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Abstract

Given a set of planar curves (Jordan arcs), each pair of which meets – either
crosses or touches – exactly once, we establish an upper bound on the number
of touchings. We show that such a curve family has O(t2n) touchings, where
t is the number of faces in the curve arrangement that contains at least one
endpoint of one of the curves. Our method relies on finding special subsets of
curves called quasi-grids in curve families; this gives some structural insight into
curve families with a high number of touchings.
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1. Introduction

The combinatorial examination of incidences in the plane has proven to be
a fruitful area of research. The first seminal results are the crossing lemma that
establishes a lower bound on the number of edge crossings in a planar drawing of
a graph (Ajtai et al., Leighton [1, 2]), and the theorem by Szemerédi and Trotter5

[3], concerning the number of incidences between lines and points. Soon, the
incidences of more general geometric objects (segments, circles, algebraic curves,
pseudo-circles, Jordan arcs, etc.) became the center of attention [4, 5, 6, 7, 8, 9].
With the addition of curves, the distinction between touchings and crossings is
in order.10

Usually, the curves are either Jordan arcs, i.e., the image of an injective
continuous function ϕ : [0, 1]→ R2, or closed Jordan curves, where ϕ is injective
on [0, 1) and ϕ(0) = ϕ(1). Generally, it is supposed that the curves intersect
in a finite number of points, and that the curves are in general position: three
curves cannot meet at one point, and (in case of Jordan arcs) an endpoint of15

a curve does not lie on any other curve. (For technical purposes, we will allow
curve endpoints to coincide in some proofs.)
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Let P be a point where curve a and b meet. Take a circle γ with center P
and a small enough radius so that it intersects both a and b twice, and the disk
determined by γ is disjoint from all the other curves , and contains no other20

intersections of a and b. Label the intersection points of γ and the two curves
with the name of the curve. We say that a and b cross in P if the cyclical
permutation of labels around γ is abab, and a and b touch in P if the cyclical
permutation of labels is aabb. In a family of curves, let X be the set of crossings
and T be the set of touchings.25

The Richter-Thomassen conjecture [10] states that given a collection of n
pairwise intersecting closed Jordan curves in general position in the plane, the
number of crossings is at least (1− o(1))n2. A proof of the Richter-Thomassen
conjecture has recently been published by Pach et al. [11]. They show that the
same result holds for Jordan arcs as well.30

It would be preferable to get more accurate bounds for the ratio of touchings
and crossings. Fox et al. constructed a family of x-monotone curves with ratio
|X|/|T | = O(logn) [12]. If we restrict the number of intersections between
any two curves, then it is conjectured that the above ratio is much higher. It
has been shown that a family of intersecting pseudo-circles (i.e., a set of closed35

Jordan-curves, any two of which intersect exactly once or twice) has at most
O(n) touchings [7]. We would like to examine a similar statement for Jordan
arcs.

A family of Jordan arcs in which any pair of curves intersect at most once
(apart from the endpoints) will be called a family of pseudo-segments. Our40

starting point is this conjecture of János Pach [13]:

Conjecture 1. Let C be a family of pseudo-segments. Suppose that any pair of
curves in C intersect exactly once. Then the number of touchings in C is O(n).

A family of pseudo-segments is intersecting if every pair of curves intersects
(i.e., either touches or crosses) exactly once outside their endpoints.45

Two important special cases of the above are the cases of grounded and
double-grounded curves. (The definitions are taken verbatim from [9].) A col-
lection C of curves is grounded if there is a closed Jordan curve g called ground
such that each curve in C has one endpoint on g and the rest of the curve is in
the exterior of g. The collection is double grounded if there are disjoint closed50

Jordan curves g1 and g2 such that each curve c ∈ C has one endpoint on g1 and
the other endpoint on g2, and the rest of c is disjoint from both g1 and g2.

