677 research outputs found

    Improving Landmark Localization with Semi-Supervised Learning

    Full text link
    We present two techniques to improve landmark localization in images from partially annotated datasets. Our primary goal is to leverage the common situation where precise landmark locations are only provided for a small data subset, but where class labels for classification or regression tasks related to the landmarks are more abundantly available. First, we propose the framework of sequential multitasking and explore it here through an architecture for landmark localization where training with class labels acts as an auxiliary signal to guide the landmark localization on unlabeled data. A key aspect of our approach is that errors can be backpropagated through a complete landmark localization model. Second, we propose and explore an unsupervised learning technique for landmark localization based on having a model predict equivariant landmarks with respect to transformations applied to the image. We show that these techniques, improve landmark prediction considerably and can learn effective detectors even when only a small fraction of the dataset has landmark labels. We present results on two toy datasets and four real datasets, with hands and faces, and report new state-of-the-art on two datasets in the wild, e.g. with only 5\% of labeled images we outperform previous state-of-the-art trained on the AFLW dataset.Comment: Published as a conference paper in CVPR 201

    Feature extraction on faces : from landmark localization to depth estimation

    Get PDF
    Le sujet de cette thèse porte sur les algorithmes d'apprentissage qui extraient les caractéristiques importantes des visages. Les caractéristiques d’intérêt principal sont des points clés; La localisation en deux dimensions (2D) ou en trois dimensions (3D) de traits importants du visage telles que le centre des yeux, le bout du nez et les coins de la bouche. Les points clés sont utilisés pour résoudre des tâches complexes qui ne peuvent pas être résolues directement ou qui requièrent du guidage pour l’obtention de performances améliorées, telles que la reconnaissance de poses ou de gestes, le suivi ou la vérification du visage. L'application des modèles présentés dans cette thèse concerne les images du visage; cependant, les algorithmes proposés sont plus généraux et peuvent être appliqués aux points clés de d'autres objets, tels que les mains, le corps ou des objets fabriqués par l'homme. Cette thèse est écrite par article et explore différentes techniques pour résoudre plusieurs aspects de la localisation de points clés. Dans le premier article, nous démêlons l'identité et l'expression d'un visage donné pour apprendre une distribution à priori sur l'ensemble des points clés. Cette distribution à priori est ensuite combinée avec un classifieur discriminant qui apprend une distribution de probabilité indépendante par point clé. Le modèle combiné est capable d'expliquer les différences dans les expressions pour une même représentation d'identité. Dans le deuxième article, nous proposons une architecture qui vise à conserver les caractéristiques d’images pour effectuer des tâches qui nécessitent une haute précision au niveau des pixels, telles que la localisation de points clés ou la segmentation d’images. L’architecture proposée extrait progressivement les caractéristiques les plus grossières dans les étapes d'encodage pour obtenir des informations plus globales sur l’image. Ensuite, il étend les caractéristiques grossières pour revenir à la résolution de l'image originale en recombinant les caractéristiques du chemin d'encodage. Le modèle, appelé Réseaux de Recombinaison, a obtenu l’état de l’art sur plusieurs jeux de données, tout en accélérant le temps d’apprentissage. Dans le troisième article, nous visons à améliorer la localisation des points clés lorsque peu d'images comportent des étiquettes sur des points clés. En particulier, nous exploitons une forme plus faible d’étiquettes qui sont plus faciles à acquérir ou plus abondantes tel que l'émotion ou la pose de la tête. Pour ce faire, nous proposons une architecture permettant la rétropropagation du gradient des étiquettes les plus faibles à travers des points clés, ainsi entraînant le réseau de localisation des points clés. Nous proposons également une composante de coût non supervisée qui permet des prédictions de points clés équivariantes en fonction des