11 research outputs found

    The number of tangencies between two families of curves

    Full text link
    We prove that the number of tangencies between the members of two families, each of which consists of nn pairwise disjoint curves, can be as large as Ω(n4/3)\Omega(n^{4/3}). We show that from a conjecture about forbidden 00-11 matrices it would follow that this bound is sharp for doubly-grounded families. We also show that if the curves are required to be xx-monotone, then the maximum number of tangencies is Θ(nlogn)\Theta(n\log n), which improves a result by Pach, Suk, and Treml. Finally, we also improve the best known bound on the number of tangencies between the members of a family of at most tt-intersecting curves

    On the number of touching pairs in a set of planar curves

    Get PDF
    Given a set of planar curves (Jordan arcs), each pair of which meets -- either crosses or touches -- exactly once, we establish an upper bound on the number of touchings. We show that such a curve family has O(t2n)O(t^2n) touchings, where tt is the number of faces in the curve arrangement that contains at least one endpoint of one of the curves. Our method relies on finding special subsets of curves called quasi-grids in curve families; this gives some structural insight into curve families with a high number of touchings.Comment: 14 pages, 7 figure

    Tangencies between families of disjoint regions in the plane

    Get PDF
    AbstractLet C be a family of n convex bodies in the plane, which can be decomposed into k subfamilies of pairwise disjoint sets. It is shown that the number of tangencies between the members of C is at most O(kn), and that this bound cannot be improved. If we only assume that our sets are connected and vertically convex, that is, their intersection with any vertical line is either a segment or the empty set, then the number of tangencies can be superlinear in n, but it cannot exceed O(nlog2n). Our results imply a new upper bound on the number of regular intersection points on the boundary of ⋃C

    On Geometric Range Searching, Approximate Counting and Depth Problems

    Get PDF
    In this thesis we deal with problems connected to range searching, which is one of the central areas of computational geometry. The dominant problems in this area are halfspace range searching, simplex range searching and orthogonal range searching and research into these problems has spanned decades. For many range searching problems, the best possible data structures cannot offer fast (i.e., polylogarithmic) query times if we limit ourselves to near linear storage. Even worse, it is conjectured (and proved in some cases) that only very small improvements to these might be possible. This inefficiency has encouraged many researchers to seek alternatives through approximations. In this thesis we continue this line of research and focus on relative approximation of range counting problems. One important problem where it is possible to achieve significant speedup through approximation is halfspace range counting in 3D. Here we continue the previous research done and obtain the first optimal data structure for approximate halfspace range counting in 3D. Our data structure has the slight advantage of being Las Vegas (the result is always correct) in contrast to the previous methods that were Monte Carlo (the correctness holds with high probability). Another series of problems where approximation can provide us with substantial speedup comes from robust statistics. We recognize three problems here: approximate Tukey depth, regression depth and simplicial depth queries. In 2D, we obtain an optimal data structure capable of approximating the regression depth of a query hyperplane. We also offer a linear space data structure which can answer approximate Tukey depth queries efficiently in 3D. These data structures are obtained by applying our ideas for the approximate halfspace counting problem. Approximating the simplicial depth turns out to be much more difficult, however. Computing the simplicial depth of a given point is more computationally challenging than most other definitions of data depth. In 2D we obtain the first data structure which uses near linear space and can answer approximate simplicial depth queries in polylogarithmic time. As applications of this result, we provide two non-trivial methods to approximate the simplicial depth of a given point in higher dimension. Along the way, we establish a tight combinatorial relationship between the Tukey depth of any given point and its simplicial depth. Another problem investigated in this thesis is the dominance reporting problem, an important special case of orthogonal range reporting. In three dimensions, we solve this problem in the pointer machine model and the external memory model by offering the first optimal data structures in these models of computation. Also, in the RAM model and for points from an integer grid we reduce the space complexity of the fastest known data structure to optimal. Using known techniques in the literature, we can use our results to obtain solutions for the orthogonal range searching problem as well. The query complexity offered by our orthogonal range reporting data structures match the most efficient query complexities known in the literature but our space bounds are lower than the previous methods in the external memory model and RAM model where the input is a subset of an integer grid. The results also yield improved orthogonal range searching in higher dimensions (which shows the significance of the dominance reporting problem). Intersection searching is a generalization of range searching where we deal with more complicated geometric objects instead of points. We investigate the rectilinear disjoint polygon counting problem which is a specialized intersection counting problem. We provide a linear-size data structure capable of counting the number of disjoint rectilinear polygons intersecting any rectilinear polygon of constant size. The query time (as well as some other properties of our data structure) resembles the classical simplex range searching data structures

    Covering Problems via Structural Approaches

    Get PDF
    The minimum set cover problem is, without question, among the most ubiquitous and well-studied problems in computer science. Its theoretical hardness has been fully characterized--logarithmic approximability has been established, and no sublogarithmic approximation exists unless P=NP. However, the gap between real-world instances and the theoretical worst case is often immense--many covering problems of practical relevance admit much better approximations, or even solvability in polynomial time. Simple combinatorial or geometric structure can often be exploited to obtain improved algorithms on a problem-by-problem basis, but there is no general method of determining the extent to which this is possible. In this thesis, we aim to shed light on the relationship between the structure and the hardness of covering problems. We discuss several measures of structural complexity of set cover instances and prove new algorithmic and hardness results linking the approximability of a set cover problem to its underlying structure. In particular, we provide: - An APX-hardness proof for a wide family of problems that encode a simple covering problem known as Special-3SC. - A class of polynomial dynamic programming algorithms for a group of weighted geometric set cover problems having simple structure. - A simplified quasi-uniform sampling algorithm that yields improved approximations for weighted covering problems having low cell complexity or geometric union complexity. - Applications of the above to various capacitated covering problems via linear programming strengthening and rounding. In total, we obtain new results for dozens of covering problems exhibiting geometric or combinatorial structure. We tabulate these problems and classify them according to their approximability
    corecore