According to our knowledge the best upper bound is O(n logn) for the num-
ber of touchings in a double-grounded x-monotone family of pseudo-segments
[14] and we do not know any (non-trivial) result for the grounded case.55

1.1. Our contribution
Let C be an intersecting family of pseudo-segments. There is a planar graph

drawing that corresponds to this family: the vertices are the crossings and
touchings, and the edges are the sections of the curves between neighboring
intersections. (Notice that the sections between curve endpoints and the neigh-60

boring intersections are not represented in this graph.) Consider the faces of this
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planar graph drawing. Let tC be the number of faces that contain an endpoint
of at least one curve in C. Our main theorem can be stated as follows:

Theorem 2. Let C be an n-element intersecting family of pseudo-segments
on the Euclidean plane. Then the number of touchings between the curves is65

f(n) = O(t2Cn).

If tC is constant, this theorem settles Conjecture 1. Note that this includes
the case when C is a double-grounded intersecting family of pseudo-segments:

Corollary 3. Let C be an n-element double-grounded intersecting family of
pseudo-segments. Then the number of touchings between the curves is O(n).70

A careful look at the proof of the main theorem yields the following result
for grounded intersecting families of pseudo-segments:

Theorem 4. Let C be an n-element grounded intersecting family of pseudo-
segments. Then the number of touchings between the curves is O(tCn).

The intuition behind our approach can be described as follows. Curves75

starting in the same face of an arrangement can be thought of as curves having
the same endpoints. A curve going from point A to B that touches some other
curve g can do that touching only in a constant number of ways, depending on
which side of g is touched and in which direction. We observe that a collection
of curves going from A to B must therefore contain a subcollection that touch80

g the same way, and these curves must have a very special grid-like structure,
which we call quasi-grids.

It turns out that quasi-grids always emerge when we take two grid families
of pseudo-segments, one containing curves from A to B, the other containing
curves from C to D. Note that a curve touching all curves in a large quasi-grid85

has to lie outside the “grid cells”, since it cannot cross the quasi-grid curves,
and within a “grid cell” it could only reach at most four curves. If we find two
curves touching the same large quasi-grid, then (intuitively) those two curves
would have many intersections – this is not possible in an intersecting family
of pseudo-segments. We show that the number of touchings between a pair of90

fixed endpoint curve families is linear in the size of these families. We then use
this observation to get the bound on the total number of touchings.

2. Proof of the main theorem

The rigorous proof of our main theorem is based upon a key lemma. Its proof
anticipates and uses several technical lemmas which are detailed in Sections 395

and 4.
Before stating the key lemma, we introduce some notations. The notation

g � h means that curves g and h touch each other. If A and B are (not
necessarily distinct) points on the plane, then C(A,B) denotes the set of directed
curves going from A to B. Note that here we consider curves as directed ones100

for technical reasons (for example, we can refer to the sides of a directed curve
as left and right).
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Lemma 5. Let A,B,C,D be not necessarily distinct points on the plane, and C1
and C2 be finite disjoint curve families from C(A,B) and C(C,D), respectively.
If C1 ∪ C2 is an intersecting family of pseudo-segments, then105

1. the number of c1 � c2 touchings where c1 ∈ C1 and c2 ∈ C2 is O(|C1∪C2|);
2. the number of touchings between curves of Ci is O(|Ci|) (i = 1, 2).

Proof. We only consider the first claim, the second can be proven with the same
tools. Suppose for contradiction that there are ω(|C1 ∪ C2|) instances of c1 � c2
touchings.110

Let K be a large constant. Without loss of generality, we can suppose that
each curve of Ci touches at least K curves of Cj . To see this, consider first the
bipartite graph G with vertex set C1 ∪ C2, where the edges correspond to the
c1 � c2 touchings (c1 ∈ C1 and c2 ∈ C2). If G has vertices of degree less than K,
then delete those vertices and the incident edges. Iterate this procedure until115

the minimum degree is at least K or the graph is empty. If G had at least
K|C1 ∪ C2| edges, then this procedure cannot result in an empty graph.

