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ABSTRACT: 

 

Recently, great progress has been made in formulating dense disparity estimation as a pixel-wise learning task to be solved by deep 

convolutional neural networks. However, most resulting pixel-wise disparity maps only show little detail for small structures. In this 

paper, we propose a two-stage architecture: we first learn initial disparities using an initial network, and then employ a disparity 

refinement network, guided by the initial results, which directly learns disparity corrections. Based on the initial disparities, we 

construct a residual cost volume between shared left and right feature maps in a potential disparity residual interval, which can 

capture more detailed context information. Then, the right feature map is warped with the initial disparity and a reconstruction error 

volume is constructed between the warped right feature map and the original left feature map, which provides a measure of 

correctness of the initial disparities. The main contribution of this paper is to combine the residual cost volume and the reconstruction 

error volume to guide training of the refinement network. We use a shallow encoder-decoder module in the refinement network and 

do learning from coarse to fine, which simplifies the learning problem. We evaluate our method on several challenging stereo 

datasets. Experimental results demonstrate that our refinement network can significantly improve the overall accuracy by reducing 

the estimation error by 30% compared with our initial network. Moreover, our network also achieves competitive performance 

compared with other CNN-based methods. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Stereo matching has been investigated for many years and still 

remains to be a challenging task in photogrammetry and 

computer vision. The task is to find correspondences, often 

point-wise, between at least two images, and thus to calculate 

the disparity of corresponding points between images, which is 

a pre-requisite for computing 3D coordinates needed in many 

applications, such as mapping, autonomous driving, robotics 

and navigation. Traditional stereo matching methods have been 

well studied and in many cases provide efficient solutions (e.g. 

Heipke 1997; Haala and Rothermel, 2012); they mostly follow 

the traditional pipeline, namely matching cost computation, cost 

aggregation, optimization and disparity refinement (Scharstein 

and Szeliski, 2002).  

 

In order to obtain sub-pixel accuracy, traditional methods 

usually employ least-squares matching (Förstner 1984) or some 

post-processing steps, such as left-right consistency check 

(Hannah, 1989; Bolles et al., 1993), filtering (Tomasi and 

Manduchi, 1998), and interpolation operations to refine and 

improve disparities. However, least-squares matching is known 

to need rather accurate initial values and ad hoc local post-

processing ignores the global image context, which can result in 

noisy disparity estimation. Moreover, most traditional methods 

include some hidden assumptions about the geometry of the 3D 

surface to be reconstructed and thus have limited performance 

in more challenging scenes, especially for large depth variations 

and in fine structure areas. 

 

Recently, deep learning techniques have shown powerful 

capability for stereo matching by using convolutional neural 

networks (CNN) to solve one or more of the four traditional 

steps. For example, MC-CNN (Žbontar and LeCun, 2016) was 

the first to use CNN to learn matching costs between two image 

patches. However, although this method out-performs some of 

the traditional approaches, it only focuses on the first step, 

namely matching cost computation. Several researchers have 

proposed to learn disparity by integrating all steps into an end-

to-end network. DispNet (Mayer et al., 2015) is the first such 

end-to-end learning framework. It takes rectified stereo images 

as input and uses a deep encoder-decoder module to directly 

regress disparities from coarse to fine. Several other CNN-based 

methods (Chang and Chen, 2018; Kendall et al., 2017) employ 

3D convolutional operations on cost volume optimization to 

aggregate more global context information, which achieves 

impressive performance. However, the improvements of these 

end-to-end methods mainly lie in a more global accurate 

estimation of the scene surface at the cost of losing local 

structure details. In our prior work (Kang et al., 2019), based on 

DispNet, we propose a context pyramidal network and 

introduce a gradient regularizer to preserve small structure 

detail. This method can estimate clear boundaries in large depth 

discontinuity areas and is considered the initial network in this 

paper. Nevertheless, when carefully inspecting the output, the 

predicted disparity still suffers from some local errors, which 

appear near small objects. This observation motivates us to 

integrate refinements more explicitly into the whole network for 

tackling this problem. 
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In this paper we address the problem of preserving details based 

