghost cells a and b just copy the value of φ from point

c (Fig. 3.6b). The WENO stencils remain unchanged and use the values stored inside the walls.
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Figure 3.7: Interface profiles when a zero Neumann boundary condition is used.

The evolution of the interface for both test cases is shown in Fig. 3.7. In both cases, there is

a systematic evolution from the original angle to the angle for which the zero Neumann boundary

condition is correct, θ = 90o. The angle at the wall almost immediately jumps to θ = 90o (Fig. 3.8b).

This change occurs after only two calls to the reinitialization function (data points not shown in Fig.

3.8b). These curvature errors at the contact line generate a capillary wave that, in turn, propagates

the deformation over the entire profile (Fig. 3.8a). The profile overshoots the flat interface (t = 10

in Fig. 3.7a) which causes the oscillations observed in the error Ep. These oscillations occur on a

time scale comparable to τWe as expected.

The assumption that the blind spot has no impact on the evolution of the interface is clearly poor

because the curvature calculation includes points around the contact line as well as at the interface.

While this choice is easy to implement, it suffers from a residual, unphysical forcing at the contact

line and subsequent parasitic currents. The blind spot cannot be ignored.

3.2.3.2 Extrapolation

A natural extension of the Neumann scheme discussed in the last section is populating the ghost

cells a and b in the wall with second-order extrapolated values (Fig. 3.6c). While this method
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Figure 3.8: Integrated error Ep and angle at the wall θ as functions of time for both the wedge
(dashed line) and circular arc (solid line) when a zero Neumann boundary condition is used.

works well for acute points (effectively reducing the derivative order in the vicinity of the walls), it

does not work for obtuse points. For the obtuse points, a feedback loop develops where information

propagates from points c and d to points a and b by the extrapolation and then back to points c

and d using the Hamilton-Jacobi equation. This loop is found to be unstable and was observed to

drive θ to 0o all along the obtuse side.

3.2.3.3 Ghost interfaces

To fix the unstable extrapolation on the obtuse side, Spelt [137] proposed constructing a linear ghost

interface from the contact line into the wall. This approach is similar to that of Sussman and Eto

[147] except the angle is calculated at the contact line rather than forced to the static contact angle.

Only a brief description of the method from Spelt is provided here. The reader is referred to Ref.

[137] for more details.

In this method, the contact line points are first located using linear interpolation between grid

cells. The angle θ at each point is then calculated using second-order upwind stencils. Given the

contact angle θ and the contact point, a planar “ghost interface” can be reconstructed in the wall

that satisfies these constraints. Finally, trigonometric relations are used to calculate the distance

Dghost to this interface for any point in the wall. Points on the obtuse side (Φ ≥ 0) are assigned the
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Figure 3.9: Interface profiles when the level set φ in the wall is populated using a ghost interface.
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Figure 3.10: Integrated error Ep and angle at the wall θ as functions of time for both the wedge
(dashed line) and circular arc (solid line) when the level set φ in the wall is populated using a ghost
interface.

value Dghost; points on the acute side are assigned the minimum distance

φ = min (Dghost, Dextrap) , (3.4)

where Dextrap is the extrapolated value shown in Fig. 3.6c (Sec. 3.2.3.2). An additional modifica-

tion was added in this study. It was noticed that since the value of Dghost is independent of the

local level set φ at the first grid point above the wall, occasionally the ghost cell would change the

orientation of the level set: an obtuse cell would be represented as acute or vice versa in the first few



43

Hamilton-Jacobi iterations. To correct this misrepresentation, an additional check was included for

the consistency of Dghost with obtuse and acute points. Without this check, isocontours of φ some-

times inverted their contact angles far away from the contact line. If a cell failed the check, Dghost

could not be used in the wall and the wall cell was set to either a zero Neumann condition (obtuse) or

the extrapolated value Dextrap (acute). In all cases by the end of the reinitialization process, no wall

cells failed the check; the field satisfied the Hamilton-Jacobi equation with the contact angle θ im-

posed in the blind spot. Therefore, this additional step does not affect the validity of the final results.

The simulation results are nearly perfect for the wedge, but not for a circular arc. The wedge pro-

file has virtually no spurious currents (machine precision) since the extrapolated and ghost interface

values are exact (Fig. 3.9a). The integrated profile error Ep is zero to machine precision (Fig. 3.10a)

and the angle at the wall does not change (Fig. 3.10b). This result is not surprising as the method

was developed using the assumption of zero curvature (planar ghost interface). For cases with zero

curvature, this is the best option in terms of simplicity and accuracy. However, when the inter-

face has an inherent curvature, as in the circular arc case, the profile slowly but consistently relaxes

towards a flat interface (Fig. 3.9b). The local angle at the wall θ transitions towards 90o (Fig. 3.10b).

While the ghost interfaces work well for cases of zero curvature, it produces undesirable deforma-

tions for an interface of constant, non-zero curvature. Refined grid simulations did not alleviate this

problem. This evolution occurs because a flat interface is the only solution that satisfies a constant

interface curvature and a zero curvature condition at the wall (planar ghost interface). Furthermore,

this technique is limited to 2D. Extending the technique to 3D would require constructing a general

ghost surface and approximating the distance to such an interface. Routines to perform such sur-

face construction are restricted to direct reconstruction techniques, such as the panel approximation

technique of Sussman and Dommermuth [144]. These reconstruction techniques are fundamentally

different from the Hamilton-Jacobi reinitialization discussed in this work and they tend to be less

computationally efficient.
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3.2.4 Offset finite-difference stencils

Rather than using ghost cells, an alternative method is to exclude points a and b from the WENO

stencils (Fig. 3.6a) by shifting the derivative stencils away from the wall. The weights for each cell

are then computed with standard finite differences. The offset stencils for points c and d include the

same points (Fig. 3.6d), although the relative weighting of each point is different. For acute cells

(Φ < 0), neither stencil is unstable because information is propagating into the wall and the stencil

orientation is upwind. However, for obtuse cells next to the wall (Φ ≥ 0), while the stencil for point

d retains at least one point in the downwind direction, the derivative stencil around point c has no

downwind information and will be unstable in a similar way to the extrapolation (Sec. 3.2.3.2).

3.3 Relaxation equation

In order to overcome the inherent difficulties of the previously discussed techniques, a new method

is sought for the cells along the wall in the blind spot. If the slope of the isocontours at the wall

is maintained during the reinitialization, it is expected that the curvature will also be preserved,

minimizing spurious currents. Following this observation, the original Hamilton-Jacobi equation for

the first layer of cells along the wall in the blind spot may be replaced by a new equation,

∂φ

∂τ
= sgn ·

((
∂φ
∂n

|∇φ|

)
o

−

(
∂φ
∂n

|∇φ|

))
, (3.5)

where the subscript o indicates the value prior to reinitialization. The value sgn is determined by

the wall orientation; sgn = −1/+1, if the wall is in the negative / positive direction. The derivative

normal to the wall (∂φ/∂n) can be discretized using either first-order (points c,d), second-order

(points c,d,e), or third-order (points c,d,e,f) finite-difference approximations (Fig. 3.6d). The ratio

of ∂φ/∂n and |∇φ| is cos θ. This relaxation equation is intended to keep the angle of the level set

at the wall constant throughout the reinitialization. By analytic continuation, the variable φ is still
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a distance function. Once a cell has been found as on the obtuse side (Φ ≥ 0), it always uses the

relaxation equation (Eq. 3.5) for the remainder of that reinitialization step.

WENO stencils were used to calculate derivatives in the tangential directions ω since these

were already available from the original Hamilton-Jacobi equation. The tangential derivative Dω is

determined by the signs of φ0 and the upwind/downwind derivatives,

Dω =



if φ0 > 0 if φ0 < 0

∂φ
∂ω

+ ∂φ
∂ω

−
if ∂φ

∂ω

+
, ∂φ∂ω
−
> 0

∂φ
∂ω

− ∂φ
∂ω

+
if ∂φ

∂ω

+
, ∂φ∂ω
−
< 0

m
(
∂φ
∂ω

+
, ∂φ∂ω

−)
otherwise

(3.6)

where m(a, b) returns the derivative with the smaller absolute value. The resulting tangential deriva-

tive is biased in the interface direction. This orientation of the tangential derivatives along the wall

in the relaxation equation was necessary for stability reasons. Otherwise, two adjacent cells might

have overlapping tangential derivative stencils which can result in a feedback loop. This choice is

similar to the maximum and minimum statements in the treatment of the WENO stencils from

Jiang and Peng [71].

The wedge and arc test cases are shown in Fig. 3.11 when the relaxation equation is used.

Similar to the ghost interfaces (Sec. 3.2.3.3), the wedge is virtually perfect: Ep is machine precision

and θ does not change from its initial value. However, for the arc, the relaxation equation induces

errors of Ep ∼ 10−3 that are at least an order of magnitude smaller than the other methods we

considered (Ep > 0.01). Interestingly, the integrated error (Ep) decreases with the finite-difference

order, whereas the contact angle θ has little variation in all cases. While the higher-order finite

differences exhibit smaller integrated errors, it is difficult to justify their use instead of first-order
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Figure 3.11: Interface profiles when the relaxation equation is used for cells on the wall in the blind
spot.
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finite differences for these cases because these errors are smaller than that of the transport scheme

(Fig. 3.5). Additionally, first-order finite differences are more compact and less prone to error

propagation. The higher-order finite differences with their smaller errors, however, were found more

accurate for more complicated configurations. In all subsequent studies of this chapter, first-order

finite differences were used, but third-order finite differences were used for Chap. 4–6.

To further underscore the benefit of using the proposed relaxation equation and demonstrate its

effects on a non-perfect signed-distance function, another series simulations were performed for a

circular drop trapped between two walls with the same contact angle and domain dimensions. This

initial condition is the next worse scenario for the input to the reinitialization routine. In one case,

the initial distance function was scaled by a factor of 1/2 (Fig. 3.13a) and in the other by a factor

of 2 (Fig. 3.13b). The reinitialization routine was applied for 1,000 iterations. All of the angles

at the wall are initially correct, but φ is not a distance function, i.e., |∇φ| 6= 1. It is important to

note that such a perturbation of the level set function is quite extreme and is rarely encountered

in practice. The simulation results show that the level set function in the vicinity of the interface

is converged within 500 iterations. While perfect concentric circles are expected, the half-scaled

function shows some differences near the middle of the circle. These differences come from the slow

convergence of the relaxation equation in this region of small initial angles (see next section). While

these contours are clearly distorted, the important isocontours near the interface are still captured

and the interface curvature of the zero level set is maintained. If the level set is only stored locally

around the interface (narrow bands) [26], this distortion may not even exist.

3.4 Method extensions and limitations

The test cases of the wedge and circular arc considered are “worst case scenarios” as implemented.

These simulations have minimal resistance to curvature errors because of the full slip boundary

condition. The interface easily deforms and without additional physics, there is no driving force to
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circular dots indicate the zero level set.
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return it to its original shape. Since the current framework does not include any physical terms,

there is no single equilibrium shape. Rather, there is a family of arcs satisfying the Laplace condi-

tion (Eq. 2.17). If a contact angle was imposed as in previous studies, a single arc would be the

equilibrium solution and the reinitialization would keep the contact angle.

The relaxation method is still compatible with imposing a dynamic (or apparent) contact-angle

law. More precisely, the relaxation equation would be simply replaced by

∂φ

∂τ
= sgn ·

(
cos (θD)−

(
∂φ
∂n

|∇φ|

))
. (3.7)

In this scenario, it is necessary to reinitialize at every time step to ensure that the correct angle

is present at the wall. Often with level-set methods, the reinitialization frequency is set to be less

seldom than every time step for various reasons. This reinitialization restriction is a major disadvan-

tage. Using the relaxation equation, the wall angle can be left freely floating and determined by the

simulation physics. This approach requires neither an a priori contact-angle law nor reinitialization

at every time step. The author is unaware of any other reinitialization technique that can have an

accurate, unrestricted angle.

The main disadvantage to using the relaxation equation is that it converges very slowly for small

angles (θ → 0o, |∂φ/∂n| → 1). To see this result, the derivatives in the relaxation equation (Eq.

3.5) are first replaced by their trigonometric counterparts

∂φ

∂τ
= sgn · (cos (θo)− cos (θ)) , (3.8)

where θo is the original and θ the current contact angles. Using Taylor series expansions for the

cosine and only keeping the lowest order term,

∂φ

∂τ
∼ sin (θo) (θ − θo) . (3.9)
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The magnitude of the change for any given step of the equation scales roughly as the sine of the

original angle. For the off-scaled distance functions (Fig. 3.13), the convergence difference between

the half-scaled function and doubled function can be seen at iteration 100. The isocontours for the

doubled function are nearly vertical in the center of the drop and thus θ − θ0 is large. However,

for the half-scaled function, the isocontours in the middle are flatter, thus θ − θ0 is small and the

convergence is poor. Care needs to be taken for simulations with small angles.

To treat small contact angles, there are a few possible approaches. The first option is to include

a multiplier on the right hand side of Eq. 3.5. This number should grow as sin(θ0) and (θ − θ0)

approach 0 to increase the rate of convergence. This approach, however, can have poor numerical

stability and may need to be treated implicitly. A second option is to disregard the relaxation

equation, but use its central idea of conserving the angle with a non-iterative approach such as the

FMM (Eq. 1.11). This formulation is a single mathematical calculation. The relaxation-equation

equivalent for the blind spot in the FMM is

|∇sφ|2 =
1

sin(θ0)2
. (3.10)

where ∇s is the surface gradient operator along the wall. The major disadvantage to this approach

is that FMM methods are typically low-order and, therefore, the accuracy of the interface curvature

suffers. The last option is the simplest. If the interface itself is not at the extreme contact angles,

the locations where θ0 = 0o or 180o are far from the interface. Therefore, the angle can be limited

in these regions to a minimum θmin and maximum angle θmax,

θ0 = min (θmax,max (θmin, θ0)) . (3.11)

While this algorithm is extremely easy to implement, it places practical limitations on the angles

that can be captured by the simulation. Throughout Chap. 5 and 6, angles limits of θmin = 10o

and θmax = 170o were found sufficient for convergence.
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3.5 Example 1: sliding droplets

In the previous section, the relaxation equation was found to introduce much smaller parasitic cur-

rents than any other method and any numerically-induced deformations remained extremely small.

In this section, the physical deformation of sliding, gravity-driven droplets on a wall is investigated.