Let g ∈ C1 be an arbitrary curve. By Lemma 10, there is a quasi-grid with
respect to g formed by at least K/48 > 3 curves. A quasi-grid is depicted in
Figure 1, the precise definition is given in Definition 6.120

Consider an “inner” curve h in this quasi-grid. By Lemma 11, if a curve
touches h, then it must also touch g or a neighboring curve of h in the quasi-grid.
By our starting assumption, at least K curves touch h. Then by Lemma 10, at
least K/48 of the curves touching h must also touch another specific curve h′,
and at least K/(48)2 of these form a quasi-grid Q with respect to both h and125

h′.
Therefore, by choosing K ≥ 4 · 482 + 1, the quasi-grid Q can be forced to

contain at least five curves. This is a contradiction by Lemma 13.

Next we show how Lemma 5 implies Theorem 2. Let t = tC .

Proof of Theorem 2. Consider the planar graph drawing that corresponds to C.130

Let the faces of this planar graph drawing that contain an endpoint of at least
one curve in C be: F1, F2, . . . , Ft.

For i = 1, 2, . . . , t, let Pi be an arbitrary point in the interior of Fi not
incident to any curve in C. Each curve endpoint inside Fi can be connected to Pi

without adding any intersections between the curves of C with the exception of135

Pi. Let C′ be the family of pseudo-segments obtained from C by this procedure.
Partition C′ to disjoint subsets C1, C2, . . . , Cs so that two curves are in the

same subset if and only if their endpoints are the same. Note that s ≤
(

t+1
2
)
.

Fix the orientation of each curve in C′ from Pi to Pj if i < j, and arbitrarily if
i = j.140

Let fk denote the number of touchings inside Ck and fk,l denote the number
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of touchings between Ck and Cl. Then the total number of touchings in C′ is

f(n) =
∑

k

fk +
∑
k<l

fk,l =
∑

k

O(|Ck|) +
∑
k<l

O(|Ck|+ |Cl|)

= O(n) +
∑

k

(s− 1)O(|Ck|) = O (sn) = O
(
t2n
)
,

where the second equation follows from Lemma 5.

Notice that in case of a grounded intersecting family of pseudo-segments, we
have s = t+ 1, so O(sn) = O(tn), which proves Theorem 4.

3. Quasi-grids and their occurrence

3.1. Notations and definitions145

We introduce several notations used in the paper. Let g and h be a pair of
directed curves. If g touches the left side of h, and they have the same direction
at the touching point, then write g � h. (More precisely, let γ be a circle
around the intersection P with a small enough radius so that it intersects both
a and b twice, and the disk determined by γ is disjoint from all the other curves,150

and contains no other intersections of a and b. We label the points where g
and h enters γ by g and h, and assign the labels g′ and h′ to the points where
they exit. We say that the right side of g touches the left side of h in P if the
counter-clockwise cyclic order of labels on γ is ghh′g′.) Notice that this relation
is not symmetric, i.e., g � h 6⇔ h � g. If g and h have different directions at155

the touching point (so the counter-clockwise cyclic order of labels on γ is gg′hh′
or gh′hg′), then write g � h or g � h depending on which side of h is touched by
g. We say that c1 and c2 are g-touch equivalent if they touch g on the same
side and in the same direction, i.e., (g � c1 ∧ g � c2) or (g � c1 ∧ g � c2) or
(c1 � g ∧ c2 � g) or (c1 � g ∧ c2 � g). A set of curves is g-touch equivalent if its160

elements are pairwise g-touch-equivalent.
For a directed curve g with points A and B that lie on the curve in this

order, let A g−→B be the closed directed subcurve from A to B, and B
g←−A

will denote the reverse directed subcurve from B to A. This notation can be
iterated, e.g. if P ∈ h∩g, then A g−→P h←−Q denotes the curve which starts from165

A ∈ g, continues on g to the intersection point P , then changes to h, and goes
on h in reverse direction until it ends in Q ∈ h. When referring to undirected
subcurves, we use A g B. Sometimes these notations are also used to denote
the ordering of points on a particular curve.