on the concept of residual learning (He et al., 2016). We add 

two networks: after the initial network we adopt a second one 

which is guided by the initial results. We use shared feature 

maps and derive initial disparities to construct both, a residual 

cost volume and a reconstruction error volume. We then train a 

residual network, guided by the residual cost volume and the 

reconstruction error volume, to learn disparity residuals and 

estimate the final depth map by adding the learned residuals to 

the initial disparity. In this way, the refinement sub-net can 

concentrate on learning more accurate results, especially in 

problem areas where the initial network fails. Compared to the 

initial network, the residual cost volume takes into 

consideration a significantly shorter range of disparity with finer 

resolution, thus the complexity of learning is lower than 

learning the disparity for these pixels directly. For this reason, 

we can employ a shallow encoder-decoder module in our 

refinement sub-net, and we learn multiple residuals from coarse 

to fine, which allows our approach to also correct errors and 

refine details from coarse to fine.  

 

In summary, the contributions of this paper are as follows:  

 

 We propose a new guided refinement network to update the 

initial disparity estimates by incorporating shared feature 

maps from the initial network.  

 

 We introduce two interpretable inputs, namely the residual 

cost volume and the reconstruction error volume as guidance 

for learning disparity details. These two volumes contain 

detailed context information and disparity correctness cues, 

respectively, which provide helpful guidance for disparity 

refinement. 

 

 We propose a shallow encoder-decoder residual network to 

fuse guidance information for learning the residuals with 

explicit supervision at each scale, which is easier than directly 

learning entire disparity values.  

 

This paper is organized as follows: we review the related work 

in Section 2 and present the details of our methodology in 

section 3; followed by experimental results and an analysis in 

Section 4, before concluding our work in Section 5. 

 

2.  RELATED WORK 

For a long time stereo matching has continuously been an active 

research area in photogrammetry and computer vision. Here, we 

restrict the review to the categories most relevant in our context.  

 

Traditional stereo methods. As mentioned above, most 

traditional methods follow the classical four-step pipeline. A 

well-known algorithm of this group is Semi-Global Matching 

(SGM) (Hirschmuller, 2008). SGM calculates the matching cost 

using Mutual Information (Viola and Wells III, 1997) and seeks 

an optimal disparity assignment by combining various 1D 

optimizations of a global energy function in different directions 

in image space using dynamic programming. Most global 

traditional stereo matching approaches typically use post-

processing to obtain complete and sub-pixel disparities. For 

example, many employ the left-right consistency check 

(Hannah, 1989; Bolles et al., 1993) to detect occlusion areas and 

fill affected pixels by interpolation. Since these refinement steps 

typically do not consider global image context, the performance 

is limited. 

 

Matching cost learning based on CNN. These methods mainly 

focus on learning matching cost between two image patches 

using CNN. MC-CNN (Žbontar and Lecun, 2016) is a Siamese 

network composed of a series of stacked convolutional layers to 

extract descriptors of each image patch, followed by a simple 

dot product (MC-CNN-fst) or a number of fully-connected 

layers (MC-CNN-art) to derive the similarity measure. Luo et 

al. (2016) expanded MC-CNN and propose a notably faster 

Siamese network to learn a probability distribution over all 

possible disparities without manually pairing patch candidates. 

Li and Yu (2018) introduced dilated convolutions to enlarge the 

receptive field of view when computing the matching cost. 

These patch based methods indeed outperform most traditional 

stereo algorithms. However, they still require subsequent 

heuristic steps, including cost optimization to produce complete 

results. 

 

End-to-End disparity learning without refinement.  
Approaches in this category normally develop a fully learnable 

architecture without any further refinement processing, 

regressing disparity by training the whole network end-to-end. 

