9,696 research outputs found

    A hierarchical RCNN for vehicle and vehicle license plate detection and recognition

    Get PDF
    Vehicle and vehicle license detection obtained incredible achievements during recent years that are also popularly used in real traffic scenarios, such as intelligent traffic monitoring systems, auto parking systems, and vehicle services. Computer vision attracted much attention in vehicle and vehicle license detection, benefit from image processing and machine learning technologies. However, the existing methods still have some issues with vehicle and vehicle license plate recognition, especially in a complex environment. In this paper, we propose a multivehicle detection and license plate recognition system based on a hierarchical region convolutional neural network (RCNN). Firstly, a higher level of RCNN is employed to extract vehicles from the original images or video frames. Secondly, the regions of the detected vehicles are input to a lower level (smaller) RCNN to detect the license plate. Thirdly, the detected license plate is split into single numbers. Finally, the individual numbers are recognized by an even smaller RCNN. The experiments on the real traffic database validated the proposed method. Compared with the commonly used all-in-one deep learning structure, the proposed hierarchical method deals with the license plate recognition task in multiple levels for sub-tasks, which enables the modification of network size and structure according to the complexity of sub-tasks. Therefore, the computation load is reduced

    Deep Learning Based Vehicle Make-Model Classification

    Full text link
    This paper studies the problems of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines. It detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.Comment: 10 pages, ICANN 2018: Artificial Neural Networks and Machine Learnin

    License plate localization based on statistical measures of license plate features

    Get PDF
    — License plate localization is considered as the most important part of license plate recognition system. The high accuracy rate of license plate recognition is depended on the ability of license plate detection. This paper presents a novel method for license plate localization bases on license plate features. This proposed method consists of two main processes. First, candidate regions extraction step, Sobel operator is applied to obtain vertical edges and then potential candidate regions are extracted by deploying mathematical morphology operations [5]. Last, license plate verification step, this step employs the standard deviation of license plate features to confirm license plate position. The experimental results show that the proposed method can achieve high quality license plate localization results with high accuracy rate of 98.26 %

    Empirical Study of Car License Plates Recognition

    Get PDF
    The number of vehicles on the road has increased drastically in recent years. The license plate is an identity card for a vehicle. It can map to the owner and further information about vehicle. License plate information is useful to help traffic management systems. For example, traffic management systems can check for vehicles moving at speeds not permitted by law and can also be installed in parking areas to se-cure the entrance or exit way for vehicles. License plate recognition algorithms have been proposed by many researchers. License plate recognition requires license plate detection, segmentation, and charac-ters recognition. The algorithm detects the position of a license plate and extracts the characters. Various license plate recognition algorithms have been implemented, and each algorithm has its strengths and weaknesses. In this research, I implement three algorithms for detecting license plates, three algorithms for segmenting license plates, and two algorithms for recognizing license plate characters. I evaluate each of these algorithms on the same two datasets, one from Greece and one from Thailand. For detecting li-cense plates, the best result is obtained by a Haar cascade algorithm. After the best result of license plate detection is obtained, for the segmentation part a Laplacian based method has the highest accuracy. Last, the license plate recognition experiment shows that a neural network has better accuracy than other algo-rithm. I summarize and analyze the overall performance of each method for comparison

    A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector

    Full text link
    Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detector. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.Comment: Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 201

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear
    • …
    corecore