As already defined, C(A,B) is the set of directed curves going from A to170

B. For a curve c ∈ C(A,B), let c? = c \ {A,B}. For a set of curves C =
{c1, c2, . . . ck}, let C? = {c?

1, c
?
2, . . . c

?
k}.

The objects called quasi-grids are the main tool of this paper. Intuitively,
the below definition says that the incidences of a quasi-grid are exactly as shown
in Figure 1, with the exception of the points X,Y,A and B — we allow these175

to coincide arbitrarily.
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X Yg

A B

Figure 1: A quasi-grid for the case g � ci. Swapping X, Y or A, B gives the other 3 cases.

Definition 6 (Quasi-grid). A set of curves C = {c1, c2, . . . , ck} ⊆ C(A,B) forms
a quasi-grid with respect to a curve g ∈ C(X,Y ) if:

1. C? ∪ {g?} is an intersecting family of pseudo-segments
2. C? is g-touch-equivalent with touching points Pi = g ∩ ci180

3. Pi,j = c?
i ∩ c?

j is a crossing point
4. the ordering of points on g is P1

g P2
g . . . g Pk

5. the ordering of points on cj (j = 1, 2, . . . , k) is

A
cj−→P1,j

cj−→P2,j
cj−→. . . cj−→Pj−1,j

cj−→Pj
cj−→Pj,j+1

cj−→. . . cj−→Pj,k
cj−→B.

An example for a quasi-grid can be seen in Figure 1. Throughout the paper
(if we do not indicate it otherwise) we assume that the indices of the curves in
C describe the order of their touching points on g.185

3.2. Finding quasi-grids in curve configurations
The goal of this subsection is to prove that in a family of pseudo-segments,

the set of g-touch equivalent curves with given endpoints form a constant number
of quasi-grids. Intuitively, Lemma 7 shows that in a family of pseudo-segments,
the g-touch equivalent curves from C(A,B) (where A 6= B) can still have two190

distinct types. Note that these types cannot be defined separately, only in
relation to each other. In Lemma 8, we establish that the curves in each type
form a quasi-grid with respect to g. Lemma 9 examines the case A = B.

Lemma 7. Fix a curve g ∈ C(X,Y ) and suppose that c1 and c2 are g-touch-
equivalent curves from C(A,B) with touching points P1 and P2 respectively,195

where A 6= B. Note that P1 and P2 divide c1 and c2 into their first and second
parts. Suppose further that {c?

1, c
?
2, g

?} is a family of pseudo-segments. Then c?
1

crosses c?
2 at a point Q, which is either the intersection of the first part of c1

with the second part of c2, or vice versa: the intersection of the second part of
c1 with the first part of c2.200

Proof. Suppose (without loss of generality) that g � c1, g � c2, and that P1

precedes P2 on g. Consider the closed directed curve ` = A
c1−→P1

g−→P2
c2←−A

(curves with gray halo in the middle and right part of Figure 2). We show that
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X YP1 P2

A

H

g

c1

c2

X YP1 P2

A B

g

c1
c2

`
Q

X YP1 P2

A

B

g

c1

c2

`

Q

Figure 2: Left: c1 and c2 cannot intersect before reaching g; middle and right: the possible
configurations

` is a Jordan-curve. Suppose for contradiction that A c1−→P1 and A c2−→P2 has an
intersection point H 6= A (see the left picture in Figure 2). Since {c?

1, c
?
2, g

?} is a205

family of pseudo-segments, there can be no further intersections between c?
1 and

c?
2. It follows that `′ = H

c1−→P1
g−→P2

c2←−H is a Jordan curve that separates the
plane into its left and right (shaded) side regions. Notice that P1

c1−→B begins
in the right side region of `′, while P2

c2−→B begins in the left side region by our
assumptions g � c1 and g � c2. Since P1

c1−→B c2←−P2 is a continuous curve that210

begins and ends in different sides of `′, it must cross `′ in a point distinct from
H; we arrived at a contradiction.