These droplets are expected to deform into an aerodynamic, bulb-like shape. The simulations show

that the relaxation equation captures varying contact angles and can be easily used in 3D.

3.5.1 Configuration

The domain used for the droplet simulations (2D and 3D) is shown in Fig. 3.14. The droplet has

diameter D and is initially located at xcenter = 2.5 D. The length of the domain in the direction of

flow is L = 8 D while the direction normal to the wall is H = D. The z-dimension, when applicable,

has a width of W= 2 D. A uniform grid of cubic cells ∆x = ∆y = ∆z = 0.02 D is used. The

z-direction is periodic while the x- and y-directions are bounded by walls. On the walls, a full

slip condition is again used to generate maximum droplet deformation in the absence of a physical

driving force to a static contact angle. A gravity vector with magnitude g is oriented in the positive

x-direction.

This configuration is exactly like a symmetric droplet falling under gravity (no walls) subject to

one caveat: leading and trailing angles do not have to be θ = 90o. The contact angle θ of the initial

droplet is set as 90o such that the simulated droplet on the wall can be compared to its free-fall, full

droplet counterpart. For the free-fall droplet simulation, the domain is extended symmetrically in

the y-direction an equal amount below the symmetry plane.

In order for the droplet to be gravity-driven and have an aerodynamic shape, a non-unity density

ratio ρ2/ρ1 6= 1 is required. For these test cases, the density ratio is ρ2/ρ1 = 1/1000, which corre-

sponds to the density ratio for air and water. The viscosity ratio is still unity, µ1 = µ2. While the
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Figure 3.14: Diagram of the 2D and 3D computational domain and initial condition for the droplet
on a wall simulations (not drawn to scale). The initial contact angle is 90o. Gravity is oriented
parallel to the wall.

viscosity ratio of air and water could be used, the drop would not experience as much shear-induced

deformation and thus the unity viscosity ratio is used to enhance the droplet deformation. The

Ohnesorge number is Oh = µ/
√
ρ1σD = 0.001: this value is appropriate for a small water droplet.

The gravity vector is oriented in the negative x-direction with a magnitude such that the Bond

number Bo = ρ1D
2g/σ is 10. A time step of ∆t =

√
0.001 µD/σ was used which corresponds to a

viscous CFL number of approximately 0.3. The reinitialization procedure is applied at every time

step and is iterated until either 100 iterations or a maximum relative change ∆φ of 10−4 between

iterations is reached. A minimum of 30 iterations were required to ensure that the information would

have sufficient time to propagate away from the interface. It is important to note that ∆φ is always

small for small angles; regardless of angle, the simulations required between 30 and 60 iterations to

reach the end criterion.

3.5.2 Evolution of a 2D gravity-driven droplet on a wall

Different interface shapes for both a droplet sliding on the slip wall (solid line) and a droplet in free

fall (dashed line) are shown in Fig. 3.15. The images are offset in space for easy visualization, but

the relative position of the dashed and solid lines at a given time are correct. The results shown

are phenomenological only; there is no exact analytic result to compare to quantitatively as long as

the additional contact-line physics are excluded. While the droplets start off identical, gravity turns

the droplet on a wall into a bulb-like shape with fluid accumulation in the positive x-direction as
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Figure 3.15: Deformation of a two dimensional semicircle and full droplet under gravity. The red
line is the interface for a droplet on a wall (black line) and the blue dashed line is a full droplet in
free fall.

expected. This asymmetric shape has a non-90o contact angle at the trailing edge, while the drop in

free fall remains nearly circular (as if the contact angle was 90o). The difference in evolution comes

from the high surface tension that preserves the shape of the free falling drop. On the other hand,

the sliding drop has no corresponding curvature at the tail, and the final shape (at t = 700 ) even

shows a slightly inverted curvature at the back of the droplet. The non-90o contact angle could not

be captured using another blind spot technique.

3.5.3 Evolution of a 3D gravity-driven droplet on a Wall

The droplet on the wall is repeated in 3D (Fig. 3.16). This extension to 3D is unique to the re-

laxation equation. The initially hemispherical drop deforms into a tear-drop shape with fluid again

accumulating in the direction of gravity. The x-y profile of the droplet and the contact line on the

wall are shown in Figs. 3.17a and 3.17b where the different times are offset to intersect at the leading

edge. The x-y profile is qualitatively very similar to the 2D simulations as expected (Fig. 3.15),

but will not be quantitatively the same because of the additional curvature in the y-z plane. The

contact line on the wall also takes on a bulb-like shape that tapers to a point. The contact angle

continuously varies along this contour.
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( a ) t = 0 ( b ) t = 350

( c ) t = 600 ( d ) t = 700

Figure 3.16: Deformation of the hemispherical droplet sliding under gravity.
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3.6 Example 2: wedge of fluid

As mentioned in the Chap. 1, the level set method is often used for its natural handling of topo-

logical interfaces. In this section, the relaxation equation approach is shown for a 2D case where

the contact lines merge along a wall. The fluid spreading is driven by a gravity vector ~g oriented

perpendicular to the wall.

3.6.1 Configuration

The domain used is shown in Fig. 3.18. Two walls are spaced a distance H apart. The length of the

domain in the x-direction is L = 4 H. The initial condition is a trapezoid of fluid 1 centered in the

domain with a base width W = 2 H and an obtuse trapezoidal angle of θ = 120o. A trapezoid was

chosen because it has non-90o contact angles. In addition, this initial condition promotes a smooth

detachment from the upper wall as opposed to the capillary breakup of the thin fluid thread that

forms. A uniform grid of square cells ∆x = ∆y = 0.01 H is used. The x-direction is periodic.

Similar to Sec. 3.5, a full slip velocity boundary condition is used along the walls. The density

ratio is ρ2/ρ1 = 1/1000, and the viscosity ratio is unity, µ1 = µ2. The Ohnesorge number is Oh

= µ/
√
ρ1σH = 0.001, and the Bond number Bo = ρ1H

2g/σ is 10. A time step of ∆t = µH/σ

was used which corresponds to a capillary CFL number of ∼ 0.5 using the criterion of Eq. 2.21.

The reinitialization procedure is applied at every time step for a minimum of 30 iterations and ends

when either 300 iterations or a maximum relative change ∆φ of 10−4 between successive iterations

is reached.
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Figure 3.18: Diagram of the computational domain and initial conditions for the simulation with
merging contact lines (not drawn to scale). Gravity is oriented perpendicular to the walls.
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Figure 3.19: Time images of the spreading trapezoidal fluid block (blue) trapped between two walls
(brown).
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3.6.2 Evolution of a fluid wedge

The evolution of the trapezoidal block of fluid is shown in Fig. 3.19. Since the initial configura-

tion (Fig. 3.19a) has straight sides, there is no capillary pressure jump across the interface and

the motion is purely due to the gravitational forces. As fluid drains from the top of the block

(Figs. 3.19b–d), the induced interface curvature provides a capillary pressure gradient against the

gravitationally-induced spreading. However, due to the large Bond number the fluid still continues

to drain. Eventually, a thin fluid filament is formed which detaches suddenly from the upper wall

(Figs. 3.19e and 3.19f). The fluid continues to spread along the bottom wall until the edges merge

due to the periodicity of the domain (Figs. 3.19g and 3.19h). At this point, standard level-set

reinitialization routines can be used since there is no longer any contact line. The proposed method

smoothly captures the motion of the interfaces and the merging of contact lines. The fundamental

benefit of the level set method to handle changing topologies is not altered by the relaxation equation.

3.7 Summary

A new reinitialization technique, the relaxation equation, was proposed for the blind spot at contact

lines. This routine fixes the level set isocontour angles in the blind spot during reinitialization to

preserve the second derivative of the level set φ along the wall. The relaxation equation does not

presuppose any physics and has minimal parasitic velocity currents. For the case of a circular arc,

it was the only technique shown that did not flatten the interface. This technique, however, showed

lower convergence for shallow angles (< 10o) when |∇φ| < 1. These angles may require either

an angle limit or the use of a pseudo-time independent equation such as Eq. 3.10. As currently

implemented, the relaxation equation (Eq. 3.5) is also limited by the accuracy of the angle calculated

θo: this issue will be addressed in the next chapter. The routine presented in this chapter is the first

of its kind that holds the curvature in the blind spot constant and allows freely floating interface

angles.
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Chapter 4

Extension velocities and angle
propagation

The function of a scientist is to find the point of view from which

the subject appears in its greatest simplicity.

— Josiah Gibbs

4.1 Introduction

While the relaxation equation was shown to work well, it is fundamentally limited by the knowl-

edge of θo (Eq. 3.8); it does not introduce additional spurious currents, but it cannot correct a

non-smooth, non-distance level set φ. This issue is particularly problematic if a local minimum in

|φ| occurs in the blind spot. In addition, non-slip wall velocity boundary conditions would naturally

distort the angle along the wall due to velocity gradients. The value of θo from the existing level set

field may be non-ideal.

Some authors have tried different methods to exclude the blind spot. There are two alternative

techniques which may not experience the problem of inaccurate curvature at the contact line. One

option is to decouple the curvature at the contact line from the level set. In this way, the blind spot

boundary condition has less of an effect on the solution. In a recent work, Sato and Ničeno [119]

used this approach with the curvature methods outlined in Brackbill et al. [19]. In another study,
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Deganello et al. applied a curvature at the wall not calculated from the level set, but derived instead

from a physical law [31]. Both of these options require a priori knowledge of a forcing law. Further-

more, φ can be advected out of the blind spot, corrupting the solution elsewhere. Another option

is fitting the interface with a basis function series. These basis functions are then used to populate

the blind spot [87] or calculate the curvature [160]. This approach should work well as long as the

choice of fitted function is appropriate. However, it is unclear how to choose appropriate fitting

functions, particularly in 3D where the surfaces may not be ellipsoids. Sussman and Dommermuth

[144] used a direct panel approximation to fit the interface shape. This approach can be exact, but

it is computationally more expensive than an ordinary differential equation reinitialization.

A more basic question is whether it is possible to modify the advection equation (Eq. 1.10)

such that after transport, the level set φ is still a signed distance function. This simple approach

would reduce the necessary reinitialization frequency and, in the most extreme case, remove that

step entirely. Such an advection scheme has three major benefits: mass loss due to reinitialization is

reduced, fewer parasitic velocity currents are introduced at the contact line, and simulations are less

computationally expensive because reinitialization is a time-intensive routine. Examining a general

advection equation,

∂φ

∂t
+ û · ∇φ = 0 , (4.1)

the velocity û does not necessarily have to be the local fluid velocity ~u. Rather, it must only be a

velocity field such that the zero level set (fluid interface) is transported correctly in a Lagrangian

fashion. A natural question is if there exists a velocity field û that 1) transports the fluid interface

with the fluid velocity ~u and 2) maintains φ as a signed distance function. As derived by Zhao et

al. in the appendix of Ref. [171], the velocity field that satisfies these conditions is the extension

velocity un,

û = (~u · n̂)~x=P n̂ = unn̂ , (4.2)

where ~u · n̂ is evaluated at the interface point P closest to the Eulerian grid node. This condition
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Figure 4.1: Domain diagram around a contact line. The shaded region is the blind spot where no
characteristics (dashed lines) exist to trace the value of un. A, B, C, D, and P are points referenced
in the text. Numbers correspond to the band value Ba at the cell centers. The red arrow indicates
the direction of the propagated angle θ̃ (Sec. 4.2.2.2).

corresponds to enforcing a constant velocity along characteristics normal to the fluid interface and

zero velocity across the characteristic. For example, in Fig. 4.1, the extension velocity un at point

A is the value of ~u · n̂ evaluated at point P. An alternative statement is that the extension velocity

must satisfy the equation

∇un · ∇φ = 0 (4.3)

throughout the domain. Using extension velocities, the fluid advection equation (Eq. 4.1) becomes

∂φ

∂t
= −un|∇φ| . (4.4)

The construction of extension velocities is very similar to the reinitialization step both in imple-

mentation and computational cost. In particular, a blind spot still exists near contact lines where

there are no characteristics from the fluid interface (Fig. 4.1).

The goal of this chapter is to construct extension velocities un in the blind spot while maintaining

the integrity of the level set φ. These extension velocities should reduce the necessity of reinitializa-

tion and would supplement the technique developed in Chap. 3. Section 4.2 briefly describes the

existing extension velocity method employed outside of the blind spot and the proposed blind spot
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extension velocity routine. The central concepts are fixing the tangential wall velocity and propa-

gating the applied contact angle θ̃. Section 4.3 reintroduces the circular arc test from Sec. 3.2.1 and

evaluates the spurious velocity currents for this test case. An example is then shown for a pinned

droplet deforming under gravity in Sec. 4.4. This test case has contact angle deformation. While

all the equations of the present work are derived in 2D, the extension to 3D is straight forward and

described in Sec. 4.5. This section also discusses the limitations of this approach. Although this

chapter explores a new advection scheme, it is found in Sec. 4.6 that the central concept of propagat-

ing the contact angle θ̃ alone is necessary when applied to the QUICK/HCR2/relaxation formulation

of Chap. 3. This new relaxation equation reinitialization with QUICK is used throughout the Chap.

5 and 6.

4.2 Construction of extension velocities

4.2.1 Implementation outside of the blind spot

In order to use Eq. 4.4, the extension velocities un and gradient ∇φ must be constructed at each

grid point. A domain diagram near a contact line is shown in Fig. 4.1. The construction of extension

velocities outside of the blind spot closely follows the FMM procedure of Adalsteinsson and Sethian

[2]. The FMM is used because it is very computationally efficient.

A brief description of the FMM is given below; for a complete description see the review article

by Sethian [124]. The FMM solves Eq. 4.3 for each node in the domain in a progressive, point-wise

manner. The steps are:

Step 1: Points immediately next to the interface are initialized with their correct values un and

labeled as “accepted.” In general, accepted points are any points that have had their extension

velocity un evaluated. These initial seed points can be initialized in many ways and are similar to

a boundary condition for the FMM.
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Step 2: All non-accepted points that border accepted points are labeled “neighbor.” The neighbor

points are arranged in a heap structure by their interfacial distance. The point at the top of the heap

is always the closest of the neighbor points to the interface and has sufficient accepted neighbors to

calculate its extension velocity un.

Step 3: The extension velocity for the top point is calculated from the linear algebraic equation that

results from first-order finite-difference discretizations in Eq. 4.3 using the accepted neighbors and

level set information. The top point is removed from the heap and changed to accepted.

