4,520 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Machine Learning For In-Region Location Verification In Wireless Networks

    Full text link
    In-region location verification (IRLV) aims at verifying whether a user is inside a region of interest (ROI). In wireless networks, IRLV can exploit the features of the channel between the user and a set of trusted access points. In practice, the channel feature statistics is not available and we resort to machine learning (ML) solutions for IRLV. We first show that solutions based on either neural networks (NNs) or support vector machines (SVMs) and typical loss functions are Neyman-Pearson (N-P)-optimal at learning convergence for sufficiently complex learning machines and large training datasets . Indeed, for finite training, ML solutions are more accurate than the N-P test based on estimated channel statistics. Then, as estimating channel features outside the ROI may be difficult, we consider one-class classifiers, namely auto-encoders NNs and one-class SVMs, which however are not equivalent to the generalized likelihood ratio test (GLRT), typically replacing the N-P test in the one-class problem. Numerical results support the results in realistic wireless networks, with channel models including path-loss, shadowing, and fading

    Are Children Decision-Makers Within the Household?

    Get PDF
    Children are seldom accounted for in household behavioural models. They are usually assumed to have neither the capacity nor the power to influence the household decision process. The literature on collective models has so far incorporated children through the "caring preferences" of their parents or has treated them as household public goods [Bourguignon (1999); Blundell et al. (2005)]. This paper seeks to determine whether children of a certain age are decision-makers. We focus on the decision-making process within households composed of two adults and one child of at least 16 years of age. We first summarize the main restrictions that have been proposed to test the collective model in the context of multiple decision-makers [Chiappori and Ekeland (2006)]. We also show how a minimal number of decision-makers can be inferred from parametric constraints. Second, we apply these tests on data drawn from a series of U.K. Family Expenditure Surveys. Our results show clear evidence that it may be incorrect to assume that daughters and children aged between 16 and 21 are not full members influencing the household decision-making process.intra-household allocation, collective household models, children, demand analysis, Pareto efficiency, rank tests

    Rule Of Thumb: Deep derotation for improved fingertip detection

    Full text link
    We investigate a novel global orientation regression approach for articulated objects using a deep convolutional neural network. This is integrated with an in-plane image derotation scheme, DeROT, to tackle the problem of per-frame fingertip detection in depth images. The method reduces the complexity of learning in the space of articulated poses which is demonstrated by using two distinct state-of-the-art learning based hand pose estimation methods applied to fingertip detection. Significant classification improvements are shown over the baseline implementation. Our framework involves no tracking, kinematic constraints or explicit prior model of the articulated object in hand. To support our approach we also describe a new pipeline for high accuracy magnetic annotation and labeling of objects imaged by a depth camera.Comment: To be published in proceedings of BMVC 201

    Corruption and Democracy

    Get PDF
    What is the impact of democracy on corruption? In most models, analysts assume a negative relationship, with more democracy leading to less corruption. But recent theoretical developments and case evidence support an inverted U relationship between corruption and democracy. By drawing on a panel data set covering a large number of countries between 1996 and 2003, substantial empirical support is found for an inverted U relationship between democracy and corruption. The turning point in corruption occurs rather early in the life of new democracies and at rather low per capita incomes.corruption, electoral democracy, consolidated democracy, rule of law, government effectiveness