DispNet (Mayer et al., 2015) was the first end-to-end network 

for stereo matching, which has a structure similar to that of 

FlowNet (Dosovitskiy et al., 2015). DispNet utilizes a deep 

encoder-decoder architecture for disparity regression, has 

achieved prominent performance and has become a baseline 

network in stereo matching. Following the same basic 

architecture, GC-Net (Kendall et al., 2017) employs 3D 

convolutions for cost volume regularization to incorporate more 

context, and finally regresses the disparity through a 

differentiable “soft-argmin” operation. Similar to GC-Net, 

PSM-Net (Chang and Chen, 2018) uses spatial pyramid pooling 

and 3D convolutions to capture global context on different 

scales. However, employing high-dimensional features based on 

3D convolution is computationally expensive. Instead of using 

3D convolutions, Kang et al. (2019) introduced dilated 

convolutions to exploit multi scale context cues and proposed a 

gradient regression loss for regularizing disparity changes in a 

supervised way, which can preserve local detail in depth 

discontinuity areas. 

 

End-to-End disparity learning with refinement. In this 

category, disparity refinement has been taken into consideration 

in CNN approaches. In the so called DRR (detection, 

replacement and refinement) approach (Gidaris and Komodakis, 

2017) two sub-networks are used to detect initial errors and 

replace large mistakes with new values in the initial disparities, 

before refining minor errors by using an additional sub-network. 

In a similar way, DispNet_css (Ilg et al., 2018) combines three 

separate networks (each of them similar to DispNet) with 

residual connections to refine disparities. Jie  et al. (2018) 

integrate the left-right consistency check as soft guidance into a 

recurrent neural network to refine unreliable disparities. Batsos 

and Mordohai (2018) also use a recurrent refinement network to 

learn different types of errors by combining residuals in 

different scales. However, recurrent neural network are difficult 

to train. Most recently, ResDepth, a deep network (Stucker and 

Schindler, 2020) was proposed to improve the depth map for 

high-quality dense stereo reconstruction.  The inputs of this 

network are the initial depth map and the warped images, and a 

standard U-net is used to learn residuals.  

 

The work most closely related to our work is CRL (Pang et al., 

2018). This is a cascade residual learning network, which stacks 

an advanced DispNet and a residual network to learn residuals  
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Figure 1. The overall architecture of our network. It consists of two parts, the initial sub-net and the refinement sub-net. The inputs 

are two rectified images and the output is the final refined disparity map 

 

between the coarse initial disparity and the ground truth 

disparity and thus to explicitly refine the initial disparity. The 

inputs of this residual learning network are two original images, 

a warped right image, an error map and an initial disparity, 

which is somewhat redundant information. While stacking more 

networks together indeed improves accuracy, it lacks 

interpretability and leads to expensive computations.  

 

In contrast, in our approach, we propose a residual cost volume 

and a reconstruction error volume, which we argue can be better 

interpreted as inputs for residual learning. The residual cost 

volume contains detailed information of the correlation between 

the two images and the reconstruction error volume reflects 

cues of uncorrected disparities, which are helpful to guide our 

network to learn accurate residuals. In addition, we use shared 

feature maps instead of using original images in the refinement 

sub-net, which reduces the number of learning parameters.  

 

3. METHODOLOGY 

3.1  Overall network architecture  

The structure of the solution we propose is depicted in Fig. 1. In 

this study, the goal is to improve initial disparity quality by 

adding a refinement step to an end-to-end network. From Fig. 1, 

it can be observed that we cascade this refinement network as a 

sub-network to our initial CNN-based stereo matching network. 

We use the lower levels of our shared feature maps and 

disparities, both of which come from the initial network, as 

input for the refinement. The output is the final refined 

disparity. The initial network results in a pixel-wise disparity 

map for a pair of rectified stereo images. For more details about 

the initial network, please refer to our prior work (Kang et al., 

2019). In this work, we focus on the details of the proposed 

refinement part. 

 

3.2  Residual cost volume construction 

In our initial sub-net, we learn the initial disparity from the 

initial cost volume, which is constructed between feature maps 

after several convolutional layers (see Fig. 1). These layers are 

necessary to increase the receptive field of view and capture 

more global context, but they lead to loosing small structures 

and reducing the spatial resolution of the feature maps. 

Therefore, in the initial cost volume, some detail will be lost. 