Step 4: All of the new accepted point’s non-accepted neighbors are added to the heap.

Step 5: Return to Step 3.

This process repeats until all points have extension velocities. The extension velocities can be eval-

uated in this way because a given location’s extension velocity is only calculated when there is

sufficient information around it. An example of accepted, neighbor, and far away points is shown in

Fig. 4.2a.

There are two crucial differences between the routine in Ref. [2] and the present work. First, the

initial accepted points where |Ba| = 1 (the points closest to the interface) use a different calculation

to determine the extension velocity un. For these points, the nearest interface point x̃ is first

determined from

x̃i = xi − d · n̂i = xi −
φ

|∇φ|2
∂φ

∂xi
, (4.5)

where the subscript i denotes directional components (Fig. 4.2b). d is the approximate distance

to the interface calculated using the signed, approximate distance function φ. The gradient com-

ponents ∂φ/∂xi are calculated using a least square, quadratic polynomial curve fit, similar to that
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Figure 4.2: a) Example diagram for the FMM. Accepted, neighboring, and far points are black, grey,
and white respectively. b) Diagram for computing the nearest interface point x̃.

for curvature [32]. Hereafter, these normals are referred to as “LSQ normals” as opposed to the

normal components calculated by first-order finite differences. Then, linear interpolation is used to

calculate the velocity components at x̃ (ui(x̃)) and the extension velocity un(~x) is calculated as

un(~x) = ~u(x̃) · n̂(~x) . (4.6)

The second difference is that while in [2], a temporary, reinitialized level set variable φtemp was

calculated for the evaluation of ∇φ in Eq. 4.3, no such variable can be readily calculated here due

to the blind spot effects on the reinitialization. As such, the level set φ is always used for ∇φ. The

level set is never reinitialized for Sec. 4.3 and Sec. 4.4. This restriction leads to drastic consequences

if a local minimum in |φ| occurs away from the interface; points could be mistakenly chosen as the

next point in the heapsort algorithm of the FMM and the first-order finite-difference stencils for ∇φ

could overlap. To solve the heapsort problem, the points with the smallest |Ba| are always at the

top of the heap and the ordering within these points is by the smallest |φ|. The second problem is

mitigated by derivative limiters; the first-order finite-difference gradients are checked to ensure that

the gradient implies accepted points are closer to the interface. For example, if φ > 0 at a point
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(i, j) and point (i+ 1, j) is accepted, the derivative in the x-direction is

∂φ

∂x
= min

(
0,
φ(i+ 1, j)− φ(i, j)

x(i+ 1)− x(i)

)
(4.7)

For a perfect signed distance function φ, these limiters would never be applied.

4.2.2 Implementation in the blind spot

4.2.2.1 Fast Marching Method (FMM) in the blind spot

For points such as C and D near the blind spot of Fig. 4.1, a different routine must be applied to

calculate un. Points not directly against the wall can use Eq. 4.3 since un should be specified for its

nearest accepted neighbors in the FMM. The problem is, therefore, reduced to specifying un only

for points along the wall in the blind spot. These points are identified in the algorithm as points

that are against the wall, but which do not have an accepted neighbor normal to the wall when they

are at the top of the heap.

The following condition is proposed for wall points in the blind spot: the component of the

extension velocity vector tangential to the wall, utan, is kept constant. This choice is consistent

with uniform translation along the wall. Instead of Eq. 4.3 in the FMM, the 2D equation for this

condition is

un(~x)sin (θ(~x)) = utan = un(~x1)sin (θ(~x1)) (4.8)

where ~x is the target point, ~x1 is its accepted neighbor, and θ is the local angle of the φ isocontours.

For points with |Ba| = 1 such as point C, the interface location ~x1 is interpolated between points

B and C; both the normal velocity un and the isocontour angle θ in Eq. 4.8 are then calculated at

~x1 using the LSQ normals. For points ~x with |Ba| > 1, the angle θ could be computed using finite

differences from the underlying level set φ. This approach, however, was found to be unstable due

to a negative feedback loop. For example, the angle θ at point D in Fig. 4.1 is determined (among

other things) by the value of φ in the cell above it (point E). The evolution of φ at that point, in
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turn, is determined by the value of un at point D. A feedback loop was observed which created a

checkerboard pattern in the contact angle θ after several transport iterations.

4.2.2.2 Propagation of isocontour angle θ̃

In order to remove the previously-mentioned feedback loop and stabilize the isocontour angle, the

angle θ used at each grid node is defined by propagating θ along the wall in the blind spot. For

clarity, the propagated angles are denoted by θ̃. In Fig. 4.1, the direction of θ̃ transfer is indicated

by the red arrow along the wall. For |Ba| = 1, θ̃ is calculated from the LSQ normals and then for

higher bands, θ̃ is marched outwards with the FMM using either Method 1: constant angle or

Method 2: linear extrapolation. For example, in Fig. 4.1, θ̃ at point D is

Method 1: θ̃D = θ̃C ,

Method 2: θ̃D = min
(
θ̃max, max

(
θ̃min, θ̃C + (xD − xC) θ̃C−θ̃BxC−xB

))
,

where θ̃i and xi are the isocontour angle and x-location of point i, respectively. θ̃min and θ̃max are

minimum and maximum values of θ̃. For physically realistic values, 0o ≤ θ̃min < θ̃max ≤ 180o. To

be consistent with Sec. 3.4, θ̃max = θmax = 170o and θ̃min = θmin = 10o throughout this work.

While method 1 is simple, it is similar to the ghost interfaces approach (Sec. 3.2.3.3) and, therefore,

is expected to be insufficient. Hence, the next order method (method 2) is also included. With such

propagation of the angle θ̃, information for determining un in the blind spot only depends on points

that are closer to the interface and previously accepted, and no negative feedback was observed.

4.3 Spurious currents

To quantify the spurious currents using this transport scheme, a uniform circular arc with a contact

angle θ = 45o trapped between two complete slip walls is translated. This case is the same as the

one used in Chap. 3: however, now, the arc must be transported; otherwise, the extension velocity

scheme would not be engaged.
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4.3.1 Configuration

Figure 4.3 shows the computational domain. It has a height H and a length L= 5H. The inlet has

a uniform velocity U for a capillary number Ca= µU/σ = 1 in the x-direction. Both fluids have

equivalent densities (ρ1 = ρ2) and an Ohnesorge number Oh= µ/
√
ρσH = 0.1. The initial condition

of the level set φ was a signed distance function. The domain was discretized in square cells with a

resolution of 125 H cells in the x-direction for the case labelled “Base”. Three more grid resolutions

were also considered and are referred to as “x2” , “x4”, and “x8” for twice, four times, and eight

times the number of grid points in the “Base” case. A time step of ∆t = 10−4µH/σ was used in all

simulations.

Since the extension velocity routine is concerned with calculating the correct interface velocity,

the interface error here is characterized in terms of the magnitude of the parasitic currents. The

exact solution to this problem is uniform, rigid-body motion at velocity U . Therefore, any velocity

deviations are due to errors caused by the transport scheme. For simplicity, only the x-direction

velocity errors are considered, but the y-direction velocity errors are comparable due to the fluid

incompressibility. The L∞ norm of the velocity error,

E = max(|u(~x)− U |) , (4.9)

is evaluated at time t both over the entire computational domain (ED, Figs. 4.4a and 4.5a) and only

along the walls (EW , Figs. 4.4b and 4.5b) at different grid resolutions. These errors are measures

of the spurious (parasitic) velocity currents.

4.3.2 Velocity error

When method 1 (fixed angle) is used to propagate θ̃, the velocity error does not show strong conver-

gence behavior (when finer meshes are used) in either ED or EW (Fig. 4.4). This lack of convergence

is expected; while ∂(n̂ · ~n)/∂n (the contribution of κ = −∇ · n̂ normal to the wall) is correct and
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Figure 4.3: Simulation domain for the transport of a circular arc (not drawn to scale).

converges, the curvature contribution along the interface always has an error from the fixed con-

tact angle. Thus, the spurious currents do not decrease to zero with increasing grid resolution for

method 1. Method 2 (linear extrapolation), on the other hand, does exhibit error convergence for

both ED (Fig. 4.5a) and EW (Fig. 4.5b). While the maximum error initially occurs along the wall

(ED = EW ), at later times the wall velocity error actually decreases and the maximum error occurs

at the center of the arc. When doubling grid resolution, the maximum velocity error ED decreases

by a factor between 0.45 – 0.55 and is nearly linear in ∆x/H (Fig. 4.6) reflecting first-order con-

vergence to the exact solution of zero. The linear θ̃ extrapolation is the lowest order propagation

method necessary for a solution that converges with grid resolution.

Although the velocity errors ED were found to increase in time for method 2 (Fig. 4.5a), their

magnitude is very small and can be controlled by sufficient mesh refinement. As will be shown in

the next section, these errors do not have a large effect on the solution.

4.4 Example: Pinned droplet

This example is used to verify that the proposed extension velocity method does indeed capture the

evolution of the contact angle. In order to show correct angle evolution, a non-equilibrium droplet

subject to gravity on a wall is allowed to equilibrate and then its final shape is compared to the

analytic solution.
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Figure 4.4: a) Domain spurious velocity error ED and b) wall spurious velocity error EW as functions
of time when a fixed angle θ̃ is propagated (method 1). Data sets differ by grid resolution. The
multiplication factor is relative to the base resolution (125 H cells in the x-direction).
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4.4.1 Configuration

The domain is a rectangle of height H and length L= 2H surrounded by walls with a no slip

velocity boundary condition (Fig. 4.7). The droplet is centered in the x-direction. The gravity

vector of magnitude g is oriented parallel to the bottom wall and the density ratio of the fluids is

set to ρ2/ρ1 = 0.9 to induce motion. The flow has an Ohnesorge number Oh = µ/
√
ρ1σH = 0.1.

A uniform grid of square cells with 200 H cells in the y-direction and a uniform time step ∆t

of 5 · 10−4 µH/σ. Despite the no slip boundary condition on the wall, there is a small amount

of numerical slip due to the finite grid discretization [96]. This small slip can change slightly the

droplet base width W from its initial value. Therefore, all the final comparisons are made with

the final value of the base width W (at equilibrium). The simulation is run until t = 40 when the

drop appears to be at steady state and the velocity is three orders of magnitude smaller than its

maximum in time.

Wall
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ρ1
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Figure 4.7: Configuration for a pinned droplet deformed by gravity in the positive x-direction (not
drawn to scale).

4.4.2 Derivation

For a 2D, equilibrium capillary surface with contact angles less than 90o, the surface can be expressed

as a height profile h(x) (Fig. 4.8a). This particular test case was chosen because it has an exact

solution. When gravity g is present along the wall, the drop deforms into a bulb shape as in Sec.
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3.5. An equilibrium fluid interface in this scenario can be derived from the Laplace condition,

[p] = σκ (4.10)

Using the height profile h(x), this equation takes the form

[p] = σ
−d

2h
dx2√

1 +
(
dh
dx

)2 . (4.11)

The hydrostatic pressure pi in each fluid is simply

p1 = ρ1gx+ a1

p2 = ρ2gx+ a2

where a1 and a2 are constants. Combining these relations with Eq. 4.11, the governing non-linear,

ordinary differential equation for the interface height h(x) is

σ
− d2h
∂x2√

1 +
(
dh
dx

)2 = p1 − p2 = (ρ1 − ρ2)gx+ (a1 − a2) = ∆ρg(x− x0) (4.12)

where x0 is a constant. Physically, x0 corresponds to the position where the surface curvature is 0

and the pressure is equal in both fluids. However, x0 is not strictly defined to be between x = 0

and x = W . Let ∗̄ be the non-dimensionalization of a variable with respect to drop width W . The

governing equation can be recast as

d2h̄
dx̄2√

1 +
(
dh̄
dx̄

)2
= −∆ρgW 2

σ
(x̄− x̄0) = −BoW (x̄− x̄0) (4.13)

where BoW is the Bond number using the length scale W . The boundary conditions for the equa-

tion are h̄(0) = h̄(1) = 0 since the drop is pinned. For a given x̄0 and BoW , this equation can be

solved numerically. The Matlab script used to accomplish this is given in appendix A. The relative

tolerance was set as 1/1000.
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Figure 4.8: a) Diagram of an interface h(x) pinned to the wall (not drawn to scale). b) Variation of
the solution interface shape with Bond number BoW for fixed x̄0.
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4.4.3 Solution h̄ behavior for different inputs, BoW and x̄0

Figures 4.8b and 4.9a show interface profiles varying either BoW or x̄0, respectively, while holding

the other parameter fixed. The curve BoW = 3.3 and x̄0 = 0 is the same in both figures. These

interface profiles are exact solutions to Eq. 4.13. The Bond number BoW determines the degree

of asymmetry in the droplet shape while x0 moves the curvature inversion point of the shape. It

is important to note that solutions may not exist for all combinations of x̄0 and BoW . For x̄0 = 0

(Fig. 4.8b), there is a practical limit for solving Eq. 4.13 at BoW ≈ 3.3. At this value of the Bond

number, the right edge of the droplet has a contact angle θ ≈ 90o (∂h̄/∂x̄ → −∞, Fig. 4.9b) and

h̄ becomes multivalued at x̄ = 1. As a result, the interface equation as formulated (Eq. 4.13) is

no longer valid. For fixed Bond number BoW , the value of x̄0 could make h̄ < 0 at some locations

which is also physically unrealistic (Fig. 4.9a).

The constant x̄0 is not easily determined a priori for a given initial condition. For a given Bond

number BoW , it is assumed x̄0 corresponds to a unique drop area. This assumption seems to be

supported by numerical results. As x̄0 increases in Fig. 4.9a, the surface height h̄ at every point

(save the ends) decreases. To compare solutions, the normalized droplet area A is first calculated

from the fluid mechanics results. Then, Eq. 4.13 is solved for a range of x̄0 and the solution that

most closely matches the area A is taken as the equilibrium solution.

4.4.4 Simulation comparison to the exact solution

The case chosen for comparison is x̄0 = 0 and BoW = 3.3 which is the most highly deformed drop

as it approaches the contact angle limit. The initial condition is a circular arc of width W = H and

contact angles α = 64.79o. The initial shape of the droplet and its equilibrium shape are shown in

Fig. 4.10a. The trailing edge (x̄ = 0) of the final shape has a different contact angle than initially

and is slightly displaced due to the small inherent, grid-dependent slip. This slip distance decreases

with grid resolution since the no slip velocity boundary condition is more strictly enforced. The final

shape has a base width W = 0.9787 H and the corresponding Bond number is now BoW = 3.16.
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Figure 4.10: a) Initial (red squares) and steady state (blue circles) surface shapes. b) Comparison
on the solution for Eq. 4.13 (curve) and the numerical simulation (dots) for a BoW = 3.16 and
x̄0 = −0.0296.