    Proximal methods for structured group features and correlation matrix nearness

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: junio de 2014Optimization is ubiquitous in real life as many of the strategies followed both by nature and by humans aim to minimize a certain cost, or maximize a certain benefit. More specifically, numerous strategies in engineering are designed according to a minimization problem, although usually the problems tackled are convex with a di erentiable objective function, since these problems have no local minima and they can be solved with gradient-based techniques. Nevertheless, many interesting problems are not di erentiable, such as, for instance, projection problems or problems based on non-smooth norms. An approach to deal with them can be found in the theory of Proximal Methods (PMs), which are based on iterative local minimizations using the Proximity Operator (ProxOp) of the terms that compose the objective function. This thesis begins with a general introduction and a brief motivation of the work done. The state of the art in PMs is thoroughly reviewed, defining the basic concepts from the very beginning and describing the main algorithms, as far as possible, in a simple and self-contained way. After that, the PMs are employed in the field of supervised regression, where regularized models play a prominent role. In particular, some classical linear sparse models are reviewed and unified under the point of view of regularization, namely the Lasso, the Elastic–Network, the Group Lasso and the Group Elastic–Network. All these models are trained by minimizing an error term plus a regularization term, and thus they fit nicely in the domain of PMs, as the structure of the problem can be exploited by minimizing alternatively the di erent expressions that compose the objective function, in particular using the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA). As a real-world application, it is shown how these models can be used to forecast wind energy, where they yield both good predictions in terms of the error and, more importantly, valuable information about the structure and distribution of the relevant features. Following with the regularized learning approach, a new regularizer is proposed, called the Group Total Variation, which is a group extension of the classical Total Variation regularizer and thus it imposes constancy over groups of features. In order to deal with it, an approach to compute its ProxOp is derived. Moreover, it is shown that this regularizer can be used directly to clean noisy multidimensional signals (such as colour images) or to define a new linear model, the Group Fused Lasso (GFL), which can be then trained using FISTA. It is also exemplified how this model, when applied to regression problems, is able to provide solutions that identify the underlying problem structure. As an additional result of this thesis, a public software implementation of the GFL model is provided. The PMs are also applied to the Nearest Correlation Matrix problem under observation uncertainty. The original problem consists in finding the correlation matrix which is nearest to the true empirical one. Some variants introduce weights to adapt the confidence given to each entry of the matrix; with a more general perspective, in this thesis the problem is explored directly considering uncertainty on the observations, which is formalized as a set of intervals where the measured matrices lie. Two di erent variants are defined under this framework: a robust approach called the Robust Nearest Correlation Matrix (which aims to minimize the worst-case scenario) and an exploratory approach, the Exploratory Nearest Correlation Matrix (which focuses on the best-case scenario). It is shown how both optimization problems can be solved using the Douglas–Rachford PM with a suitable splitting of the objective functions. The thesis ends with a brief overall discussion and pointers to further work.La optimización está presente en todas las facetas de la vida, de hecho muchas de las estrategias tanto de la naturaleza como del ser humano pretenden minimizar un cierto coste, o maximizar un cierto beneficio. En concreto, multitud de estrategias en ingeniería se diseñan según problemas de minimización, que habitualmente son problemas convexos con una función objetivo diferenciable, puesto que en ese caso no hay mínimos locales y los problemas pueden resolverse mediante técnicas basadas en gradiente. Sin embargo, hay muchos problemas interesantes que no son diferenciables, como por ejemplo problemas de proyección o basados en normas no suaves. Una aproximación para abordar estos problemas son los Métodos Proximales (PMs), que se basan en minimizaciones locales iterativas utilizando el Operador de Proximidad (ProxOp) de los términos de la función objetivo. La tesis comienza con una introducción general y una breve motivación del trabajo hecho. Se revisa en profundidad el estado del arte en PMs, definiendo los conceptos básicos y describiendo los algoritmos principales, dentro de lo posible, de forma simple y auto-contenida. Tras ello, se emplean los PMs en el campo de la regresión supervisada, donde los modelos regularizados tienen un papel prominente. En particular, se revisan y unifican bajo esta perspectiva de regularización algunos modelos lineales dispersos clásicos, a saber, Lasso, Elastic–Network, Lasso Grupal y Elastic–Network Grupal. Todos estos modelos se entrenan minimizando un término de error y uno de regularización, y por tanto encajan perfectamente en el dominio de los PMs, ya que la estructura del problema puede ser aprovechada minimizando alternativamente las diferentes expresiones que componen la función objetivo, en particular mediante el Algoritmo Fast Iterative Shrinkage–Thresholding (FISTA). Como aplicación al mundo real, se muestra que estos modelos pueden utilizarse para predecir energía eólica, donde proporcionan tanto buenos resultados en términos del error como información valiosa sobre la estructura y distribución de las características relevantes. Siguiendo con esta aproximación, se propone un nuevo regularizador, llamado Variación Total Grupal, que es una extensión grupal del regularizador clásico de Variación Total y que por tanto induce constancia sobre grupos de características. Para aplicarlo, se desarrolla una aproximación para calcular su ProxOp. Además, se muestra que este regularizador puede utilizarse directamente para limpiar señales multidimensionales ruidosas (como imágenes a color) o para definir un nuevo modelo lineal, el Fused Lasso Grupal (GFL), que se entrena con FISTA. Se ilustra cómo este modelo, cuando se aplica a problemas de regresión, es capaz de proporcionar soluciones que identifican la estructura subyacente del problema. Como resultado adicional de esta tesis, se publica una implementación software del modelo GFL. Asimismo, se aplican los PMs al problema de Matriz de Correlación Próxima (NCM) bajo incertidumbre. El problema original consiste en encontrar la matriz de correlación más cercana a la empírica verdadera. Algunas variantes introducen pesos para ajustar la confianza que se da a cada entrada de la matriz; con un carácter más general, en esta tesis se explora el problema considerando incertidumbre en las observaciones, que se formaliza como un conjunto de intervalos en el que se encuentran las matrices medidas. Bajo este marco se definen dos variantes: una aproximación robusta llamada NCM Robusta (que minimiza el caso peor) y una exploratoria, NCM Exploratoria (que se centra en el caso mejor). Ambos problemas de optimización pueden resolverse con el PM de Douglas–Rachford y una partición adecuada de las funciones objetivo. La tesis concluye con una discusión global y referencias a trabajo futur

    Continuous-variable quantum neural networks

    Full text link
    We introduce a general method for building neural networks on quantum computers. The quantum neural network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field. This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We show how a classical network can be embedded into the quantum formalism and propose quantum versions of various specialized model such as convolutional, recurrent, and residual networks. Finally, we present numerous modeling experiments built with the Strawberry Fields software library. These experiments, including a classifier for fraud detection, a network which generates Tetris images, and a hybrid classical-quantum autoencoder, demonstrate the capability and adaptability of CV quantum neural networks

    Tax Decentralisation and local Government size

    Get PDF
    The aim of this paper is to re-examine the relationship between fiscal federalism and the size of local governments. Traditionally, the empirical studies have focused on the different accountability power of grants and local taxes, concluding that the former encourages the growth and the latter contributes to contain local public spending. Yet, the existing literature is more silent about the possibility that different types of tax autonomy may still have differential impacts on the expansion of the local public sector. The paper addresses this issue by introducing a new testable hypothesis - the “Tax Separation Hypothesis” (TSH) - according to which tax decentralisation organised on tax bases used only by local governments would favour most the containment of local public expenditures, while that organised on tax base sharing (i.e. piggybacking mechanisms) is not expected to have a significant impact on the local government size. Using an unbalanced panel data set of OECD countries, we adopt the novel approach of disentangling the impact of local taxes - on income, property, and goods and services - on the size of the local public sector. In particular, property taxes only - mostly based on a “tax separation” scheme - seem to have a negative impact on the size of local government. Instead, both income taxes and general taxes on goods and services – often shared with central governments – have uncertain impacts on the size of local governments (and more frequently positive). We conclude that tax decentralisation is a necessary condition to contain local public expenditures, yet it is not sufficient, as a tax separation scheme would in fact be required.Fiscal decentralisation; Tax sharing; Tax separation; Property taxes; Local government size.
    corecore