Thus (A c1−→P1) ∩ (A c2−→P2) = {A}, hence ` is a Jordan-curve. By similar
argument as above, P1

c1−→B c2←−P2 is a continuous curve that begins and ends in
different sides of `, so it must cross `. Since c1, c2 and g are not self-intersecting215

and P1 and P2 already account for the intersections between g and {c1 ∪ c2},
the only remaining possibilities are that the crossing point is as claimed, i.e.,
Q = (A c2−→P2) ∩ (P1

c1−→B) or Q = (A c1−→P1) ∩ (P2
c2−→B) (see the middle and

the right picture in Figure 2).

Notice that the above lemma states that the curve c2 meets c1 before it220

meets g if and only if the first part of c2 crosses the second part of c1 and vice
versa: c2 meets g before it meets c1 if and only if the second part of c2 crosses
the first part of c1. This equivalence will be used several times in the following
lemmas.

Lemma 8. Let g ∈ C(X,Y ), and let H be a set of g-touch-equivalent curves225

from C(A,B), where A 6= B. If H? ∪ {g?} is a family of pseudo-segments, then
H is the disjoint union of at most two quasi-grids with respect to g.

Proof. We deal with the case g � h for all h ∈ H, the other three cases are
similar. Let h ∈ H be the curve that has the first touching point on X

g−→Y
among the curves from H. Let H1 ⊆ H consist of h and the curves from H that230

meet h before they meet g. Let H2 := H \ H1. We prove that H1 and H2 are
both quasi-grids with respect to g.

Let H1 = {h = h1, h2, . . . , h`} and let Pi = g ∩ hi. Assume without loss of
generality that P1

g−→P2
g−→. . .

g−→P`. We show that H1 is a quasi-grid with
respect to g. (See Figure 3.)235
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e
X YP1 P2 P ′1 P ′2

A

B

g

h = h1

H1

h2

h′1

h′2 H2

Q

Figure 3: Two quasi-grids with respect to g.

X YP1 P`−1 P`

A B

g

h = h1

P1,`

h`−1

P1,`−1
h`

c′

X YP1 P2 P3

A B

g

h = h1 P1,3
h2

P1,2

c′′

X YP1 P2 P3 P`

A B

g

h3

h = h1 P1,`

h2
h`

P1,2 P2,3
P1,3

P3,`

Figure 4: Top left: if P1,` is on P1
h1−→P1,`−1; top right: the case |H1| = ` = 3; bottom: the

case ` ≥ 4.
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The proof is by induction on the number of curves in H1, for ` = 1 the
statement is trivial. Lemma 7 yields the statement for ` = 2.

We claim that h` crosses h1 between P1,`−1 and B. By the definition of H1

and Lemma 7, P1,` must lie on P1
h1−→B. Suppose for contradiction that the

ordering on h1 is P1
h1−→P1,`

h1−→P1,`−1 (top left of Figure 4). Consider the closed240

Jordan curve c = P1
g−→P`−1

h`−1←− P1,`−1
h1←−P1. (The right side region of c is

shaded.)
Notice that A and B are on the left side of c. To see this, consider that c

is made up of three curve segments, and there can be no further intersections
among these three curves, so h1 and c \ (P1

h1−→P1,`−1) are disjoint. Since the245

type of touching at P1 is g � h1, we can see that (A h1−→P1)\P1 and consequently
point A in particular lies in the left side region of c. A similar argument for
h`−1 shows that B is also in the left side region.

Since h` is already crossing c once at P1,`, it has to cross it one more time,
because its endpoints A and B are on the same side of c. Since h` touches g250

outside c and it already has an intersection with h1, it will cross P`−1
h`−1←−P1,`−1.