Angle Simulation Analytic

Leading edge 89.59o 89.69o

Trailing edge 41.02o 41.30o

Table 4.1: Leading and trailing contact angles for the pinned droplet. The angles were estimated
using a quadratic polynomial.

The fitted value x̄0 = −0.0296 gives the closest approximation to the drop area A. The contact

angle at the leading edge (x̄ = 1) is very close to 90o which prevents a closer area fitting. The

simulated drop shape is shown with the exact solution to the boundary value problem (Eq. 4.13)

in Fig. 4.10b. The qualitative agreement is very good. Importantly, the solution contact angles are

captured correctly (Tab. 4.1).

4.5 Extensions and limitations of blind spot extension veloc-

ities

Although the algorithm presented here is in 2D, the technique can be readily extended to 3D. The

two equations that need to be reconsidered are the condition for constant tangential velocity utan

(Eq. 4.8) and the linear extrapolation of the isocontour angle θ̃ (method 2). The tangential ve-

locity can still be held constant by changing the right side of Eq. (4.8) into a weighted average
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of unsin(θ̃) at the accepted neighbors along the wall where the weighting is determined by the 3D

normal vector at point ~x. Similarly, the extrapolation of angle θ̃ can be determined by solving the

equation ∇2
s θ̃ = 0 where ∇2

s is the surface Laplacian operator for the accepted neighbor points and

the derivatives are approximated by stencils biased towards accepted points. Such an extension

greatly increases application of the method for realistic simulations.

It is important to note that the results presented here do not imply that the reinitialization

step can be forgone; rather, it can be used less often and the values of θo (used in Eq. 3.8) have

higher fidelity. There are three reasons why reinitialization (defined in the previous chapter) is still

necessary. First, the narrow band structure requires reinitialization: when the interface moves and

new points are added to the narrow band, reinitialization is necessary to set the values of these new

points. Second, regions where the isocontour normal is not well defined, such as circle centers, will

have inaccurate values of the extension velocity un. The limiters on the derivatives in Eq. 4.7 are

a solution to this problem, but they are not sufficient. Reinitialization inherently fixes the level

set φ. Third, as shown in Fig. 4.5, the velocity errors are growing in time t. This growth rate

scales approximately linearly with the velocity U (and subsequently Ca) because the errors in the

advection equation are multiplied by the velocity magnitude. While the errors are less than 1%

for all the grid resolutions shown (Fig. 4.5), at some time the error might grow to unacceptable

levels. A reinitialization step would smooth out the level set and reduce these errors. Higher-order

discretizations of the extension velocity FMM are also expected to reduce these errors. However,

while such algorithms exist, their implementation is more complicated [124] and beyond the scope

of this work.

4.6 Reinitialization with angle propagation

Ideally, a reinitialization technique should handle the blind spot correctly even with an incorrect

initial level-set field. In other words, the reinitialization technique should populate the blind spot

with correct values as long as the interface location is known. For an incorrect level set function
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Figure 4.11: a) Integrated error EP for a circular arc (Sec. 3.3). b) Equilibrium surface using the
QUICK transport scheme and the reinitialization routines with angle θ̃ (Sec. 4.4).

away from the interface (φ = 0), the computed local θo could be wrong, but the propagated θ̃ would

still be a good approximation to the correct target angle. The relaxation equation (Eq. 3.8) becomes

∂φ

∂τ
= sgn ·

(
cos(θ̃)−

(
∂φ
∂n

|∇φ|

))
. (4.14)

By using the angle θ̃ from Sec. 4.2.2.2 instead of the angle θo in Eq. 3.8, the level set in the blind spot

is constructed using data from points closer to the interface. An incorrect level set is transformed

into one consistent with the fluid interface. This reinitialization would be a stand-alone procedure.

To demonstrate the reinitialization with angle propagation, two previous cases are repeated. The

circular arc integrated error Ep for the prior relaxation equation tests (Sec. 3.3) and this new scheme

is shown in Fig. 4.11a. The angle propagation does decrease the accuracy of the solution since the

new solution (blue squares) has more error than the original third-order test (black triangles), but it

has nearly the same error as the second-order relaxation equation (green circles). Figure 4.11b shows

the equilibrium surface for the droplet in Sec. 4.4. In these new simulations, the QUICK scheme

was used to advect the level set. The angle evolution is again preserved correctly. The values of

BoW = 3.25 and x̄0 = −0.01 (W = 0.993 H) are closer to the values originally targeted indicating

less numerical slip of the surface profile.
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While the extension velocities can be used, they are inherently low-order since a first order FMM

was employed unlike the QUICK transport scheme (third-order spatial accuracy). Furthermore, the

QUICK scheme is more computationally efficient than the extension velocities since un does not

need to be calculated. For these reasons, the QUICK scheme is used in the remainder of the present

work.

4.7 Summary

In this chapter, an algorithm to construct extension velocities in the blind spot was developed. This

method propagates the value of the tangential extension velocity, utan, along the wall. This choice

is consistent with uniform translation along the wall. To prevent an instability, it was also necessary

to propagate the local level-set contact angle θ along the wall away from the interface. This angle

θ̃ must be propagated with at least linear extrapolation to capture accurately cases with non-zero

curvature. This choice enforces the curvature at the contact line in a manner similar to the relaxation

equation. While the extension velocities can be used for advection, angle propagation algorithm is

further extended to the relaxation equation and found sufficient for easier advection schemes. The

reinitialization routine at a contact line is now complete, self-sufficient, and accurate. Hereafter, this

reinitialization will be referred to as the relaxation equation reinitialization. The QUICK scheme

will be used to advect the level set φ. The following chapter adds contact-line physics.
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Chapter 5

Volumetric-filtered contact-line
source terms

Do what you can, with what you have, where you are.

— Theodore Roosevelt

5.1 Introduction

The prior two chapters developed a level set function transport scheme and a reinitialization rou-

tine that did not produce parasitic velocity currents at contact lines. All previous simulations were

performed without knowledge of a specific contact angle. Realistic simulations must also contain

contact-line physics. This is the focus of this chapter. Section 5.1.1 introduces the assumptions

for the contact-line physics and Sec. 5.1.2 describes the inherent numerical difficulties for these

conditions.

5.1.1 Assumptions

As discussed in Sec. 1.2.2, there are two necessary pieces: a velocity boundary condition at the wall

to remove the stress singularity and a means to achieve the equilibrium contact angle at rest. The

choices adopted are
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Assumption 1: a Navier-slip boundary condition (Eq. 1.4),

Assumption 2: a fixed contact angle at the wall.

Both of these assumptions have arguments for and against them and all of the modeling results are

subject to their validity. Since the Navier-slip boundary condition (Assumption 1) has been observed

in molecular dynamic simulations for small (subcritical) shear rates [151, 152], this choice may be

physically accurate. Other authors have argued that a slip-model-based approach cannot describe

experiments [132] or that the slip length is not a physical quantity, but rather it is a function of

the contact-line speed [39, 92] or spatially varying [77]. Nevertheless, it has been suggested that

different slip models will macroscopically look alike [38, 128] and thus it is not necessary to have the

slip model exactly correct. Natural choices for the fixed contact angle (Assumption 2) are the static

equilibrium angle θS , the static advancing angle θsa, and the static receding angle θsr. The later two

can be used to represent contact angle hysteresis [23, 113]; for simplicity, the static contact angle θS

is considered in this chapter, but the hysteresis angles can be substituted for it as a simple contact

angle hysteresis model (Chap. 6). A fixed static contact angle (Assumption 2) is often used in

numerical [19, 137] and classic analytic [28, 63, 67] studies. Other studies, however, have suggested

that the microscopic contact angle is not fixed (Assumption 2); rather, it is velocity dependent due

to changing surface energies in Young’s equation (Eq. 1.1) [129]. There is no common agreement in

literature for what choices are the best; the choices adopted here are the simple, classical options.

With these choices, the fluid mechanics is mathematically well-posed.

While other phenomenon such as evaporation / condensation [126, 127] and disjoining pressure

[6, 109, 165] could be modeled, excluding these mechanisms does not necessarily limit the applica-

bility of the mathematical framework developed in this chapter. The slip length λ, which is fit to

experimental data, may even be equivalent to substrate heterogeneities [83] and other physical mech-

anisms [120, 134]; this “effective slip length” is a model itself. For example, the Cassie-Baxter model

for wettability on porous surfaces [23] has pockets of gas trapped underneath the liquid. The trapped

gas could be represented by a large slip length since the surface is less resistant to flow than a solid
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surface. Despite the assumption limitations, relevant interfacial fluid dynamics can still be examined.

If the slip length is of the order of molecular length scales, the continuum limit may no longer

apply [132]. In order to still use the Navier-Stokes equations (Eq. 2.1), the fluid is approximated as

still in the continuum-limit.

Assumption 3: Continuum fluid mechanics can be used at the slip length scale.

5.1.2 Numerical limitation

There is a fundamental computational challenge when using the Navier-slip boundary condition;

realistic slip lengths are expected to be of the order of nanometers [39, 92]. For millimeter sized

droplets, this problem could have over 6 orders of magnitude difference in length scales! This is

the multiscale nature of the contact-line problem. For DNS, computational memory is a limiting

factor. Furthermore, even if non-uniform meshes are used, the capillary CFL condition (Eq. 2.21)

requires a prohibitively small time step ∆t because the smallest grid dimension must be less than

the slip length in order to achieve velocity convergence [4, 137]. Using adaptive mesh refinement

(AMR), the smallest slip length ratio simulated to date is 10−4 by Sui and Spelt [141, 142]. Ideally,

one would prefer to perform simulations with a grid length scale ∆x >> λ to reduce both of these

limitations. For these grid sizes, however, the shear rate near the contact line is not captured well

(Fig. 5.1). The viscous resistance is underestimated. Even for a no slip boundary condition, there

is an inherent grid dependent slip [96] due to this missing resistance.

The approach explored here to capture this unaccounted viscous shear at large length scales ∆x

is similar in concept to Large Eddy Simulations for turbulent flows [118]. When volume averages oc-

cur on a length scale ∆x >> λ, there will be unclosed terms in the Navier-Stokes equations. Rather

than calculate the dynamic or apparent contact angles, these source terms will just add the physics

that are under-represented on a coarse mesh. The contact angle at the cell center nearest the wall

can be left freely floating using the relaxation equation reinitialization and will be determined by
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Figure 5.1: Shear rate ∂u/∂y along the wall. The curves are different number of grid points per slip
length λ.

all the physics in the simulation as a whole. There are three major benefits to this approach over a

contact angle law. First, some variable dependencies, such as the Reynolds number Re, do not have

to be known a priori since these are inherent to the simulation. Second, non-unique contact angles

are allowed; the contact angle can be history dependent. Lastly, reinitialization at every time step

is not required since the contact angle is not enforced by it. The modeled terms may have sufficient

accuracy to enable simulation of multiple droplet contact lines without supercomputers.

To derive appropriate momentum source terms, the Navier-Stokes equations are first volume-

filtered in Sec. 5.2 to identify the terms that need to be modeled. Then, a collection of fully-resolved

simulations for a 2D Cartesian capillary are performed and analyzed to determine appropriate forms

of the average curvature and the contact-line viscous shear (VS). While the slip length λ in these

exploratory simulations is made rather large to be computationally tractable, useful scaling informa-

tion can still be obtained; these scalings are assumed to hold at smaller slip lengths. Unfortunately,

a true computational comparison at these small length scales is not possible with current computer

technology. To the author’s knowledge, this is the first study to numerically analyze the scaling

of the viscous resistance at a contact line for the Navier-slip boundary condition. Prior work by

Afkhami and Bussmann [4] and Spelt [137] showed similar velocity distributions along the wall, but

those works only used these curves to show convergence of the numerical solutions. The viscous

resistance is examined here as a function of the static contact angle θS , the slip length ratio ε, and
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Figure 5.2: a) Diagram of the staggered grid. C is the locations of cell centered variables and u, v
are the face centered velocity locations. The blue and red rectangles are the control volumes (box
filters) V centered on u and v, respectively. b) 2D box filter of size ∆x x ∆y containing the contact
line. L, R, T , and B denote the four cell sides. Point P is the grid node about which the control
volume is centered.

the capillary number Ca. These relations would fully close the momentum equations and enable

simulations with small and realistic slip lengths on coarse meshes. This approach is general: other

physical mechanisms such as evaporation can be easily incorporated using this methodology if so

desired.

5.2 Filtered Navier-Stokes equations at a contact line

The filtered Navier-Stokes equations are derived using a box filter. In other words, the equations are

averaged over a given volume. The volume integration (filter) over a control volume V is defined as

Ψ =
1

V

∫∫∫
V

ΨdV =
1

V

(∫∫∫
V1

ΨdV +

∫∫∫
V2

ΨdV

)
(5.1)

where Ψ represents any quantity and Vi is the volume of fluid i. Integrating Eq. 2.1 over a grid cell

and applying the divergence theorem,

∂ρ~u

∂t
+

1

V

∫∫
S

(ρ~u⊗ ~u) · dS = − 1

V

∫∫
S

PdS +
1

V

∫∫
S

D · dS (5.2)

where S is the surface of the box filter. Only the 2D case (box filter size ∆x×∆y) with a horizontal

wall is shown here for simplicity, although an extension to 3D or vertical walls is straightforward.
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The staggered mesh arrangement is shown in Fig. 5.2a: u / v denote the face centered locations of

the velocity components and C represents the cell centers where the level set φ, curvature κ, and

pressure p are stored. The box filter for volume averaging the x-momentum equation is in blue while

the red box is for the y-momentum equation. As the slip length affects the behavior only close to the

wall, grid cells far away from the contact line should be well approximated on the coarse mesh and

do not need to be considered. Since the v grid cell near the wall (red, Fig. 5.2a) does not contain

a contact line, the y-momentum equation does not need to be considered: the field of surrounding

information is the same as anywhere else in the fluid domain and all quantities are correct in the

macroscopic sense. The x-momentum equation, however, is affected by contact lines for the given

wall orientation. A box filter containing a contact line is shown in Fig. 5.2b. L, R, T , and B are

the left, right, top, and bottom edges of the cell, respectively. Let LHS be the left hand side of the

x-component of Eq. 5.2 (u-momentum equation). The inertial terms (LHS) are most important at

large length scales and thus do not need to be modeled. Terms will be added to LHS if they are

correct in the macroscopic sense and do not require variable closure. Note: LHS does not have a

rigid value in this derivation. All terms that need to be modeled will be isolated on the equation’s

right hand side. In this notation,

LHS =
1

∆x∆y

∫ ∆y

0

(PL − PR)dy +
1

∆x∆y

∫ ∆y

0

(
2µ
∂u

∂xR
− 2µ

∂u

∂xL

)
dy+

1

∆x∆y

∫ ∆x

0

[
µ

(
∂v

∂x
+
∂u

∂y

)
T

− µ
(
∂v

∂x
+
∂u

∂y

)
B

]
dx

(5.3)

Subscripts indicate the side over where each term is evaluated.