In our refinement sub-net, we first take two shared feature maps  

𝐹𝐿 , 𝐹𝑅 from the first convolutional layer of the initial sub-net as 

inputs, which provide enough local context information. Then, 

we construct a residual cost volume 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙between these two 

feature maps at this fine resolution to capture more detailed 

correlation information. The basic idea behind the residual cost 

volume construction is shown in Fig. 2: for a pixel 𝑥𝐿 on the left 

feature map 𝐹𝐿, let the initial disparity be 𝑑𝐿 . The corresponding 

initial matching point 𝑥𝑅
0 = 𝑥𝐿 + 𝑑𝐿  is calculated using the 

initial disparity 𝑑𝐿 . However, the initial disparity 𝑑𝐿  is 

imprecise and the correct corresponding point to 𝑥𝐿  is be 

calculated as follows: 

 

𝑥𝑅
∆𝑑 = 𝑥𝐿 + 𝑑𝐿 + ∆𝑑                                (1) 

 

where 𝑥𝑅
∆𝑑 is the corresponding point in the right feature map; 

∆𝑑 ∈ [−𝑑𝑜𝑓𝑓𝑠𝑒𝑡 , 𝑑𝑜𝑓𝑓𝑠𝑒𝑡]  represents the disparity residual 

interval. In this paper, we use sub-pixel steps (0.5 pixels) within 

this interval to obtain sub-pixel accuracy; 𝑑𝑜𝑓𝑓𝑠𝑒𝑡  reflects the 

accuracy of initial matching and must be given a priori. For 

every residual ∆𝑑, the matching cost feature map 𝐶∆𝑑 is created 

by convolving the left and right feature maps. The correlation of 

two patches centred at xL in FL and xR
∆d in FR is defined as: 

 

𝐶∆𝑑(𝑥𝐿, 𝑥𝑅
∆𝑑) = ∑ [𝐹𝐿(𝑥𝐿 + 𝑜)⨂𝐹𝑅(𝑥𝑅 + 𝑜)]𝑜∈[−𝑘,𝑘]×[−𝑘,𝑘]  (2) 

 

where 𝑘  is an index, K = 2𝑘 + 1  is the patch size and ⨂ 

denotes the convolution operation. Then, as Fig. 2 shows, the 

final residual cost volume 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is constructed by 

concatenating all cost feature maps across the disparity residual 

interval. In this way, the refinement network can learn correct 

disparity residuals by using the residual cost volume as guiding 

information. As 𝐹𝐿  and 𝐹𝑅  are derived after the first 

convolutional layer with stride 2, the size of the residual cost 

volume is 1 2⁄ 𝑊 × 1 2⁄ 𝐻 × 𝐶𝑟 , where W, H  representing the 

width and height of the original image, and 𝐶𝑟  is the number 

channels of 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙.  

  

3.3  Reconstruction Error Volume Construction 

As the relative orientation of the two images is known, a warped 

version of the right image can be reconstructed by texture 

remapping with the corresponding disparity map. The warping 

technique has been in use in photogrammetry for a long time 

(Norvelle, 1992) and is also employed for processing of the 

Mars HRSC images (Schmidt, 2008). In the ideal case, the left 

image and the warped right image are identical in non-occluded 

areas, and the difference of conjugate grey values is 0. If, on the 

other hand, this difference is large, the estimated disparity is 

more likely incorrect or stems from occluded areas. Thus, this 

difference, called reconstruction error here, provides cues of 

how to improve the disparity. 
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Figure 2. Construction process of the residual cost volume. The red and yellow boxes represent context windows of different points. 

 

 
Figure 3. Construction process of the reconstruction error volume 

 

In our refinement part, we compute the reconstruction error 

volumes between the left feature map and the warped right 

feature map for the disparity residual interval. The construction 

process is shown in Fig. 3: for the left feature map 𝐹𝐿, using the 

initial disparity map 𝐷𝐿  and the residual value ∆𝑑 , we can 

reconstruct a warped right feature map 𝐹′
𝑅
∆𝑑

 by remapping 

pixels from the right feature map. Then the reconstruction error 

can be obtained by calculating the absolute difference: 

 

𝑅∆𝑑 = |𝐹𝐿 − 𝐹′𝑅
∆𝑑|                                (3) 

 

where 𝑅∆𝑑 is the reconstruction error map, which measures the 

correctness of disparity in feature space. Similar to the 

construction of the residual cost volume, we concatenate all 

reconstruction error maps along the disparity residual interval 

and obtain the reconstruction error volume 𝑅𝑒. This volume is 

also a crucial factor for guiding the refinement network. 