Now h` has entered the right side of P1,`−1
h`−1−→B

h1←−P1,`−1 (the region with the
line pattern), while P` is on the left side (since g � h`−1). So h` would have to
cross h1 or h`−1 one more time, which is a contradiction.

If ` = 3, then consider the curve c′ = P2
g−→P3

h3−→B h1←−P1,3
h1←−P1,2

h2−→P2255

(see the top right of Figure 4). Since h2 and h3 touch g in the same direction,
h3 goes from P1,3 to P3 in the same side of c′ where h2 goes from P2 to B (or
a point on (P3

h3−→B)). Thus, h2 and h3 cross each other at a point P2,3 =
(P1,3

h3−→P3) ∩ (P2
h2−→B). By induction, the points on h1 and h2 are also in the

required order.260

For ` ≥ 4 the induction is used both for h1, h2, . . . , h`−1 and h1, h3, h4, . . . , h`.
We only need to show that h2 and h` cross each other at a point P2,` which
satisfies our ordering conditions. Indeed, on the right side of the curve

c′′ = P2
g−→P3

h3−→P3,`
h3−→B h1←−P1,`

h1←−P1,2
h2−→P2,

there is a crossing P2,` = (P1,`
h`−→P3,`)∩ (P2

h2−→B): this shows that the ordering
on h` is correct (see the bottom of Figure 4). A similar argument shows that
the ordering of points on h2 is correct, one needs to consider the right side of
the following closed curve:

P1,`−1
h`−1−→P2,`−1

h`−1−→P`−1,`
h`−1−→B

h1←−P1,`
h1←−P1,`−1.

We show that H2 behaves similarly. Let H2 = {h′1, h′2, . . . , h′m} and let
P ′i = g ∩ h′i. Again, suppose that P ′1

g−→P ′2
g−→. . .

g−→P ′m (see Figure 3). By
Lemma 7, h′1 must cross h = h1 at a point Q ∈ A h1−→P1, since h′1 6∈ H1. Now
consider the Jordan curve e = P1

g−→P ′1
h′1−→Q h1−→P1. Again, it is easy to check
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that e separates A from P ′j for j ≥ 2. Consider a curve h′j (j ≥ 2). It cannot265

meet h1 before meeting g since h′j 6∈ H1. Thus A
h′j−→P ′j must cross e somewhere

on P ′1
h′1−→Q. We have reduced this problem to the previous situation with h′1

acting as h1, so H2 also forms a quasi-grid with respect to g.

In the proof of the next lemma, we use the touching graph of a curve family
of pseudo-segments. Let H be a family of pseudo-segments. The touching graph270

of H is GH = (V,E) with V = H and E = {(a, b) : a � b}. The statement
of this lemma is almost identical to the previous one, but considers the case
when the endpoints of the quasi-grid coincide. In this case, we cannot prove
that the curves are the union of at most two quasi-grids, but we can still bound
the number of quasi-grids by a constant.275

Lemma 9. Let g ∈ C(X,Y ), and H is a set of g-touch-equivalent curves from
C(A,A). If H? ∪ {g?} is an intersecting family of pseudo-segments, then H is
the disjoint union of at most 12 quasi-grids with respect to g.

Proof. Again, we only deal with the case g � h for all h ∈ H. The first
claim is that any h ∈ H touches at most 2 other curves in H. Since h is a280

Jordan curve, it separates the plane into two regions, one of these contains g;
denote this region by Rg, and the other by Rn (see Figure 5, Rn has a line
pattern). Observe that no curve in H touching h can enter Rn as such a curve
cannot touch g. Let P = g ∩ h. We prove that there is at most one curve
in H that touches A h−→P . Suppose for contradiction that curves h1, h2 ∈ H285

are both touching A
h−→P at points T1 and T2 respectively, with the ordering

A
h−→T1

h−→T2
h−→P . Let Qi = hi ∩ g. Note that A lies on the left side of the

curve c = Q1
g−→P h←−T1

h1 Q1 since g � h. By an earlier observation, h2 is
disjoint from the open region Rn, which is the right side of h — so h2 touches
the left side of h in T2, i.e., h2 � h or h2 � h. It follows that both A

h2−→T2 and290

T2
h2−→A must cross c, but this crossing can only happen along T1

h1 Q1 because
the other boundary curves g and h are touched by h2. This means that h?