Assumption 4: The averaging volume dimensions are much larger than the slip length,

λ << ∆x,∆y.

This regime is where a model would be most useful. The contact line is assumed to be generally far

away from the edges (L and R) and only at the edges momentarily such that the velocity distortion

due to the contact line is fully contained in the grid cell. In this case, the top T , left L, and right R

sides are far away from the contact line: the averages over these sides do not need to be modeled.

The bottom B, however, does need to be considered as well as the effect on the jump condition in
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pressure. For ease of notation, let

ax =
1

∆x

∫ ∆x

0

adx

ay =
1

∆y

∫ ∆y

0

ady

be the directional averages of quantity a. Moving terms to LHS, Eq. 5.3 becomes,

LHS =
1

∆x

(
PL

y − PR
y
)
− 1

∆y

(
µ
∂v

∂x

)
B

x

− 1

∆y

(
µ
∂u

∂y

)
B

x

(5.4)

Since v = 0 on the wall (no penetration boundary condition), the second term on the right hand side

is identically zero. To further reduce the first term on the right hand side, an assumption consistent

with the GFM is used,

Assumption 5: ∇P y is the same on both sides of the interface.

The pressure difference to first order can be written as

PL
y − PR

y
= −∇P y∆x+ [P

y
] (5.5)

where [a] is a jump in the variable a across the interface between the fluids. Applying the simplified

Laplace condition (Eq. 2.17),

PL
y − PR

y
= −∇P y∆x+ σκy (5.6)

The gradient of P
y

is a macroscale quantity and can be added to LHS. If the surface tension σ is

constant, it can be removed from the average in the last term. Eq. 5.4 then simplifies to

LHS =
1

∆x
σκy − 1

∆y

(
µ
∂u

∂y

)
B

x

︸ ︷︷ ︸
V S

(5.7)

Two unclosed terms remain: an average curvature κy and a viscous shear (VS). These terms are

modeled from DNS. All other terms are the exact same as in the unfiltered Navier-Stokes equations.
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Figure 5.3: 2D Cartesian capillary tube domain for the DNS of contact line dynamics (not drawn
to scale).

5.3 Slip-length resolved simulations

DNS were conducted to generate interface and velocity data for approximating the average curvature

and the viscous shear VS. This section describes the configuration (Sec. 5.3.1), parameters examined

(Sec. 5.3.2), and a new numerical implementation for the contact angle (Sec. 5.3.3). The results

from these simulations are analyzed in the subsequent sections (Sec. 5.4 and 5.5).

5.3.1 Configuration

The test geometry for the DNS is a 2D Cartesian capillary tube of height H and length L (Fig.

5.3). A symmetry boundary condition is imposed at the top of the domain to decrease the number

of grid nodes. The inlet has a Poiseuille flow velocity distribution with mean velocity UCL and the

outlet has a zero Neumann boundary condition for the normal velocity u. The bottom wall has a

Navier-slip boundary condition on u (Eq. 1.4) and a no penetration boundary condition on v. In

other works [46, 128, 137], a grid resolution of 5 points per slip length was determined sufficient for

solution convergence. As such, gird cells are squares with sides ∆x = ∆y = λ/5. The initial fluid

interface is a circular arc located a distance XS from the inlet with the static contact angle θS at

the wall. The simulations are run until a steady interface shape has been achieved with uniform

velocity UCL in the x-direction and zero velocity in the y-direction. The exact values of the domain

length L, interface start location XS , time step ∆t, and the end time tend are unimportant as long

as the interface has sufficient space and time to evolve towards a steady propagating interface. The

QUICK scheme and relaxation equation reinitialization are used with the level set (Chap. 3 and 4).
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While most DNS did not require more than two days run-time on one 12-core Intel Xeon CPU

node, a few modifications were necessary to decrease the simulation time for the smallest slip lengths,

λ = H/160 and H/320. In these cases, four changes were employed. First, the reinitialization fre-

quency was reduced to only once every hundred time steps. Since the reinitialization is computation-

ally expensive, real simulation time greatly decreases with reinitialization frequency. This less-often

reinitialization frequency is allowed because of the techniques discussed in the previous chapters.

Second, only a region around the interface had grid size ∆x = λ/5; far away from the interface, the

grid cell size ∆x grew exponentially by a factor of 1.1 to decrease the total number of grid nodes

while still isolating the inlet and outlet. Third, the initial condition was no longer a circular arc;

rather, the initial condition was the final solution at the next largest value of the slip length λ. This

change substantially decreased the number of time steps necessary to reach steady state. Lastly, the

domain was only decomposed in the y-direction among the multiple processors for better load bal-

ancing. Otherwise, only the processors containing the interface would be utilized when calculating

curvature and reinitializing. A steady state profile computed in this way was compared against the

original procedure for λ = H/80, θS = 50o. The profiles were found identical.

5.3.2 Relevant parameters

Only part of the contact-line parameter space is examined in this study. Continuum-scale dimen-

sionless parameters that could play a role in the contact-line region are:

• Reynolds number Re= ρ1UCLLM/µ1

• Density ratio η = ρ2/ρ1

• Viscosity ratio ξ = µ2/µ1

• Slip length ratio ε= λ/LM

• Static contact angle θS
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• Capillary number Ca= µ1UCL/σ

where LM is a large length scale in the problem. For the 2D Cartesian capillary geometry, LM is

chosen to be capillary height H. Since viscous effects are expected to dominate in the vicinity of

the wall, the fluid is in the Stokes flow regime. For Stokes flow, neither the Reynolds number Re

nor the fluid densities (hence η) are important parameters and, therefore, they are not considered.

Furthermore, Stokes flow implies that the fluid behavior next to the contact line can be assumed

quasi-static. The viscosity ratio ξ was examined and found to have a weak dependence on the

models derived outside of its current use; it will not be discussed here. All simulations have unity

values of the density ratio η and the viscosity ratio ξ since the specific values are unnecessary in the

current model. A parameter space of the remaining three variables is considered. The slip length

ratio ε is varied from 1/20 to 1/80 with two additional points at 1/160 and 1/320. These values of

ε are somewhat large to be computationally feasible. The static contact angle θS is varied in the

partially-wetting regime (30o < θs < 150o) for two reasons. First, this regime is more difficult to

describe analytically because lubrication approximation approaches are not appropriate. Despite

its obvious physical relevance, this partially-wetting regime has also not been as well characterized.

Second, the square grid cells can better approximate interfaces and the relaxation equation (Eq.

3.5) converges best for angles that are not near 0o or 180o. The simulations here are not expected

to easily capture entrained fluid films that may exist on surfaces when the grid is not sufficiently

refined. The capillary numbers Ca are 0.0033, 0.01, and 0.03. At these capillary numbers, surface

tension effects are dominant. For the largest capillary number, the number of available contact

angles θS is reduced because the apparent contact angle θapp for the fluid profile approaches 180o

and a film of fluid 2 remains on the wall (viscous fingering).

A table of all the simulations performed and the figures where they are used is given in appendix

B.
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Figure 5.4: Diagram of the geometry when calculating the average interface curvature. The interface
intersects the wall at the static contact angle θS and has an angle θ at point P .

5.3.3 Contact angle implementation

In order to enforce a static contact angle at the wall (Assumption 2), a fixed angle could be used for

θo in the relaxation equation (Eq. 3.5). In other words, θ0 = θS . This approach, however, requires

reinitialization at every time step to ensure the angle is exact. Rather than a strong boundary

condition for angle enforcement, a weak boundary condition would allow reinitialization to occur

less often. This is a new approach. One such option is adding a forcing term to the Navier-Stokes

equations at the contact line. The forcing term chosen here is an additional curvature contribution

at the contact line,

κapp = κ+
cos(θ)− cos(θs)

∆y
c (5.8)

where κapp is the curvature applied in the GFM, κ the curvature calculated from the level set variable

φ, θ the contact angle calculated from φ, θS the static contact angle, and c any positive constant.

This term was observed to drive the angle to the static contact angle for c = 1. The choice of c is

arbitrary and larger values can be used to more strictly enforce the static contact angle.

5.4 Average curvature model

In this section, a model is proposed for the average curvature and then compared to DNS interface

results from Sec. 5.3. The last subsection describes how this term can be implemented numerically.
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5.4.1 Model derivation

To derive a model for the average curvature, a point P at distance ∆y above the wall is considered

(Fig. 5.4). The fluid interface at point P has an isocontour angle θ relative to the wall orientation.

Assumption 6: The fluid interface smoothly transitions from an apparent contact angle θ at

y = ∆y to the static contact angle θS at y = 0.

Averaging is a naturally smoothing process; therefore, an average curvature should be the approxi-

mation from such a smooth interface. This assumption may not be good if a fluid film is entrained

at the wall (θ ∼ 180o). A smooth angular transition can be approximated by a circular arc of radius

R. From the geometry in Fig. 5.4, the distance ∆y can be expressed as

∆y = R cos (180o − θS) +R cos (θ) . (5.9)

Rearranging and using trigonometric relations, the average interface curvature in the plane is

κ̄ =
1

R
=
cos (θ)− cos (θs)

∆y
. (5.10)

This formula is the same regardless of the orientation of θ and θS ; it is not specific to the curvature

shown in Fig. 5.4. This formula is similar to those used by other authors [19, 31, 160]. Surprisingly,

this formula is consistent with other physical arguments. If the unbalanced (non-compensated)

Young’s force (Eq. 1.2) is averaged over the height ∆y, a similar forcing term is obtained,

FY =
1

∆y

∫ ∆y

0

δ(y)σ (cos (θ)− cos (θs)) dy = σ
cos (θ)− cos (θs)

∆y
(5.11)

where δ is the Dirac delta function. This variation assumes a dynamic contact angle θ at the wall.

The model derived here could, therefore, arise from other derivations.
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Fig. # θS Ca ε
5.5 50o 0.01 1/40
5.6 90o 0.01 1/40
5.7 50o 0.03 1/40
5.8 50o 0.01 1/80

Table 5.1: Values for the capillary number Ca and static contact angle θS in Fig. 5.5 – 5.8.

5.4.2 Average curvature from DNS

The DNS results are post-processed to determine the correct average curvature. A selection of re-

sults are shown in Fig. 5.5 – 5.8. Other parameter values showed similar results. The slip length

ratio ε, the capillary number Ca , and the static contact angle θS for these simulations are given in

Table 5.1. All of these figures show the initial and final steady-state interface profiles in panel (a).

The static contact angle is maintained at the bottom of the interface in all cases since the initial and

final curves align there. This result implies that the weak boundary condition for angle enforcement

(Sec. 5.3.3) is sufficient to enforce the static contact angle at the wall. In panel (b) of Fig. 5.5 –

5.8, the exact value of the interface curvature κ is shown by the black circles, the average value of

the curvature is the red squares, and the average curvature from the model (Eq. 5.10) is the blue

diamonds. In all cases, the model agrees very well with the DNS average curvature at distances

larger than five slip lengths from the wall. The agreement is slightly better for static contact angles

approaching 90o (Figs. 5.5b and 5.6b) and worse as the capillary number Ca increases (Figs. 5.5b

and 5.7b). As the slip length ratio ε decreases, the comparison also improves (Figs. 5.5b and 5.8b).

In summary, the model appears to represent the average curvature very well.

5.4.3 Model implementation

Implementing the average curvature model is straightforward. For nodes at the contact line, the

interface curvature κ is replaced by the average curvature κ̄ (Eq. 5.10) in the Laplace condition

(Eq. 2.17) for the GFM. This substitution only occurs for velocity components tangential to the

wall. For example, with the horizontal wall orientation in Fig. 5.2a, the Laplace condition for
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κ̄ from the DNS (red squares), and the average curvature κ̄ from Eq. 5.10 (blue diamonds). The
x-axis of the plot is distance from the wall in slip lengths.
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the y-momentum equation still uses the local curvature κ value, while the x-momentum equation

uses the average curvature κ̄. One small point should be noted; the apparent angle θ at the wall is

actually calculated at the cell center where the level set φ is stored. Therefore, the average curvature

is applied numerically as

κ̄ =
cos (θ)− cos (θs)

∆y
2

= 2
cos (θ)− cos (θs)

∆y
(5.12)

5.5 Viscous shear (VS) model

In this section, the form of the viscous shear VS is first analyzed to determine the appropriate

quantities to model. These quantities are then examined using the DNS data from Sec. 5.3 and

approximate forms are suggested. The last subsection describes an implementation method for the

viscous shear using an effective fluid viscosity.