 

3.4 Disparity residual estimation network 

After calculating the residual cost volume and the 

reconstruction error volume, we concatenate these two volumes 

and the left feature map as inputs into the disparity residual 

estimation network. Fig. 4 shows its basic architecture.  

 

 
Figure 4. Disparity residual estimation network 

 

Since we employ the shared feature maps from the initial sub-

net, we do not have to extract features again from the original 

images, thus the refinement sub-net can be designed with less 

layers. As Fig.4 shows, we use a shallow encoder-decoder 

architecture to recover disparity details from coarse to fine. 

Instead of directly learning disparity values for every pixel, we 

chose to learn disparity residuals, which is easier. Only two 

groups of convolutional layers are stacked in the encoder to 

preserve more spatial context. Each group contains two 3 × 3 

convolutions with strides 2 and 1, respectively, achieving an 

encoded feature map with dimension (W⁄8×H⁄8×C) where W, 

H, represent the width and height in original resolution, and C 

represents the number of channels of the feature map. In order 

to obtain dense per-pixel predictions with the original input 

resolution, we apply three up-sampling blocks corresponding to 

four scales (1/8, 1/4, 1/2 and 1×  the original size) in the 

decoder part. Each block consists of a 4 × 4 deconvolution layer 

with stride 2 to up-sample the residual output map. The network 

outputs refined disparities in different scales by adding the 

learned residuals with the initial disparity: 

 

𝐷𝑟𝑒𝑓𝑖𝑛𝑒𝑑
𝑠 = 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠 + 𝑅𝑠                         (4) 

 

where 𝐷𝑟𝑒𝑓𝑖𝑛𝑒𝑑
𝑠  represents the refined disparity map in 𝑠 scale 

(s ∈ 1 8⁄ , 1 4⁄ , 1 2⁄ , 1),  𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑠  is the initial disparity and  𝑅𝑠 

means the residual map in s scale. 

 

3.5 Loss 

We train our network in a fully supervised manner by using a 

disparity regression loss. We adopt the ℓ1 norm to measure the 

absolute difference between the disparity D predicted by the 

model and the ground truth disparity  D̂ . As ground truth 

disparity maps are sometimes sparse (e.g. KITTI dataset, see 

Geiger et al. (2012; Menze et al., 2018), we average our loss 

over the valid pixels 𝑁𝑣 , for which ground truth labels are 

available. Thus the loss function for the scale s is defined as: 

 

ℒs =
1

Nv

∑ ‖Di,j − D̂i,j‖1i,j                              (5) 
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where ‖∙‖1 denotes the ℓ1 norm, v represents all valid disparity 

pixels in D̂  and Nv is the number of valid pixels. The total loss 

function E is a weighted sum of losses of all scales: 

 

E = ∑ λsℒss                                          (6) 

 

where ℒs is the loss from Eq. (5), evaluated at scale s, and λs 

denotes the weighting factor for this scale. 

 

4. EXPERIMENTS AND RESULTS 

4.1 Dataset  

In this work, we have carried out several experiments to assess 

the performance of our method in a qualitative and quantitative 

way. A number of public synthetic and real stereo datasets are 

used: Scene Flow (Mayer et al., 2015), MPI Sintel (Wulff et al., 

2012) and KITTI 2015 (Menze et al., 2018; Menze and Geiger, 

2015), which all contain rectified stereo images and ground 

truth disparity. Scene Flow is a large synthetic dataset and 

provides accurate sup-pixel dense ground-truth disparities; it 

contains more than 39,000 stereo frames in 960×540 pixel 

resolution. We use it to train our network end-to-end. MPI 

Sintel is also an entirely synthetic dataset, which has 1064 

training frames in 1024×436 pixel resolution and provides 

dense ground truth with large displacement. We use it to test the 

performance of our pre-trained model. The KITTI 2015 dataset 

is a real world dataset and contains various outdoor street views 

captured from a car driving in an urban area. It provides about 

200 stereo pairs in 1242×375 pixel resolution for training with 

sparse ground truth obtained from a 3D laser scanner; only 

approximately 30% of pixels have ground truth disparity values. 