transformations appliquées à l'image, sans avoir les vraies étiquettes des points clés. Ces techniques ont considérablement amélioré les performances tout en réduisant le pourcentage d'images étiquetées par points clés. Finalement, dans le dernier article, nous proposons un algorithme d'apprentissage permettant d'estimer la profondeur des points clés sans aucune supervision de la profondeur. Nous y parvenons en faisant correspondre les points clés de deux visages en les transformant l'un vers l'autre. Cette transformation nécessite une estimation de la profondeur sur un visage, ainsi que une transformation affine qui transforme le premier visage au deuxième. Nous démontrons que notre formulation ne nécessite que la profondeur et que les paramètres affines peuvent être estimés avec un solution analytique impliquant les points clés augmentés par profondeur. Même en l'absence de supervision directe de la profondeur, la technique proposée extrait des valeurs de profondeur raisonnables qui diffèrent des vraies valeurs de profondeur par un facteur d'échelle et de décalage. Nous démontrons des applications d'estimation de profondeur pour la tâche de rotation de visage, ainsi que celle d'échange de visage.This thesis focuses on learning algorithms that extract important features from faces. The features of main interest are landmarks; the two dimensional (2D) or three dimensional (3D) locations of important facial features such as eye centers, nose tip, and mouth corners. Landmarks are used to solve complex tasks that cannot be solved directly or require guidance for enhanced performance, such as pose or gesture recognition, tracking, or face verification. The application of the models presented in this thesis is on facial images; however, the algorithms proposed are more general and can be applied to the landmarks of other forms of objects, such as hands, full body or man-made objects. This thesis is written by article and explores different techniques to solve various aspects of landmark localization. In the first article, we disentangle identity and expression of a given face to learn a prior distribution over the joint set of landmarks. This prior is then merged with a discriminative classifier that learns an independent probability distribution per landmark. The merged model is capable of explaining differences in expressions for the same identity representation. In the second article, we propose an architecture that aims at uncovering image features to do tasks that require high pixel-level accuracy, such as landmark localization or image segmentation. The proposed architecture gradually extracts coarser features in its encoding steps to get more global information over the image and then it expands the coarse features back to the image resolution by recombining the features of the encoding path. The model, termed Recombinator Networks, obtained state-of-the-art on several datasets, while also speeding up training. In the third article, we aim at improving landmark localization when only a few images with labelled landmarks are available. In particular, we leverage a weaker form of data labels that are easier to acquire or more abundantly available such as emotion or head pose. To do so, we propose an architecture to backpropagate gradients of the weaker labels through landmarks, effectively training the landmark localization network. We also propose an unsupervised loss component which makes equivariant landmark predictions with respect to transformations applied to the image without having ground truth landmark labels. These techniques improved performance considerably when we have a low percentage of labelled images with landmarks. Finally, in the last article, we propose a learning algorithm to estimate the depth of the landmarks without any depth supervision. We do so by matching landmarks of two faces through transforming one to another. This transformation requires estimation of depth on one face and an affine transformation that maps the first face to the second one. Our formulation, which only requires depth estimation and affine parameters, can be estimated as a closed form solution of the 2D landmarks and the estimated depth. Even without direct depth supervision, the proposed technique extracts reasonable depth values that differ from the ground truth depth values by a scale and a shift. We demonstrate applications of the estimated depth in face rotation and face replacement tasks