5.5.1 Model derivation

The viscous shear term (Eq. 5.7) that needs to be modeled along the wall is

V S =
1

∆x
∆y

∫ ∆x

0

µ
∂u

∂y
|Bdx . (5.13)

Let the interface be at location x = a on the bottom wall (Fig. 5.2b). As before, this point is

assumed sufficiently far from the filter edge that any velocity distortion due to the contact line is

contained within the filter. Substituting in the Navier-slip boundary condition (Eq. 1.4) for ∂u/∂y,

V S =
1

∆x
∆y

∫ ∆x

0

µ
u

λ
dx . (5.14)

Assumption 7: The velocity tangential to the wall u can be expressed as the linear com-

bination of a macroscopic bulk flow velocity uB and a microscopic velocity perturbation uS

(u = uB + uS).
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The viscous shear can now be expressed as

V S =
1

∆x
∆y

∫ ∆x

0

µ
uB
λ
dx+

1

∆x
∆y

∫ ∆x

0

µ
uS
λ
dx . (5.15)

The first term is a macroscopic quantity. It does not need to be modeled and is calculated at

the large length scale. It is therefore removed from the term VS and moved into the LHS. This

removal is important to avoid “double counting” [132] viscous forces that might otherwise occur

when the microscale model and the macroscale simulation are used simultaneously. Let x̂= x/λ and

ūS= uS/(UCL− uB) where UCL is the contact line velocity. This non-dimensionalization makes the

maximum value of ūS along the wall unity. As uB represents the velocity along the wall far away

from the contact line where the no-slip condition is nearly valid in the limit of small slip lengths, it

is appropriate to assume

uB ≈ 0, ūS ≈
uS
UCL

. (5.16)

With the prior considerations, the viscous shear becomes

V S =
UCL

∆x∆y

∫ ∆x/λ

0

µūSdx̂ . (5.17)

Splitting the integral into each fluid,

V S =
UCL

∆x∆y

(∫ a/λ

0

µ1ūSdx̂+

∫ ∆x/λ

a/λ

µ2ūSdx̂

)
(5.18)

For convenience, the integrals can be recentered at a/λ (x̄= (x− a)/λ),

V S =
µ1UCL
∆x∆y

(∫ 0

−a/λ
ūSdx̄+ ξ

∫ (∆x−a)/λ

0

ūSdx̄

)
(5.19)

An example of ūS is shown in Fig. 5.9. The left curve (x̄ < 0, fluid 1) can be expressed as some

function ūS =f(x̄,Ca, ε, θS) while the right curve (x̄ > 0, fluid 2) is ūS =g(x̄,Ca, ε, 180o − θS).

Regardless of Ca, ε, or θS , as |x̄| → 0 both functions approach 1 and as |x̄| → ∞ approach 0. This
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Figure 5.9: Example microscopic velocity ūS along the solid wall. f and g are functions for the left
and right hand sides of the peak, respectively.

behavior suggests that the infinite integrals in Eq. 5.19 may be finite.

Assumption 8: Both f(x̄,Ca, ε, θS) and g(x̄,Ca, ε, 180o − θS) have finite integrals.

Since f(x̄,Ca, ε, θS) and g(x̄,Ca, ε, 180o − θS) should be exactly zero after a certain distance from

the contact line, this assumption is valid. As long as λ << ∆x (Assumption 4) and a is not near

the filter edges, the integrals in Eq. 5.19 can be replaced by their infinite counterparts with only a

small approximation error,

V S =
µ1UCL
∆x∆y

(∫ 0

−∞
f(x̄,Ca, ε, θS)dx̄+ ξ

∫ ∞
0

g(x̄,Ca, ε, 180o − θS)dx̄

)
(5.20)

In the special case when ∆x→ λ, the integral bounds would need to be included in order to cause

the source term VS to vanish. The grid dependence of the integrals in this limit is not considered

here. If ∆x >> λ, the exact functions f(x̄,Ca, ε, θS) and g(x̄,Ca, ε, 180o − θS) do not need to be

known, but only their integrals F and G,

F (Ca, ε, θ) =

∫ 0

−∞
f(x̄,Ca, ε, θ)dx̄ (5.21)

G (Ca, ε, θ) =

∫ ∞
0

g(x̄,Ca, ε, θ)dx̄ . (5.22)
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The resulting expressions for the term that needs to be modeled is

V S =
µ1UCL
∆x∆y

[F (Ca, ε, θS) + ξG (Ca, ε, 180o − θS)] . (5.23)

F and G are hereafter referred to as the shear factors. The data processing procedure to calculate

the shear factors F and G is described in appendix C.

5.5.2 Viscous shear from DNS

The compilation of all the numerical shear factors F and G is shown in Fig. 5.10. For a given

static contact angle θS , the F points (squares) are when θ = θS and the G points (circles) are when

θ = 180o − θS . The analysis is divided into three sections. Section 5.5.2.1 discusses the relative

values of F and G. These variables are nearly equal. The shear factors’ dependence on capillary

number Ca is then examined in Sec. 5.5.2.2 and the dependence on the slip length ratio ε and static

contact angle θS is explored in Sec. 5.5.2.3.

5.5.2.1 Shear factors F and G

The shear factors appear to form smooth curves in θ for fixed Ca and ε. In most cases, F ≈ G. This

similarity is worse as slip length ratio ε decreases, capillary number Ca increases, or the contact angle

θ decreases. Since θapp differs more from the static contact angle θS in these ways, the asymmetry

of F and G is not surprising because the interface is more distorted; the viewpoints of the advancing

and receding contact lines have different interfaces. Symmetry will apply if the viewpoints have the

same interface.

Assumption 9: F = G.

This assumption greatly simplifies the analysis and increases the amount of data available for av-

eraging. For most values in Fig. 5.10a and Fig. 5.10b, this assumption seems accurate; however,

at higher capillary number Ca (Fig. 5.10c), it may not be valid. This last data set (Ca = 0.03)

is particularly hard to analyze because F or G is unavailable at the edge angles; the maximum

simulated static contact angle θS simulated was 110o (appendix B) because a liquid film would be
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entrained at these high velocities (θapp → 180o).

5.5.2.2 Variation with capillary number Ca

In order to analyze the capillary number Ca effects, let γ be the ratio of the shear factors at a given

value of ε and θ, but differing capillary numbers. The values of γ comparing Ca = 0.0033 against

Ca = 0.01 and Ca = 0.01 against Ca = 0.03 are shown in Fig. 5.11. Despite the capillary numbers

varying by a factor of three, the ratios γ have a much smaller spread. Since γ is nearly always

between 0.9 and 1.1, F (or G) is nearly independent of Ca.

Assumption 10: F and G are independent of capillary number Ca.

This assumption makes the viscous shear VS vary linearly with the contact line velocity UCL. The

remaining shear factor analysis will only use the intermediate capillary number Ca = 0.01, Fig.

5.10b.

5.5.2.3 Variation with slip length ratio ε and static contact angle θs

The asymptotic hydrodynamic theory (Eq. 1.5) suggests that the viscous terms may only have

a weak, logarithmic dependence on the slip length ratio ε. Plotting the data for θS = 50o (Fig.

5.12), F (or G) appears linear which indicates a power-law dependence on the slip length ratio

ε. The power-law exponent is determined by the angle θ. The relationship found here is stronger

than the logarithmic dependence of hydrodynamic theory. For a power law, the form of F can be

approximated as

F (ε, θ) = A(θ)εB(θ) (5.24)

where A(θ) and B(θ) are unknown functions of the contact angle θ.

B(θ) is approximated first because it can be easily evaluated by taking the ratio of two shear

factors at different values of ε and constant θ. The four values of B(θ) from F and G in Fig. 5.10b

at a given θ are averaged together to create the curve in Fig. 5.13a. This curve for B(θ) has an
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Figure 5.10: Diagrams of the integrated quantities F (squares) and G (circles) as functions of contact
angle θ, slip length ratio ε, and capillary number Ca. Colors denote different values of the slip length
ratio ε. The different figures are different Ca : a) Ca = 0.0033, b) Ca = 0.01, c) Ca = 0.03.
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inflection point at θ = 90o and is well approximated by the function

B(θ) = −0.478− 0.057cot(θ) . (5.25)

Factoring out εB from the shear factors yields A(θ) (Fig. 5.13b). Excluding the extreme angles

(θ = 30o, 150o), the function A(θ) is almost linear. These end values of θ may be poorly represented

by Eq. 5.24 for two reasons. First, Fig. 5.10b, the data source, had a large spread in F and G at

θ = 30o; the distortions in Fig. 5.13b could be a direct result of this spread. Second, the grid cells

used in the DNS were square; neither an angle of 30o nor 150o may be well represented on such

meshes. Nonetheless, the relationship found seems very good for angles θ close to 90o. The model

viscous shear source term is

V S = −µ1UCL
∆x∆y

(F (ε, θS) + ξF (ε, 180o − θS)) (5.26)

where

F (ε, θ) = (0.772− 0.12θ)ε−0.478−0.057cot(θ) . (5.27)

The viscous shear term is added to the right-side of the Navier-Stokes equations for the node nearest
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the contact line. For a wall in the positive y-direction, this term would have opposite sign.

Assumption 11: Although the viscous shear term VS is derived from a small range of large

values ε, it also holds for smaller slip length ratios ε.

This assumption allows the model to be extended to the region of small slip lengths λ. More fully

resolved simulations may be needed to confirm the form proposed.

5.5.3 Model implementation

The slip length ratio ε is expected to be very small (< 10−4) for most realistic simulations. This

small slip length ratio yields two practical considerations.

First, a no slip boundary condition (uwall = 0) can be used instead of a Navier-slip boundary

condition with small error. To calculate ∂u/∂y for a node P at the top of the box in Fig. 5.2b, the

formulation for a no slip condition is

(
∂u

∂y

)
P

=
2

∆y
UP (5.28)

while the equation for a Navier-slip boundary condition is

(
∂u

∂y

)
P

=
2

∆y + λ
UP . (5.29)

where UP is the x-velocity component at point P . Thus, the two expressions are nearly identical if

λ << ∆y (ε << 1). This change is important to simplify the application of the viscous shear VS.

Second, since B(θ) is a negative exponent (Fig. 5.13a), the value of VS can be very large for

small ε. As a result, the source term for VS cannot be easily applied in an explicit fashion. While

there are many implicit approaches for the linear relationship between VS and Ca, one option is to

modify the corner viscosity (Eqs. 2.14 and 2.16) appropriately.
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µeff = µ+
µ1

2

∆y

∆x
(F (ε, θS) + ξF (ε, 180o − θS)) (5.30)

This effective viscosity µeff is the sum of the viscosity calculated using Eqs. 2.14 and 2.16 and

a viscous shear component. If µeff is applied for the shear stress term near the contact line, the

viscous shear VS is automatically accounted for; this compact form requires minimal modification

to existing variable-viscosity, computational frameworks. Most such frameworks will already be

capable of handling the viscous terms in the Navier-Stokes equations implicitly. An important point

to note about the effective viscosity µeff is the cell ratio ∆y/∆x. If the wall was in the y-direction

(vertical) instead of the x-direction (horizontal), this ratio would be flipped.

5.6 Summary

Two terms in the volumetric-filtered Navier-Stokes equations, the average curvature and the viscous

shear VS, were identified as important when the grid size ∆x is much larger than the slip length λ.

A large number of DNS at different capillary number Ca, slip length ratio ε, and static contact angle

θS was used to create models for each term. The average curvature is well represented by assuming

a constant curvature transition between the static angle θS at the wall and the apparent angle θ a

distance ∆y from the wall. A power law in the slip length ratio ε with functions of contact angle

θS was proposed to model the viscous shear term. This relationship has reasonable agreement for

contact angle around 90o, but may have difficulty when θS < 45o or θS > 135o. Now that source

terms have been derived to represent the contact-line physics on coarse meshes, realistic capillary

fluid flows can be simulated with very small slip length ratios ε. The following chapter uses these

models for the difficult case of a drop impacting a wall and a static contact angle θS = 90o.
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Chapter 6

Experimental comparison: drop
impact

All models are wrong, some models are useful.

— George Box

6.1 Introduction

The prior three chapters established a computational framework with volumetric source terms for

contact-line physics: this framework is used in this chapter to simulate a water drop impacting a

partially-wetting surface (θS = 90o). While there are many types of contact-line experiments, four

common configurations are flow in a capillary tube [44, 65], drop spreading [9, 47, 149], plunging

tapes [21], and droplet impacts [11, 49, 156, 166]. Capillary tube experiments have flows driven at a

known velocity or pressure; the steady or quasi-static interface shape is then photographed. These

experiments are typically performed at low capillary number Ca and Reynolds number Re. The

second case, drop spreading, has a drop carefully placed on a surface and then the drop spreads

by capillary forces. Again, these flows are generally slow (small Ca) and not all contact angles are

appropriate for this spreading (a wetting fluid should be used). In some cases, the fluid interface is

a collection of quasi-static, nearly circular arcs. Plunging tape experiments can have high capillary

numbers Ca and Reynolds numbers Re. This case starts to bring the inertial fluid effects into the

problem; these effects should be captured well in the framework proposed here because the inertial
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terms do not need to be explicitly modeled. However, a 3D, V-shape air film may form in these tests

[21], which would necessitate a 3D simulation. Finally, droplet impacts are the worst case scenario:

not only is the impact itself difficult to capture numerically, but the contact angle is varying in

space, the Reynolds number Re and capillary number Ca can be large during the spreading process,

and the drop is highly deformed. The impacting, spreading, and recoiling process contains elements

of the three prior cases because of the variation in contact-line velocity throughout the experiment.

Furthermore, additional physical effects such as gravity may be important. The drop impact would

show the ability of the present method to capture the high Reynolds number effects. Since this

scenario is the most challenging, if the framework can capture the spreading behavior for it, the

framework would likely work well in other types of experiments.

The work of Yokoi et al. [166] is a comparison of numerical simulations with experimental data

(Fig. 6.1a). They found that the experimental behavior was only recovered if their experimentally

derived contact law (which they described as model I) was used in the simulations. Other models

tested were variants of model I except for model II, where the contact angle is fixed at the static

value, θS = 90o. Model II caused the drop to have an exaggerated maximum contact diameter,

eject a droplet away from the substrate during the recoil process, and oscillate far longer in time,

tend > 100 ms. The main conclusion of that study was the apparent contact angle must be modeled

accurately to predict drop impact characteristics.

Model I of Yokoi et al. [166] is

θ(UCL) =


min

[
θS +

(
Ca
ka

)1/3

, θmda

]
if UCL ≥ 0

max

[
θS +

(
Ca
kr

)1/3

, θmdr

]
if UCL < 0

(6.1)

where θmda is a maximum advancing contact angle, θmdr is a minimum receding contact angle, ka

is a material-related advancing parameter, and kr is a material-related receding parameter. While

this model led to good predictions (Fig. 6.1a) and established compelling evidence for the ne-
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Figure 6.1: a) Numerical drop contact diameter DC in time t for model I compared to the experi-
mental data from Fig. 9 in Yokoi et al. [166]. b) Labeled features for the drop impact process.

cessity of correctly capturing contact angle behavior, there are questions about the generality of

their approach. First, there are four fitted parameters to the experimental data, which may over-

parametrize the problem. It may be argued that their agreement was a consequence of using the

resulting dynamic solution and not fundamental physical quantities. Second, if θmdr < θ < θmda,

the hydrodynamic theory applied, Ca = k(θ − θS)3, has no physical justification according to one

of the references they cited [131]. However, there are two similar equations that do have physical

justification: Ca = kθ(θ2 − θ2
S) from lubrication theory [20, 30] or the Hoffman-Voinov-Tanner law

Ca = k(θ3 − θ3
S) [13, 14, 135]. These other equations may be more appropriate in a physical sense

than the relationship used. Third, Yokoi et al. use a no slip condition: even if the slip length is

much smaller than the mesh size, it cannot be ignored for solution convergence [4, 137]. Without the

viscous shear term VS (Sec. 5.5), it is not surprising that their model II did not lose enough energy

and, therefore, ejected a droplet away from the wall. Their experimentally fitted contact angle law

(model I) showed good agreement to the experiment and grid convergence because it compensated

for this missing flow resistance. The present work is more general and fundamental than their prior

work.

