7 research outputs found

    Improving disparity estimation based on residual cost volume and reconstruction error volume

    Get PDF
    Recently, great progress has been made in formulating dense disparity estimation as a pixel-wise learning task to be solved by deep convolutional neural networks. However, most resulting pixel-wise disparity maps only show little detail for small structures. In this paper, we propose a two-stage architecture: we first learn initial disparities using an initial network, and then employ a disparity refinement network, guided by the initial results, which directly learns disparity corrections. Based on the initial disparities, we construct a residual cost volume between shared left and right feature maps in a potential disparity residual interval, which can capture more detailed context information. Then, the right feature map is warped with the initial disparity and a reconstruction error volume is constructed between the warped right feature map and the original left feature map, which provides a measure of correctness of the initial disparities. The main contribution of this paper is to combine the residual cost volume and the reconstruction error volume to guide training of the refinement network. We use a shallow encoder-decoder module in the refinement network and do learning from coarse to fine, which simplifies the learning problem. We evaluate our method on several challenging stereo datasets. Experimental results demonstrate that our refinement network can significantly improve the overall accuracy by reducing the estimation error by 30% compared with our initial network. Moreover, our network also achieves competitive performance compared with other CNN-based methods. © 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

    Robust super-resolution depth imaging via a multi-feature fusion deep network

    Get PDF
    Three-dimensional imaging plays an important role in imaging applications where it is necessary to record depth. The number of applications that use depth imaging is increasing rapidly, and examples include self-driving autonomous vehicles and auto-focus assist on smartphone cameras. Light detection and ranging (LIDAR) via single-photon sensitive detector (SPAD) arrays is an emerging technology that enables the acquisition of depth images at high frame rates. However, the spatial resolution of this technology is typically low in comparison to the intensity images recorded by conventional cameras. To increase the native resolution of depth images from a SPAD camera, we develop a deep network built specifically to take advantage of the multiple features that can be extracted from a camera's histogram data. The network is designed for a SPAD camera operating in a dual-mode such that it captures alternate low resolution depth and high resolution intensity images at high frame rates, thus the system does not require any additional sensor to provide intensity images. The network then uses the intensity images and multiple features extracted from downsampled histograms to guide the upsampling of the depth. Our network provides significant image resolution enhancement and image denoising across a wide range of signal-to-noise ratios and photon levels. We apply the network to a range of 3D data, demonstrating denoising and a four-fold resolution enhancement of depth

    On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey

    Full text link
    Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research. Throughout the years the paradigm has shifted from local, pixel-level decision to various forms of discrete and continuous optimization to data-driven, learning-based methods. Recently, the rise of machine learning and the rapid proliferation of deep learning enhanced stereo matching with new exciting trends and applications unthinkable until a few years ago. Interestingly, the relationship between these two worlds is two-way. While machine, and especially deep, learning advanced the state-of-the-art in stereo matching, stereo itself enabled new ground-breaking methodologies such as self-supervised monocular depth estimation based on deep networks. In this paper, we review recent research in the field of learning-based depth estimation from single and binocular images highlighting the synergies, the successes achieved so far and the open challenges the community is going to face in the immediate future.Comment: Accepted to TPAMI. Paper version of our CVPR 2019 tutorial: "Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges" (https://sites.google.com/view/cvpr-2019-depth-from-image/home

    Lessons and Insights from Creating a Synthetic Optical Flow Benchmark

    No full text
    corecore