 

4.2 Implementation details 

Training： The Tensorflow framework is used in our work and 

all experiments are conducted on a Titan X GPU. We optimized 

our model end-to-end by choosing the Adam optimizer with 

default momentum parameters, β1 = 0.9 and β2 = 0.999. We 

trained our model on the Scene Flow dataset in three stages. 

First, we trained the initial sub network (for training details, 

refer to our prior work,  Kang et al. (2019). Then we fixed the 

parameters of the initial sub-network and trained the refinement 

sub-net with a learning rate of 1e-4 for the first 80k iterations 

and 1e-5 for the remaining 120k iterations. Finally, we jointly 

refined the whole network with a learning rate of 1e-5 for the 

first 80k and 5e-6 for the remaining 120k iterations. We used 

fixed weights for the different scales in the loss function during 

training; these weights (𝜆1, 𝜆2, 𝜆3, 𝜆4) were set to (1, 0.5, 0.2, 

0.2). We fine-tuned the pre-trained model on the KITTI 2015 

training dataset with a learning rate of 1e-5 for 20k iterations. 

Due to the GPU limitation, we set the batch size to 2 for 

training.  

 

Testing: we evaluate our model on different datasets with two 

metrics. One is the End-point-Error (EPE), which calculates the 

average Euclidean distance between predicted and ground truth 

disparity along all valid pixels. The other one is t-pixel error, 

which computes the percentage of “bad” pixels among all valid 

pixels. A bad pixel is a pixel with an absolute disparity error 

larger than a threshold t. 
 

4.3 Error analysis for the initial network 

By way of example, we first investigate the error distribution 

for the initial network to obtain the disparity error range, which 

is a very important factor to guide the refinement. To do so, we 

analyse the empirical error distribution of the initial disparity 

prediction (excluding the disparities in occluded areas) on the 

training samples of the well-known Scene Flow dataset (Mayer 

et al., 2015), see Fig. 5. From this figure, it can be observed that 

small errors occur with much higher probability than larger 

errors. We also provide the results in logarithmic scale to better 

show the percentage of large errors. 

 

From Fig. 5, we observe that in this example 95% of the initial 

disparity errors are smaller than 2.3 pixels and 99% are smaller 

than 7.8 pixels. The distribution reveals that the majority of 

errors of the initial disparity can be interpreted as random 

errors, rather than as systematic or gross errors. Therefore, 

under the assumption that these results are representative, only 

considering a limited range of disparity in the residual network 

is a meaningful option. According to the statistical confidence 

theory, we set the potential residual range of disparity dresidual 

as 10 pixels. This factor is used in the part of constructing the 

residual cost volume and reconstruction error volume. 

 

 
Figure 5. Disparity error distribution of the initial network in 

basic scale and logarithmic scale of the frequency, respectively. 

 

4.4 Results 

4.3.1 Ablation experiments: In this section, in order to explore 

the effectiveness of our refinement sub-net, we compare the 

results on the Scene Flow dataset and the Sintel dataset when 

varying the refinement network structures. As listed in table 1, 

we use “DispNetC” as our baseline network; “DispGradNet” is 

our initial network which is modified based on the baseline 

network. “RCV” represents the residual cost volume module 

and “REV” means the reconstruction error volume in the 

refinement part. “Joint refinement” means we jointly trained the 

initial and the refinement network together. 