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Statistical Methods for Semiconductor Manufacturing

    Get PDF
    In this thesis techniques for non-parametric modeling, machine learning, filtering and prediction and run-to-run control for semiconductor manufacturing are described. In particular, algorithms have been developed for two major applications area: - Virtual Metrology (VM) systems; - Predictive Maintenance (PdM) systems. Both technologies have proliferated in the past recent years in the semiconductor industries, called fabs, in order to increment productivity and decrease costs. VM systems aim of predicting quantities on the wafer, the main and basic product of the semiconductor industry, that may be physically measurable or not. These quantities are usually ’costly’ to be measured in economic or temporal terms: the prediction is based on process variables and/or logistic information on the production that, instead, are always available and that can be used for modeling without further costs. PdM systems, on the other hand, aim at predicting when a maintenance action has to be performed. This approach to maintenance management, based like VM on statistical methods and on the availability of process/logistic data, is in contrast with other classical approaches: - Run-to-Failure (R2F), where there are no interventions performed on the machine/process until a new breaking or specification violation happens in the production; - Preventive Maintenance (PvM), where the maintenances are scheduled in advance based on temporal intervals or on production iterations. Both aforementioned approaches are not optimal, because they do not assure that breakings and wasting of wafers will not happen and, in the case of PvM, they may lead to unnecessary maintenances without completely exploiting the lifetime of the machine or of the process. The main goal of this thesis is to prove through several applications and feasibility studies that the use of statistical modeling algorithms and control systems can improve the efficiency, yield and profits of a manufacturing environment like the semiconductor one, where lots of data are recorded and can be employed to build mathematical models. We present several original contributions, both in the form of applications and methods. The introduction of this thesis will be an overview on the semiconductor fabrication process: the most common practices on Advanced Process Control (APC) systems and the major issues for engineers and statisticians working in this area will be presented. Furthermore we will illustrate the methods and mathematical models used in the applications. We will then discuss in details the following applications: - A VM system for the estimation of the thickness deposited on the wafer by the Chemical Vapor Deposition (CVD) process, that exploits Fault Detection and Classification (FDC) data is presented. In this tool a new clustering algorithm based on Information Theory (IT) elements have been proposed. In addition, the Least Angle Regression (LARS) algorithm has been applied for the first time to VM problems. - A new VM module for multi-step (CVD, Etching and Litography) line is proposed, where Multi-Task Learning techniques have been employed. - A new Machine Learning algorithm based on Kernel Methods for the estimation of scalar outputs from time series inputs is illustrated. - Run-to-Run control algorithms that employ both the presence of physical measures and statistical ones (coming from a VM system) is shown; this tool is based on IT elements. - A PdM module based on filtering and prediction techniques (Kalman Filter, Monte Carlo methods) is developed for the prediction of maintenance interventions in the Epitaxy process. - A PdM system based on Elastic Nets for the maintenance predictions in Ion Implantation tool is described. Several of the aforementioned works have been developed in collaborations with major European semiconductor companies in the framework of the European project UE FP7 IMPROVE (Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab pErformance); such collaborations will be specified during the thesis, underlying the practical aspects of the implementation of the proposed technologies in a real industrial environment

    On Fast Leverage Score Sampling and Optimal Learning

    Get PDF
    Leverage score sampling provides an appealing way to perform approximate computations for large matrices. Indeed, it allows to derive faithful approximations with a complexity adapted to the problem at hand. Yet, performing leverage scores sampling is a challenge in its own right requiring further approximations. In this paper, we study the problem of leverage score sampling for positive definite matrices defined by a kernel. Our contribution is twofold. First we provide a novel algorithm for leverage score sampling and second, we exploit the proposed method in statistical learning by deriving a novel solver for kernel ridge regression. Our main technical contribution is showing that the proposed algorithms are currently the most efficient and accurate for these problems

    A review on a deep learning perspective in brain cancer classification

    Get PDF
    AWorld Health Organization (WHO) Feb 2018 report has recently shown that mortality rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for brain cancer characterization in a machine and deep learning paradigm. Another objective of this paper is to find the current issues in existing engineering methods and also project a future paradigm. Further, we have highlighted the relationship between brain cancer and other brain disorders like stroke, Alzheimer’s, Parkinson’s, andWilson’s disease, leukoriaosis, and other neurological disorders in the context of machine learning and the deep learning paradigm

    Inferring User Needs and Tasks from User Interactions

    Get PDF
    The need for search often arises from a broad range of complex information needs or tasks (such as booking travel, buying a house, etc.) which lead to lengthy search processes characterised by distinct stages and goals. While existing search systems are adept at handling simple information needs, they offer limited support for tackling complex tasks. Accurate task representations could be useful in aptly placing users in the task-subtask space and enable systems to contextually target the user, provide them better query suggestions, personalization and recommendations and help in gauging satisfaction. The major focus of this thesis is to work towards task based information retrieval systems - search systems which are adept at understanding, identifying and extracting tasks as well as supporting user’s complex search task missions. This thesis focuses on two major themes: (i) developing efficient algorithms for understanding and extracting search tasks from log user and (ii) leveraging the extracted task information to better serve the user via different applications. Based on log analysis on a tera-byte scale data from a real-world search engine, detailed analysis is provided on user interactions with search engines. On the task extraction side, two bayesian non-parametric methods are proposed to extract subtasks from a complex task and to recursively extract hierarchies of tasks and subtasks. A novel coupled matrix-tensor factorization model is proposed that represents user based on their topical interests and task behaviours. Beyond personalization, the thesis demonstrates that task information provides better context to learn from and proposes a novel neural task context embedding architecture to learn query representations. Finally, the thesis examines implicit signals of user interactions and considers the problem of predicting user’s satisfaction when engaged in complex search tasks. A unified multi-view deep sequential model is proposed to make query and task level satisfaction prediction
    • …
    corecore