Section 6.2 describes the experimental data used in Yokoi et al. [166] and the present work. For

simplicity, Yokoi et al. [166] will be referred to as YVHH throughout this chapter. The simulations



105

for different configurations of the average curvature and viscous shear are compared to the experi-

mental data in Sec. 6.3. Contact angle hysteresis is introduced in this section and good agreement

to the experimental contact diameter is shown when using the slip length ratio ε as the only fitted

parameter. The apparent contact angle law is not imposed directly. Section 6.4 discusses the final

simulation results and considers the discrepancies. The chapter concludes with a summary in Sec.

6.5.

6.2 Experimental setup

The experimental drop data in YVHH (Fig. 9 in Ref. [166], Fig. 6.1b) is used for comparison.

The original experimental data comes from one of the authors’ thesis [155]. YVHH reported an

experimental, quantitative contact (splat) diameter DC in time for the impact and recovery process

of a water droplet (Fig. 6.1b). The initial period (t ≈ 0 − 4 ms) is the drop impact after which

the drop reaches its maximum contact diameter. The drop then recoils (t ≈ 4 − 15) and reaches a

point where the drop contact diameter temporarily stabilizes - the flat region in Fig. 6.1b. Finally,

the drop oscillates until it reaches a stable, nearly circular cap. It is important to note that the

slopes ∂DC/∂t are asymmetric for the drop impact and recoil regions. The Reynolds number Re,

Bond number Bo, and Weber number We for water are 1140, 0.177, and 15.8, respectively. The

first two numbers indicate that inertial effects are more important than viscous effects and surface

tension dominates over gravity. The Weber number is moderate; while surface tension is not im-

portant during the initial impact, it is important later once the drop is on the surface and slows down.

6.3 Numerical results

A collection of droplet impact simulations are conducted with different contact angles in the average

mean curvature (Eq. 5.12) and the viscous shear VS (Eq. 5.26). These equations have x and y

replaced by r and z respectively. Table 6.1 is a summary of the different cases for quick reference.
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Fig. # Average mean curvature, Eq. 5.12 Viscous shear VS, Eq. 5.26 / Eq. 6.3

6.3 θS = 90o β = 0

6.5 θS = 90o β = 100, 200, 300, 400

6.7 θsr = 77o/ θsa = 107o θS = 90o ε = 10−5, 2 · 10−5, 4 · 10−5

6.8 θS = 90o θsr = 77o/ θsa = 107o ε = 5 · 10−6, 10−5, 2 · 10−5

6.9 θsr = 77o/ θsa = 107o θsr = 77o/ θsa = 107o ε = 2 · 10−5

Table 6.1: Simulation inputs for the average mean curvature and viscous shear VS.

6.3.1 Configuration

The drop impact domain is shown in Fig. 6.2. A no slip boundary condition wall is present at

the bottom (z = 0) and top (z = H) of the domain. The initially circular drop has a radius of

R= 1.14 mm and an initial velocity of Ui = 1 m/s towards the bottom wall to match the experi-

mental conditions. The drop starts at a height XS = 1.02R such that the initial shape is not touching

the bottom wall. Material parameters are given in Fig. 6.2. The equilibrium contact angle from

the experiment is θS = 90o, but the contact angle hysteresis angles are θsr = 77o and θsa = 107o.

The domain dimensions are L= 4R and H= 4R (except in Sec. 6.3.2 where H = 10R). The outer

cylindrical boundary has a zero Neumann boundary condition for velocity in the r-direction and

zero velocity in the z-direction.

The domain is discretized with square grid cells ∆r = ∆z = R/50. The SMG solver is used to

solve the fluid pressure with a maximum number of 10 iterations and a relative convergence tolerance

of 10−7 [80]. The average curvature and viscous shear VS are applied using the procedures outlined

in Sec. 5.4.3 and 5.5.3. Since the viscous shear is formulated as the effective viscosity µeff , the

viscosity terms in the Navier-Stokes equations (Eq. 2.1) are solved implicitly. The simulation has a

surface tension CFL number of 0.05 using the criterion of Eq. 2.20. The reinitialization relaxation

equation is applied every ten time steps. The simulations typically runs for less than 12 hours on

one 12-core Intel Xeon CPU node.
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For convenience, the shear factor β is sometimes quoted instead of the shear factor F where

β (ξ, ε, θ) = F (ε, θ) + ξF (ε, 180o − θ) . (6.2)

and

V S = −µ1UCL
∆r∆z

β . (6.3)

This notation has the merit of simplifying the comparison of numerical results and experimental

values for a single contact angle θ.

The experimental error on the contact diameter is reported as ±2% in YVHH. This range is

roughly the size of the black circles with which the data set is drawn in subsequent figures.

6.3.2 Static contact angle θS without viscous shear

Similar to model II in YVHH, the first test case uses the static contact angle θS = 90o in the

average curvature κ̄, but no viscous shear is included. This case is not physical and is intended

to demonstrate the necessity of the viscous shear VS. The side contour of the water (2D) and a
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3D visualization for this case is shown in Fig. 6.4. The contact diameter DC in time is plotted in

Fig. 6.3. Like model II of YVHH, the maximum contact diameter is too large, a satellite droplet

is ejected during the recoil process, and the drop oscillates far longer than the experiment. An

interesting feature is the kink that occurs around t ≈ 25 ms (Fig. 6.3). This kink corresponds to

the formation of a “mushroom” shape when the fluid pinches, but does not have enough energy to

eject a droplet and thus the bulge crashes down while, at the same time, almost detaching from the

wall. This feature occurs in later curves and is indicative of insufficient viscous shear. The satellite

drop impacts the top wall and sticks there; this particular feature is an artifact of the finite domain

size.

0 20 40 60 80 100
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Experiment, Fig. 9 YVHH

DC ( mm )

 

θS = 90o, β = 0

 

 

Figure 6.3: Drop contact diameter DC in time t for a set static contact angle of 90o in the average
curvature κ̄ and no additional viscous shear VS. The black dots are the experimental data of Fig. 9
in YVHH.

6.3.3 Static contact angle θS with viscous shear

It is clear from Fig. 6.3 that some amount of viscous shear VS (energy loss) is necessary to match

experiments. The curves in Fig. 6.5 are the contact diameter in time for increasing amounts of the

shear factor β. The curve β = 100 (red) matches the maximum splat diameter well, but there is not

enough dissipation in the later recoil stage as evidenced by the kink (mushroom formation) at t ∼ 28.

Increasing the shear factor β reproduces better the frequency of the oscillating drop, but does not
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( a ) t = 0 ms ( b ) t = 4 ms ( c ) t = 10 ms

( d ) t = 14 ms ( e ) t = 20 ms ( f ) t = 25 ms

Figure 6.4: Cross-section and revolved surfaces for the water droplet with a set static contact angle
of 90o in the average curvature κ̄ and no additional viscous shear VS. The 2D and 3D images are
not the same scale. The 3D images are taken at a slight angle relative to the side profile and do not
include the satellite droplet.
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capture the correct maximum diameter. Only the diameter peak or the oscillation frequency can be

captured. Furthermore, the flat region in the experimental data after recoil is not present; all of the

valleys in the curves of Fig. 6.5 are rounded. There is still some physical component missing.
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Figure 6.5: Drop contact diameter DC in time t for a set static contact angle of 90o in the average
curvature κ̄ at different values of the shear factor β. Approximate values of the slip length ratio ε
are given with each value β. The black dots are the experimental data of Fig. 9 in YVHH.

6.3.4 Contact angle hysteresis

The experimental drop impact had measurable contact angle hysteresis (θsr = 77o , θsa = 107o).

As mentioned in the introduction to Chap. 5, these angles can be used instead of the static contact

angle θS with identical results for the average curvature and viscous shear representation. For the

application of the contact angle hysteresis, the static contact angle was set as

θS =


θsa if UCL ≥ 0

θsr if UCL < 0

(6.4)

in Eqs. 5.12 and 5.26. These hysteresis angles will have different values of the viscous shear VS

through the shear factor F (Eq. 5.27) at a fixed slip length ratio ε. Figure 6.6 shows a graph of

the shear factor F for the different angles as functions of the slip length ratio ε. A large difference
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Figure 6.6: Shear factor F (Eq. 5.27) as a function of the slip length ratio ε for the static advancing
and receding angles. Note: the x-axis is logarithmic.

appears as ε → 0 which could explain the asymmetric slopes near the experimental data’s peak (

t ≈ 4 ms in Fig. 6.1b). The variants of the contact angle hysteresis are contact angle hysteresis

in the average mean curvature only (Fig. 6.7), contact angle hysteresis in the shear factor F only

(Fig. 6.8), and both applied (Fig. 6.9). When contact angle hysteresis is used for the average mean

curvature, the flat regions after recoil appear in the contact diameter curves (Fig. 6.7) and the

energy is reduced. The contact angle hysteresis in the viscous shear VS creates more asymmetric

curves and captures better the maximum splat diameter (Fig. 6.8). Only when both pieces are

added together does a faithful representation of the experimental data form (Fig. 6.9). A profile

comparison of the drop at different times is shown in Fig. 6.10. Qualitatively, the overall drop

shapes are correct. Quantitatively, the behavior is not quite as good as YVHH model I (Fig. 6.9),

particularly for the maximum splat radius. However, model I involved 4 fitted parameters; there is

only one approximated parameter, ε = 2 · 10−5 in the approach of this work.

6.4 Discussion

It is remarkable given the many assumptions in Chap. 5 (Tab. 6.2) that the model gives such

good agreement. Even more surprising, using the initial drop radius R as the large length scale in
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Figure 6.7: Drop contact diameter DC in time t for a set contact angle hysteresis angles θsa = 107o,
θsr = 77o in the average curvature κ̄ and a set shear factor β. The black dots are the experimental
data of Fig. 9 in YVHH.
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Figure 6.8: Drop contact diameter DC in time t for a set static contact angle of 90o in the average
curvature κ̄ and the contact angle hysteresis angles θsa = 107o, θsr = 77o in the shear factor F . The
black dots are the experimental data of Fig. 9 in YVHH.
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Figure 6.9: Drop contact diameter DC in time t using the contact angle hysteresis angles θsa = 107o,
θsr = 77o in the average curvature κ̄ and the shear factor F . The black dots and black dashed line
are the experimental data and model I data from Fig. 9 in YVHH, respectively.

t = 0 ms t = 10 ms

t = 2 ms t = 15 ms

t = 4 ms t = 30 ms

Experiment ExperimentSimulation Simulation

Figure 6.10: Drop images from Fig. 8 in YVHH compared to simulation images from Fig. 6.9 at t =
0, 2, 4, 10, 15, and 30 ms. The camera for images is at a slight angle to mimic the reflection observed
in the experimental images. The experimental images are reproduced with permission under license
3375611208717.
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Assumption 1: A Navier-slip boundary condition.

Assumption 2: A fixed contact angle at the wall.

Assumption 3: Continuum fluid mechanics can be used at the slip length scale.

Assumption 4: The averaging volume dimensions are much larger than the
slip length, λ << ∆x,∆y.

Assumption 5: ∇P̄ y is the same on both sides of the interface.

Assumption 6: The fluid interface smoothly transitions from a contact angle
θ at y = ∆y to the static contact angle θS at y = 0.

Assumption 7: The velocity tangential to the wall u can be expressed as the
linear combination of a macroscopic bulk flow velocity uB and a microscopic
velocity perturbation uS (u = uB + uS).

Assumption 8: Both f(x̄,Ca, ε, θS) and g(x̄,Ca, ε, 180o − θS) have finite inte-
grals.

Assumption 9: F = G.

Assumption 10: F and G are independent of capillary number Ca .

Assumption 11: Although the viscous shear term VS is derived from a small
range of large values ε, it also holds for smaller slip length ratios ε.

Table 6.2: Assumptions in Chap. 5

ε = 2 · 10−5, the predicted slip length λ is 25 nm. The substrate roughness in the experiments was

specifically stated as less than 50 nm; the approximate slip length is around the surface roughness

and may be realistic. Unlike YVHH, only one parameter was fit, and this parameter has a realistic

meaning. Furthermore, the apparent contact angle was never specified, but evolved naturally. This

predicted slip length ratio ε is smaller than any currently existing DNS has achieved [141, 142].

The small remaining discrepancy between the experiment and the simulation in Fig. 6.9 seems to

be due to too much energy loss at impact which prevents the maximum contact diameter from being

achieved. There are a couple possible causes for this energy loss that have been tried and dismissed.

The grid resolution is sufficiently fine for grid convergence (Fig. 6.11). The droplet start location

does not matter (Fig. 6.12) because the air cushion underneath the droplet is not dissipating much

energy and the drop velocity is too large (subsequently time to impact is too short) for gravity to
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Figure 6.11: Drop contact diameter DC in time t using the contact angle hysteresis angles θA = 107o,
θR = 77o. The curves are different grid resolutions. The black dots are the experimental data of
Fig. 9 in YVHH.

accelerate the drop much. If the diameter error tolerance (±2%) is applied to the initial velocity,

the contact diameter does not vary much in time. That being said, an increase in the initial velocity

by 10% is sufficient to achieve the correct maximum diameter (Fig. 6.13). Interestingly, while the

curve with 10% more initial velocity (Fig. 6.13) has a different maximum contact diameter DC ,

its behavior at later time mimics the other curves. This convergence suggests that the value of β,

specifically for θsa = 107o, is not exactly right. There is too much viscous loss during the initial

impact spreading. If the shear factors βa and βr are varied independently (two fitted parameters),

better agreement can be found for the maximum contact diameter (Fig. 6.14). The receding shear

factor in Fig. 6.14 is nearly the same as in Fig. 6.9 implying that the relationship for F may need

refinement. Another option is the persistence of an air film during drop impact that lubricates the

spreading water [78, 89, 90]. This film decreases the appropriate viscous shear factor F from the

form proposed in Eq. 5.27 during this initial impact period. In addition to the different maximum

contact diameters, the second peak in Fig. 6.14 is too flat; since flatness was shown to be controlled

by the contact angle hysteresis in the average curvature, the simple model for contact angle hystere-

sis used here (Eq. 6.4) may need to be modified as well. Given the many assumptions in Table 6.2,

some discrepancy is not surprising.
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Figure 6.12: Drop contact diameter DC in time t using the contact angle hysteresis angles θsa =
107o, θsr = 77o. The curves are drops started at different positions XS . The black dots are the
experimental data of Fig. 9 in YVHH.