 

As shown in Table 1, our initial network (Model_1) 

outperforms the baseline network with the EPE being reduced 

from 1.68 to 1.43 for Scene Flow, and from 5.66 to 3.06 for 

MPI Sintel. It can also be seen that our initial end-to-end 

network can predict more accurate initial disparities than the 

baseline network. To demon- 
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Name Network setting Test Datasets 

 Initial Sub-net Refinement Sub-net Scene Flow MPI Sintel 

 
 RCV REV 

Joint 

refinement 

>1px 

[%] 

>3px 

[%] 

>5px 

[%] 

EPE 

[px] 

>1px 

[%] 

>3px 

[%] 

>5px 

[%] 

EPE 

[px] 

Model_0 DispNetC -- -- -- 23.33 9.45 6.22 1.68 47.84 22.90 17.47 5.66 

Model_1 DispGradNet -- -- -- 19.36 7.86 5.19 1.43 31.58 14.35 9.45 3.06 

Model_2 DispGradNet √ × × 13.31 6.45 4.55 1.20 19.67 11.33 8.30 2.68 

Model_3 DispGradNet √ √ × 12.17 6.04 4.29 1.14 17.81 10.35 7.63 2.58 

Model_4 DispGradNet √ √ √ 10.77 5.28 3.76 1.02 18.01 10.83 8.10 2.79 

Table 1. Results achieved on the Scene Flow dataset and Sintel dataset when employing different network structures. 

 

       

       

       

       
(1) Left image                               (2) Ground Truth                            (3) Initial Network                         (4) Our final model 

Figure 6. Visualization results of disparity estimation for Scene Flow. Colum 1: Left image; Colum 2: ground truth; Colum 3: results 

predicted by the initial network (without the refinement). Colum 4: results predicted by our final model (with the refinement). 

 

strate the effectiveness of the residual cost volume, we 

compared the results with and without this module (Model_1 

vs. Model_2). As shown in Table 1, adding the residual cost 

volume achieves an improvement for EPE for Scene Flow; 

similar results were obtained for MPI Sintel. This demonstrates 

that using the residual cost volume indeed improves disparity 

qualities. 

 

As introduced in Section 3.4, we also employ the reconstruction 

error volume as another additional guidance for the refinement 

sub-net. Comparing the results for Model_2 and Model_3 in 

Table 1, considering this volume leads to better results. Thus, 

the reconstruction error volume can indeed provide cues for 

erroneous areas, the results of which are subsequently 

improved. 

In addition, jointly refining the whole network (Model_4 in 

Table 1) can further slightly improve the results for Scene Flow, 

but does not do so for MPI Sintel. Thus, some generalization 

abilities are lost. In summary, compared with the initial 

network, our refinement sub-net can decrease the estimation 

error by about 30%, which we consider to be significant. 

We also show visualization results regarding the initial network 

and the refinement network on the Scene Flow dataset, see Fig. 

6. Although this dataset is synthetic, the images for evaluation 

are still very challenging due do the presence of occlusions and 

thin structures. Compared with the initial network, as illustrated 

in the red box, in the small structure area, our method can 

recover richer detail. It can be seen that our refinement sub-net 

can significantly correct errors of the initial disparity and 

produce consistent disparities in homogeneous regions. 

 

4.3.2 Comparison with other methods: In this section, we 

investigate how well our method performs when compared with 

some state of art methods on the Scene Flow dataset, namely 

DispNet (Mayer et al., 2015), DispNet_css (Ilg et al., 2018), 

CRL (Pang et al., 2018), PSM-Net (Chang and Chen, 2018), 

GC-NET (Kendall et al., 2017), iResNet (Liang et al., 2018) and 

StereoNet (Khamis et al., 2018). The results are shown in Tab.2. 

  

As is shown in the Tab. 2, the end point error (EPE) of our 

method is 1.02 pixels, which is the smallest of all values. 
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 DispNetC DispNet_css CRL PSM-Net GC-NET iResNet StereoNet Ours 

EPE [px] 1.68 1.34 1.32 1.09 2.51 1.40 1.10 1.02 

>3PX [%] 9.45 7.73 6.20 -- 7.20 4.57 -- 5.36 

Table 2 Comparison results of different stereo matching methods on the Scene Flow dataset. 