2 and
h? cross at least twice, which contradicts the basic properties of an intersecting
family of pseudo-segments. A similar argument shows that there is at most one
curve in H that touches P h−→A.295

Consider the touching graph GH. Our first observation implies that the
maximal degree in GH is 2, thus by Brooks’ theorem [15], GH is 3-colorable.
It is sufficient to prove that each color class is the disjoint union of at most 4
quasi-grids with respect to g.

Let H0 ⊆ H be a color class; consequently, it cannot contain a touching300

pair of curves, i.e., the curves in H are pairwise intersecting. Let k = |H0|. In
this paragraph, an ending of a directed curve refers to one of the endings of its
undirected version. Consider the cyclic order of the curve endings of H0 around
A: x1, x2, . . . , x2k. Each curve appears exactly twice in this sequence. Each
pair of curves in H0 crosses, hence xi and xk+i belong to the same curve for305
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c

T2

h

X YQ1 P

A

T1
Rn

g

T2

hh1

Figure 5: Curve h touches at most two other curves in H.

each i ∈ {1, . . . , k}. Therefore we may dilate A to two points A1 and A2 such
that endings x1, . . . , xk are at A1 and endings xk+1, . . . , x2k are at A2. Now H0
can be considered as a family of A1 A2 curves, which is the union of H12
containing A1−→A2 curves and H21 containing A2−→A1 curves. According
to Lemma 8, both H12 and H21 are the union of at most two quasi-grids with310

respect to g.

The above Lemmas also imply the following one:

Lemma 10. Let A,B,C,D be not necessarily distinct points on the plane. Let
g ∈ C(A,B), and let C0 ⊂ C(C,D) be a finite curve family such that {g} ∪ C0 is
an intersecting family of pseudo-segments with all h ∈ C0 touching g. Then C0315

is the disjoint union of at most 48 quasi-grids with respect to g.

Proof. C0 is the disjoint union of at most four g-touching equivalence classes
(g � h, g � h, h � g and h � g). By lemmas 8 and 9, each such class can be
decomposed into at most 12 quasi-grids.

4. Touching quasi-grids with external curves320

Lemma 11. Let g be any curve in C(A,B) and let H = {h1, h2, h3} ⊆ C(C,D)
be a quasi-grid with respect to g (possibly a part of a larger quasi-grid). Suppose
that for a curve g′ ∈ C(A,B), the set of five curves {g, g′, h1, h2, h3} is an
intersecting family of pseudo-segments and g′ touches the middle curve h2 ∈ H.
Then g′ must also touch at least one more among {g, h1, h3}.325

Proof. Suppose that g � hi (i = 1, 2, 3), the other cases are similar. The
definition of quasi-grids enumerates all intersections between the four curves
h1, h2, h3 and g. It follows that the borders of the faces in the right side of
C

h1−→P1
g−→P3

h3−→D
h1←−P1,3

h3←−C are determined (see the faces marked with
encircled numbers in Figure 6). Notice that some (or all) of A,B,C and D330

may coincide, so the other faces are unknown. Let 1 be the right side of
C

h1−→P1,2
h2←−C. In the same manner, we assign numbers 2 − 5 to some other

faces as well, see Figure 6.
Suppose for contradiction that g′ crosses h1, h3 and g. We need the following

claim to proceed with our proof.335
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Figure 6: The figures for various possible equalities among A, B, C and D.

Claim 12. The curve g′ cannot enter region 5 .