6.5 Summary

The modeled source terms proposed in Chap. 5 and the relaxation equation reinitialization developed

in Chap. 3 and 4 form an accurate numerical framework for the simulation of a drop impact

experiment with a realistic slip length. Unlike prior work, only one free parameter, the slip length

ratio ε, was approximated and it has a realistic value. The contact angle naturally evolved and

automatically included high Reynolds number Re and capillary number Ca effects. The simulation

was run on a much coarser mesh than would be required for the predicted slip length to be sufficiently

resolved. Furthermore, this predicted slip length ratio was outside the range currently accessible by

DNS. These results show that the methods proposed throughout this work are extremely promising.



117

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Time (ms)

Experiment, Fig. 9 YVHH

DC ( mm )

ε = 2·10-5

 

+2%
−2%

+10%

Ui
Original

Figure 6.13: Drop contact diameter DC in time t using the contact angle hysteresis angles θsa =
107o, θsr = 77o. The curves are drops with different initial velocities Ui. The black dots are the
experimental data of Fig. 9 in YVHH.
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Figure 6.14: Drop contact diameter DC in time t using the contact angle hysteresis angles θsa = 107o,
θsr = 77o in the average curvature. The shear factors βa and βr are varied independently for the
advancing and receding contact lines. The black dots are the experimental data of Fig. 9 in YVHH.



118

Chapter 7

Conclusion

Now this is not the end. It is not even the beginning of the end. But

it is, perhaps, the end of the beginning.

— Winston Churchill

7.1 Summary

There were two goals of this thesis outlined in Chap. 1. The first goal was to create a numerical

framework that allows the contact angle to evolve naturally with appropriate contact-

line physics. The second goal was to develop equations and numerical methods such that

contact-line simulations may be run on coarse computational meshes.

A relaxation equation was proposed to modify the standard Hamilton-Jacobi reinitialization

equation in the contact-line blind spot to reduce the numerical parasitic currents in Chap. 3. This

equation held fixed the curvature at the contact line during reinitialization. While floating contact

angles in prior methods added an unphysical driving force to circular arcs, this new algorithm did

not introduce any numerical artificial forcing. This particular equation has slower convergence prop-

erties with small contact angles, but the concepts can be applied to other reintialization techniques

such as the FMM. Chapter 4 created a blind spot algorithm for level-set extension velocities to

maintain the correct angle in the relaxation equation. The stable construction of extension veloc-

ities required information to propagate along the wall into the blind spot. This propagation when
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combined with the relaxation equation creates a new relaxation equation reinitialization that is a self-

sufficient, complete algorithm. The relaxation equation reinitialization accomplished the first part

of goal 1 by creating a numerical framework that did not introduce errors to a floating contact angle.

Chapter 5 identified the terms that need to be included in coarse simulations at contact lines

and then approximated the forms of these terms from DNS. The first term, the average curvature

κ̄, was well approximated by a circular arc that varied smoothly from the apparent contact angle at

the cell center to the static contact angle θS . The viscous shear VS was approximated by a power

law in the slip length ratio ε. This chapter found the appropriate physical source terms that would

allow the angle to evolve naturally (goal 1) and these source terms could be used on meshes much

coarser than the slip length λ (goal 2).

All of the numerical methods were brought together in the coarse, efficient simulations in Chap.

6 for a droplet impacting a wall. The relaxation equation reinitialization allowed the angle to change

according to inertial effects and the microscale physics of the source terms from Chap. 5. A simple

contact angle hysteresis model was included; this model required the viscous approximations from

Chap. 5 in order for the viscous resistance to vary with contact angle. Very favorable comparison to

an experiment was shown. The predicted slip length was near the substrate roughness and, therefore,

realistic. The approximate slip length ratio ε was smaller than any currently existing DNS; thus,

these techniques have dramatically extended the parameter space that can be simulated.
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7.2 Future directions

The next extensions of this work are classified into two categories: experimental comparisons and

shear factor definition.

Experimental comparisons:

One of the fundamental difficulties with any contact-line problem is that the theories usually in-

clude at least one parameter that cannot be easily measured experimentally, i.e., the slip length λ.

If other system simulations also yield realistic slip lengths, the current physical source terms used

here may be representative of the contact-line physics. While such agreement is not proof of the

average curvature and viscous shear validity, the framework as presented here would be very useful

in industrial process optimization. Furthermore, additional experiments may suggest other physical

source terms. These terms can be easily incorporated into the current framework.

Shear factor definition:

When the shear factor F was derived, only a small parameter space was explored and some weak

dependencies (Ca, ξ) were not included. These parameters should be explored further. In addition,

only three large values of the slip length ratio ε were used; smaller values should be included for

testing purposes and to confirm the power-law behavior. There were two limitations to achieving

smaller slip length ratios ε: the number of nodes necessary for sufficient grid resolution and the

CFL restriction on surface tension (Eq. 2.20, 2.21). To reduce the number of grid nodes, either

an AMR approach [141, 142] could be employed to locally refine the mesh at the interface or the

boundary integral method could be used to solve the fluid mechanics [64, 111, 158]. The boundary

integral method reduces the problem dimensionality. The time step restriction would be reduced

if surface tension was formulated in a semi- or fully implicit manner; these approaches, however,

are non-trivial because interface curvature introduces high-order, non-linear and non-local terms

into the fluid dynamics. Hou et al. [66] developed an implicit time integration for 2D, irrotational

fluids using the boundary integral method. Other authors have developed semi-implicit algorithms
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[12, 123]. These methods are still an area of active research.

The work of this study is an important first step towards simulating these complicated geometries

efficiently.



122

Appendix A

Matlab code to solve the
non-linear, ordinary differential
surface equation

The surface solution h̄(x̄) to Eq. 4.13 must be solved numerically. The Matlab commands to

solve this equilibrium surface h̄(x̄) as a function of the Bond number BoW and surface constant x̄0

are replicated below. relT is a relative solver tolerance for the boundary value problem solver bvp5c.

function [x y area]=GravityBalanceST(Bo,x0,relT)

% Inputs:

% Bo = Bond number BoW .

% x0 = location of zero curvature between 0 and 1, x̄0.

% relT = relative tolerance used in the differential equation solver.

% Outputs:

% x = x-coordinates for the equilibrium surface.

% y = y-coordinates for the equilibrium surface.

% area = area under the equilibrium surface.

global a b

a=Bo;

b=x0;
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close all

clc

npI = 10; % Number of points in the initial guess

y0 = 1; % Initial guess for y

% Solve the boundary problem

solinit=bvpinit(linspace(0,1,npI),[y0 0]);

options=bvpset(’RelTol’,relT,’AbsTol’,1e-7);

sol=bvp5c(@twoode,@twobc,solinit,options);

sol.stats

% Evaluate the surface

x=linspace(0,1);

y=deval(sol,x);

area=trapz(x,y(1,:));

function dydx = twoode(x,y)

% System of ordinary differential equations

global a b

dydx=[y(2) -(1+y(2)∧2)∧1.5*a*(x-b)];

function res = twobc(ya,yb)

% Application of the boundary conditions

res=[ ya(1) yb(1)];
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Appendix B

Simulations in chapter 5

# Ca θS ε Figures

1 0.0033 30o 1/80 5.10a, 5.11

2 0.0033 50o 1/80 5.10a, 5.11

3 0.0033 70o 1/80 5.10a, 5.11

4 0.0033 90o 1/80 5.10a, 5.11

5 0.0033 110o 1/80 5.10a, 5.11

6 0.0033 130o 1/80 5.10a, 5.11

7 0.0033 150o 1/80 5.10a, 5.11

8 0.0033 30o 1/40 5.10a, 5.11

9 0.0033 50o 1/40 5.10a, 5.11

10 0.0033 70o 1/40 5.10a, 5.11

11 0.0033 90o 1/40 5.10a, 5.11

12 0.0033 110o 1/40 5.10a, 5.11

13 0.0033 130o 1/40 5.10a, 5.11

14 0.0033 150o 1/40 5.10a, 5.11

15 0.0033 30o 1/20 5.10a, 5.11

16 0.0033 50o 1/20 5.10a, 5.11

17 0.0033 70o 1/20 5.10a, 5.11

18 0.0033 90o 1/20 5.10a, 5.11
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19 0.0033 110o 1/20 5.10a, 5.11

20 0.0033 130o 1/20 5.10a, 5.11

21 0.0033 150o 1/20 5.10a, 5.11

22 0.01 50o 1/320 5.12

23 0.01 50o 1/160 5.12

24 0.01 30o 1/80 5.10b, 5.11, 5.13

25 0.01 50o 1/80 5.8, 5.10b, 5.11, 5.12, 5.13

26 0.01 70o 1/80 5.10b, 5.11, 5.13

27 0.01 90o 1/80 5.10b, 5.11, 5.13

28 0.01 110o 1/80 5.10b, 5.11, 5.13

29 0.01 130o 1/80 5.10b, 5.11, 5.13

30 0.01 150o 1/80 5.10b, 5.11, 5.13

31 0.01 30o 1/40 5.10b, 5.11, 5.13

32 0.01 50o 1/40 5.5, 5.9, 5.10b, 5.11, 5.12, 5.13

33 0.01 70o 1/40 5.10b, 5.11, 5.13

34 0.01 90o 1/40 5.6, 5.10b, 5.11, 5.13

35 0.01 110o 1/40 5.10b, 5.11, 5.13

36 0.01 130o 1/40 5.10b, 5.11, 5.13

37 0.01 150o 1/40 5.10b, 5.11, 5.13

38 0.01 30o 1/20 5.10b, 5.11, 5.13

39 0.01 50o 1/20 5.10b, 5.11, 5.12, 5.13

40 0.01 70o 1/20 5.10b, 5.11, 5.13

41 0.01 90o 1/20 5.10b, 5.11, 5.13

42 0.01 110o 1/20 5.10b, 5.11, 5.13

43 0.01 130o 1/20 5.10b, 5.11, 5.13

44 0.01 150o 1/20 5.10b, 5.11, 5.13
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45 0.03 30o 1/80 5.10c, 5.11

46 0.03 50o 1/80 5.10c, 5.11

47 0.03 70o 1/80 5.10c, 5.11

48 0.03 90o 1/80 5.10c, 5.11

49 0.03 110o 1/80 5.10c, 5.11

50 0.03 30o 1/40 5.10c, 5.11

51 0.03 50o 1/40 5.7, 5.10c, 5.11

52 0.03 70o 1/40 5.10c, 5.11

53 0.03 90o 1/40 5.10c, 5.11

54 0.03 110o 1/40 5.10c, 5.11

55 0.03 30o 1/20 5.10c, 5.11

56 0.03 50o 1/20 5.10c, 5.11

57 0.03 70o 1/20 5.10c, 5.11

58 0.03 90o 1/20 5.10c, 5.11

59 0.03 110o 1/20 5.10c, 5.11

Table B.1: Simulations in Chap. 5 with their capillary numbers Ca, static contact angles θS , slip
length ratios ε, and respective figures.
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Appendix C

Calculation of the shear factors F
and G from DNS data

The values of F and G for a given combination of Ca, ε, and θS were evaluated for the DNS in Sec.

5.3 using the following procedure. A simulation’s velocity and level set data sets were captured at

increments of ∆t = 0.05 for analysis. All numerical commands are for the Matlab programming

environment.

Step 1:

The time when steady state is reached (tsteady) was approximated. For each data set in time, the

interface shape was fit with a circular arc to determine the apparent contact angle θapp at the wall.

If C is a column vector of the interface points (Column 1: x-locations, Column 2: y-locations), the

fit circle can be found using

a=[C(:,2) C(:,1) ones(size(C(:,2)))] \ [-(C(:,2).∧ 2+C(:,1).∧ 2)];

ycenter = -.5*a(1);

xcenter = -.5*a(2);

R = sqrt((a(1)∧ 2+a(2)∧ 2)/4-a(3));

where xcenter is the x-coordinate of the circle center, ycenter the y-coordinate, and R the circle

radius. The apparent contact angle θapp is approximated by
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height=0.5+ycenter;

if xcenter>0

thetaapp=90-180/pi*asin(height/R);

else

thetaapp=90+180/pi*asin(height/R);

end

The first time at which the slope ∂θapp/∂t < 1 degree / unit time and ∂2θapp/∂t
2 < 1 degree / unit

time2 was taken as steady state. The first condition implies the angle changes were small and the

second that the angle is not oscillating much. An example of θapp in time is shown in Fig. C.1 where

the predicted steady-state time is tsteady = 0.8.

0 1 2 3 4
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54

t

θapp (o)

t = 0.8

Ca = 0.01
θS = 50o

ε = 1/40

Figure C.1: Evolution of the apparent contact angle θapp in time for Ca = 0.01, ε = 1/40, and
θS = 50o.

Step 2:

For each data set t > tsteady, uwall as a function of x̄ = (x − xcontact)/λ is determined using the

Navier-slip boundary condition. Using the velocity U(x) stored immediately above the wall,

uwall(x) = U(x)/(λ+∆y/2)*λ;
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The extent of the curve is from x̄ = −1/ε to 1/ε; the ends points are very far from the contact line.

Step 3:

These curves of uwall as a function of x̄ were averaged in time using only values t > tsteady. A

typical average consisted of more than 20 curves.

Step 4:

The bulk flow uB was subtracted off by removing the amount of velocity far away at the edges of

this truncated domain.

uwall2(x̄) = uwall(x̄)− uB

Step 5:

The new values of uwall2 was renormalized to have a magnitude of 1 at the contact line.

uwall3 = uwall2/max(uwall2)

Step 6:

F and G were found by numerical, trapezoidal integration of uwall3. The numerical integrator trapz

was used.
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