 

Method 
All pixels Non-occluded pixels Runtime 

D1-bg D1-fg D1-all D1-bg D1-fg D1-all 
 

M2S_CSPN (Cheng et al., 2018b) 1.51 2.88 1.74 1.40 2.67 1.61 1000 ms 

GANet-deep (Zhang et al., 2019) 1.48 3.46 1.81 1.34 3.11 1.63 1800 ms 

PSM-Net 1.86 4.62 2.32 1.71 4.31 2.14 410 ms 

CRL 2.48 3.59 2.67 2.32 3.12 2.45 470 ms 

GC-Net 2.21 6.16 2.87 2.02 5.58 2.61 900 ms 

DispNetC（baseline） 4.32 4.41 4.34 4.11 3.72 4.05 60 ms 

Initial Net 3.61 7.14 4.20 3.41 6.59 3.94 140 ms 

Our Refinement 2.83 6.88 3.51 2.61 5.99 3.17 230 ms 

Table 3 Comparison results of our model with other methods on KITTI2015 benchmark 

 

As mentioned before, CRL is the method closest to ours, 

however, the authors simply stack two networks on top of each 

other to learn the refined disparity map. From the comparison, 

we see that our method outperforms CRL in terms of EPE and 

3-pixel error. The main reason is probably that the initial and 

refinement sub-nets of CRL are loosely stacked, making it more 

difficult for the network to learn refined disparities. However, 

our method uses two interpretable inputs to capture detailed 

correspondences and error information, which makes our 

refinement network focus on learning accurate residuals. We 

also notice that iResNet achieves the best performance in terms 

of 3-pixel error and that of our result is slightly larger. 

Compared to our method, the authors of iResNet used multi-

scale feature maps in their network to calculate reconstruction 

error maps and employ iterative strategies, which they argue are 

effective for improving accuracy in terms of 3-pixel error. 

 

4.3.3 Fine-tuning on KITTI 2015 datasets: Furthermore, we 

randomly split the whole training set of KITTI2015 into the 

training subset (90%) and validation subset (10%) and fine-

tuned our network on the training subset. Note that we have 

excluded one image pair from the KITTI2015 training dataset 

since its illumination condition is very black and thus not 

representative. 

 

We then submitted the results to the KITTI online leader board 

for performance evaluation. The results are shown in Tab. 3. 

“D1-bg” means the 3-pixel error in the background and “D1-fg” 

means the 3-pixel error in the foreground. “D1-all” represents 

the 3-pixel error for all pixels. From Tab. 3, we can see that the 

3-pixel error for all pixels of our method is 3.51%, which 

outperforms DispNet (4.34%) and the initial network (4.20%). 

This means, that adding the refinement part improves the 

performance on KITTI as well. Compared to current state-of-

the- art methods in terms of speed, our method can predict 

disparity faster, being almost two times faster than CRL. 

However, our method is still slightly inferior to CRL in terms of 

accuracy, especially in the foreground of the image. This may 

be because in our initial network, we employ a disparity 

gradient regression loss to regularize disparity change, which 

requires the dataset to have dense ground truth. As the ground 

truth labels of KITTI are sparse, it is impossible to obtain 

accurate ground truth disparity gradients. 

 

5. CONCLUSION 

In this paper, we propose a new refinement network to estimate 

a detailed disparity map from stereo images, which incorporates 

a residual cost volume and a reconstruction error volume as 

guiding information. The residual cost volume provides more 

detailed correspondence information between the left and right 

image and the reconstruction error volume reflects the 

correctness of initial disparities; both are helpful to guide the 

network to improve disparity quality. Using these two volumes 

and the shared features as the inputs, the refinement network 

adopts a shallow encoder-decoder module to learn disparity 

residuals and output the final refined disparity map. Extensive 

qualitative and quantitative experiments on different datasets 

demonstrate that our refinement network can significantly 

reduce the disparity error and predict fine structures. Compared 

with state-of-the-art stereo matching methods, our method can 

achieve competitive performance if datasets provide dense 

ground truth, however, has limited accuracy in terms of 3-pixel 

error. This limitation may be mitigated by adding an iterative 

refinement.  

 

In future work, we will focus on evaluating our network with 

different hyper-parameters (e.g., the parameter for sub-pixel 

accuracy) and refinement strategies. Furthermore, we also plan 

to employ our refinement network to predict dense depth for 

high resolution aerial or satellite image datasets. Finally, we 

strive to adapt our network to multi-view stereo matching, 

which is essential for dense 3D reconstruction.  
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