Proof. If g′ passes through 5 , then – since it touches h2 –, it must cross both
P1,2

h1−→P1,3 and P1,3
h3−→P2,3. Since there can be no more intersections with h1 or

h3, the curve g′ cannot pass through the closed curve c = C
h2−→D h1←−P1,3

h3←−C,
therefore it cannot meet g? (see Figure 6).340

Since g′ must cross h1, it has to enter either region 1 or 4 (by Claim 12
it cannot cross P1,2

h1−→P1,3). If it enters 1 , then — since it has crossed h1, one
of its endpoints A or B has to be on the border of 1 , thus either A = C or
B = C. If g′ enters 4 , then by Claim 12, one of the endpoints is D, so A = D
or B = D. The curve g′ also needs to cross h3, so it enters either 2 or 3 , and345

as before, it follows that A = D or B = D in case of entering 2 and A = C or
B = C otherwise.

If g′ enters 1 and 3 , then A = C = B. Since 1 and 3 are on the same
side of the closed curve g ∈ C(A,A), the curve (g′)? ∈ C?(A,A) crosses g? at an
even number of points, we arrived at a contradiction. The case when g′ enters350

2 and 4 is identical if we swap the role of C and D.
If g′ enters 1 and 2 , then the endpoints of g′ ∈ C(A,B) are C and D. If

A = D and B = C, then the closed curves B h1−→P1
g−→B and A g−→P1

h1−→A must
cross each other at an even number of points, so there is an intersection point
distinct from P1. Note that h1 and g are members of an intersecting family of355

pseudo-segments (since H is a quasi-grid with respect to g), so the intersection
must be at their endpoints, thus A = B. Consequently, if g′ enters 1 and 2 ,
then either A = B = C = D or A = C and B = D are two distinct points
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Figure 7: A 5-element quasi-grid H′

(see the bottom of Figure 6). Let R1 be the region to the left of A h2−→P2
g←−A

(sparsely dotted) and R2 be the left side of B g←−P2
h2−→B (densely dotted).360

Notice that g′ starts in R1 and ends in R2, two regions that are guaranteed to
be disjoint apart from P2, A and B. Since it cannot cross h2, it crosses both g?

1
and g?

2 , where g1 = A
g−→P2 and g2 = P2

g−→B. This is a contradiction since g′
has to cross g exactly once.

If g′ enters 3 and 4 , then A = C and B = D by the same argument as365

in the previous case. Let A′ and B′ be points on g′ close to its starting and
endpoint A and B, so that there are no touchings or crossings on g′ between
A and A′ and between B′ and B. Note that g′ cannot cross h2 because they
need to touch. Thus the boundary of R1 can only be crossed on g1, and both
A′ and B′ lie outside R1 (they are in 3 and 4 respectively), so the number370

of intersections between g?
1 and (g′)? is even. The same argument holds for

R2 and g2, so the number of intersections between g? and (g′)? is even – a
contradiction.

The next lemma demonstrates our intuitive claim that touching the members
of a large quasi-grid by two curves is not possible inside an intersecting family375

of pseudo-segments.

Lemma 13. Let H be a set of at least 5 curves from C(A,B), where A and B
may coincide. Let g1, g2 be two curves such that H ∪ {g1, g2} form a family of
pseudo-segments. Then H cannot form a quasi-grid with respect to both g1 and
g2.380

Proof. Suppose for contradiction that H is a quasi-grid with respect to g1 and
g2 simultaneously. Let H′ = {h1, h2, . . . , h5} be a 5-element subset of H that
touch g1 in this order at P1, . . . , P5, see Figure 7.

The curve g2 cannot have any points in a region which is enclosed by only
curves from H′: it cannot leave the region since it cannot cross any of H′, and385

every region is bounded by at most four of the H′ curves, so at least one curve
would remain untouchable for g2.

Consequently, g2 has to touch h2, h3 and h4 in the regions enclosed by g1, hi

and hi+1 (i = 1, 2, 3, 4) (see the shaded regions in Figure 7). Since g2 can meet

13



g1 at most once, it can visit only one of these regions, so at least one of h2, h3390

and h4 will remain untouchable - we arrived at a contradiction.
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